
Kotrappa Sirbi and Prakash J Kulkarni/ Elixir Comp. Sci. & Engg. 91 (2016) 38605-38609 38605

Introduction

 To validate the impact of aspect oriented on software

quality the quantitative and qualitative studies are essential [1,

10, 7, 15]. The research may consist of empirical assessment of

verification of AOP and its impact on software characteristics

such as evolvability, maintainability, understandability, and

quality [7]. The critical question is how we can quantify when

using AOP is advantageous. Metrics is an important method in

quantifying software and software development characteristics

[16]. However, metrics have to be used proficiently and

cautiously. Academic and empirical support of metrics and of

their relation to software attributes are an unwieldy and lengthy

process. It is of principal importance that we authenticate the

usefulness of metrics we use in order to enable others to use

them as well [2]. Till now, the metrics used and projected for

AOP are seldom validated. It is not enough to confirm their

definitions right but also their utility to explain software

characteristics has to be validated [2]. In many instances, this

can only be accomplished through forbidden experiments or

through analyzing huge volumes of data. In both situations,

statistical assessment is a key method to check hypotheses [16].

Our main objectives were to provide the grounds to answer the

following research questions.

1. Do Design Patterns have effect on quality when we change

system from OOP to AOP?

2. Will there be any a significant change on the overall design

quality metrics?

The roadmap of the paper is as follows, Section 2 provides

motivation on design quality metrics evaluations. Section 3 give

an overview of Aspect Oriented (AO) design quality metrics for

Aspect-Orientated Programming (AOP), Section 4 discuss

experimental study for AOP design quality metrics, results and

analysis of experimental study, Section 6 gives threats to the

validity of software quality metrics and Section 7 gives about

related work in AOP software quality metrics. Lastly Section 8

includes the conclusion of the paper.

Motivation

 Evolution of OOP in three decades of its existence has

proved the superiority over the procedure, function, logical and

objects oriented paradigms. AOP in late 1990’s has become

known as new buzzword for modularization of crosscutting

concerns which otherwise spread across the system. There are

many research studies have recommended about AOP quality

and modularization of crosscutting concerns concepts [5, 6, 7, 9,

10]. With this limited number of empirical studies, these

statements about separation of concern by AOP or coupling

measure by AOP can’t be generalize beyond university

examples [2]. We further investigate about AOP and its effect on

software quality in evaluating genuine existence of case studies.

AOP Quality Metrics

AOP Quality Model

Our quality model defines a terminology and clarifies the

relationships between the reusability, maintainability and the

metrics suite. It is a useful tool for guiding software engineers in

data interpretation. It was defined based on a set of assumptions.

The definition of our quality model is based on: (i) an extensive

review of a set of existing quality models [6], (ii) classical

definitions of quality attributes and traditional design theories,

such as Parnas' theory [2], which is commonly accepted among

researchers, and practitioners and (iii) the software attributes

impacted by the aspect-oriented abstractions. The quality model

has been built and refined using Basilis GQM methodology [10,

12] (see Figure 1). The metrics for AOP software quality shown

in Table 2 and model is shown in Table 1.

For comparison of software quality of Java and AspectJ

techniques, we adopted the G-Q-M (Goal-Question-Metric)

method .G-Q-M Describes a measurement software system on

three stages (Figure 1) begin with goal [13].

The goal is to treat in questions that split into proven

statements. Every questions are connected with metrics that,

when measured, will offer information to reply the question. Our

main objective is to only compare of Java and AspectJ system

Tele:

E-mail addresses: kotrappa06@gmail.com

 © 2016 Elixir All rights reserved

AOP and its impact on software quality
Kotrappa Sirbi

1
 and Prakash J Kulkarni

2

1
Department of Computer Science & Engineering, K L E’s Dr.M.S.Sheshgiri College of Engineering & Technology, Belgaum, India.

2
Department of Computer Science & Engineering, Walchand College of Engineering, Sangli, India.

ABSTRACT

This has been asserted that AOP allows attaining better design quality systems than those

built with OOP, namely by reducing scattering and tangling from the research literature.

There is limited quantitative and qualitative research supporting those arguments which

already were published. Software metrics are very important validating procedure of quality

software and software properties of aspect oriented programming (AOP). Object oriented

programming (OOP) implementations may suffer certain drawbacks that will affect the

design quality of the system and thus its system maintainability, comprehensibility,

understandability and testability. Aspect oriented programming (AOP) facilitates with

powerful quantification constructs to handle design quality. In this paper, we compare two

versions (Java and AspectJ) of observer patterns to further investigate within the context of

design quality. We evaluated the system based on the value of these design quality metrics

RFC, CBM, LCO and WMC.We claim that the AOP has significance effect on design

quality than OOP

 © 2016 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 11 May 2012;

Received in revised form:

23 February 2016;

Accepted: 27 February 2016;

Keywords

Aspect Oriented Programming (AOP),

Metrics,

Design patterns (dps),

Separation of concern,

Aspects.

Elixir Comp. Sci. & Engg. 91 (2016) 38605-38609

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Kotrappa Sirbi and Prakash J Kulkarni/ Elixir Comp. Sci. & Engg. 91 (2016) 38605-38609 38606

TABLE I. AOP QUALITY MODEL

Quality

Type

Product

Perspective

Characteristics Sub-

characteristics

Quality

Software

Product

 Functionality Suitability

Accuracy

Interoperability

Security

Reusability

Reliability Maturity

Fault Tolerance

Recoverability

Usability

Understand-dability

Learn-ability

Operability

Attractiveness

Complexity

Efficiency Time behavior

Resource behavior

Code-reducibility

Maintainability

Analyzability

Changeability

Stability

Testability

Modularity

Portability Adaptability

Replace-ability

Install-ability

Co-Existence

Evolvability

Extensibility

Sustainability

Design Stability

Configurability

TABLE II. METRICS DEFINITIONS
Metrics Definition

WOM/

WMC

Number of operations in a given module and its equivalent to

the WMC metrics from CK metrics suite.

DIT
Length of the longest path from a given module to the

class/aspect hierarchy root.

CIM
Number of modules or interfaces explicitly named in the

pointcuts of a given module

CFA
Number of interfaces or modules declaring fields that are

necessary by a given module.

CBM/

CBO/

CFA/

CMC

Number of modules or interfaces declaring methods or fields

that can be called or accessed by a given module. It's

equivalent to CBO metric from CK metric suite and

combination of CFA and CMC.

LCO/

LCOM

Number of pairs of operations working on different class

fields minus pairs of operations working on common fields

(zero if negative). Its similar to LCOM of OO metric.

RFM/

RFC

Number of methods and advices potentially executed in

response to a message received by a given module. Its is

similar to RFC from CK metrics suite.

Measurement System

Figure 1.G-Q-M Model

with regards to design quality from software developer

viewpoint. Some experimental studies [1, 2] are conflict design

quality with the help of modularity metrics. With these set of

software attributes was firstly suggested by Yourdon and

Constantine [2] for measuring of modularity. Later this

structured design methodology was adapted to OO methodology

by Coad & Yourdon, Grady Booch and Meyer. There are many

pragmatic studies [2] confirm that impact of coupling and

cohesion on modularity. In spite of concept of cohesion and

coupling in software design for almost more than 50 years, still

we do not have generally accepted metrics for them[2]. In the

empirical study [2], the author maintained CBO (Coupling

Between Object classes) and LCOM (Lack of Cohesion in

methods), adapted from C&K metrics suite [2]. CBO is a

measure of the number of other modules to which a module is

coupled .These two modules are coupled when methods declared

in one module use methods or instance variables of the other

module [7, 2].LCOM is the degree to which methods within a

module are related to one another. It is a count as the number of

pairs of methods working on different attributes minus the pairs

of methods working on at least one shared attributes(zero if

negative)[7].Experimental study

This study uses implementations of the GoF design patterns

made freely available by Hannemann & Kiczales [4]. For each

pattern there is a small example that makes use of the pattern,

and implemented the example in both Java and AspectJ. The

AspectJ implementations are considered as one of the nearest

things to examples of good AOP style and design [2]. The Java

implementations correspond to the sample C++ implementations

in the GoF book [3]. In the measurement process, the data was

gathered by the AOPmetric's tool [11]. This tool implements the

metric suite proposed by Ceccato & Tonella [14]. For

experimentation purpose, we have taken popular observer

pattern for GoF design patterns and many researchers used this

example, but ours is different because it’s based Aspect Oriented

Quality model to evaluate the improved AOP quality.

Case Study

Observer pattern, known as Model-View is indented to

“define a one-to-many dependency between objects so that when

one object changes state, all its dependents are notified and

updated automatically”. Object oriented implementations of the

Observer pattern; usually add a field to all potential Subjects that

stores a list of Observers interested in that particular Subject.

When a Subject wants to report a state change to its Observers, it

calls its own notify method, which in turn calls an update

method on all Observers in the list. Figure 2 shows a concrete

example of the Observer pattern in the context of a simple figure

package. In such a system the Observer pattern is used to cause

mutating operations to figure elements to update the screen. The

code for implementing this pattern is spread across the classes.

The underlined methods contain code necessary to

implement this instance of such a pattern. All participants (i.e.

Point and Line) have to know about their role in the pattern and

consequently have pattern code in them. Adding or removing a

role from a class requires changes in that class. Changing the

notification mechanism requires changes in all participating

classes.In the AspectJ version [14] all code pertaining to the

relationship between Observers and Subjects is moved into an

aspect, which changes the dependencies between the modules, as

shown in Figure 3. Subject and Observer roles crosscutclasses,

and the changes of interest (the subjectChange pointcut)

crosscuts methods in various classes. In this paper, we have

decided to assess the implementation of the observer design

patterns in both Java and AspectJ. First, we applied the metrics

in Hannemann and Kiczales original code [4]. Afterwards, we

changed their implementation to add new participant classes to

Kotrappa Sirbi and Prakash J Kulkarni/ Elixir Comp. Sci. & Engg. 91 (2016) 38605-38609 38607

play pattern roles. These changes were introduced because

Hannemann and Kiczales’ implementation encompasses few

classes per role (in most cases only one) [4]. Hence we have

decided to add more participant classes in order to investigate

the pattern crosscutting structure. Finally, we have applied the

chosen metrics to the changed code. We analyzed the results

after the changes, comparing with the results gathered from the

original code (i.e. Before the changes) [4, 14].

Figure 2. Observer pattern in Java

Figure 3. Observer pattern in AspectJ

Results

Table 2 gives total, mean, and maximum and standard

deviation values of OOP and AOP C & K metrics for observer

patterns. Also, it compares values of total, mean, maximum,

standard deviation and 95 % confidence interval for significance

level 0.05 (100*(1- α)%) for both OO and AO observer pattern.

Here, we present the measurement results for the observer

design patterns; we focus on the presentation of results related to

RFC, CBM, LCO and WMC from the C&K metric suite and

their effects on software quality (see table 2). The relatively high

value of standard deviation for CBM and LCO indicates a high

variation among the values of these metrics. The results show

smaller average for a number of operations per

class(WOM(WMC)), response for class(RFM(RFC)), coupling

between objects(CBO(CBM)) and lack of cohesionO(LCOM))

values for AOP observer patterns. The rest of the metrics shows

almost same trends. Additionally, low standard deviation for

almost all of the AOP metrics make these averages more

meaningful and consistent. At times, the mean value of an entity

may be misleading particularly when there is a very large

variation among the values.

Analysis

TABLE III. OBSERVER PATTERN QUALITY METRICS –

DESCRIPTIVE STATISTICS
Metrics

RFC/

RFM

WOM/

WMC

CBO/

CBM

LCOM

/LCO

OO AO OO AO OO AO OO AO

Total 21 28 21 18 5 8 28 19

Mean 4.2 3.11 4.2 2 1 0.8 5.6 2.1

Maximum 10 8 10 7 2 5 24 10

Std.Dev 4.26 2.6 3.83 2.3 1 1.6 10.43 4.2

95%

Confidence

 Interval

3.73 1.5 3.36 1.0 0.8 1.7 9.14 2.7

The general observation on the overall design quality of OO

and AO metrics values is shown in Table 3 which indicates

smaller variations of standard deviation for all of AO metrics as

compared to their OO version. This is because of the reason that

almost all metrics values fall in line a small range with very

small outliers.

RFM/RFC

These metrics indicates the coupling measures and as per

table 2 this metrics shows reduced coupling for AO observer

pattern as compared to OO version. We can conclude that there

is an improvement in design quality with AOP over OOP. A

small value of RFC/RFM is treated as a good design which is

assumed to increase the understandability and testability.

WOM/WMC

These metrics will indicates complexity.A small value of

WOM/WMC is treated as a good design which is assumed to

reduce complexity and maintainability. There is a clear

indication that by a small value of this metric seen in the

improved performance measurements.

CBO/CBM

CBM of AOP is near concomitant to the CBO of OOP

version of the observer pattern. It is possibly that the mainly

important measure characteristics of the couplings which are the

important inspiration for the normal shift from OOP to AOP.

This metric indicates the improvement of maintainability and

reusability from OOP to AOP of observer pattern.

LCOM/LCO

There must be high cohesion between methods/operations in

OO or AO design. High variations were observed for OOP than

AOP.A prominent popular of metric AOP measures are

indicating a very large cohesion which signify an enhanced

design practice.

Based on the results, we have observed that the measure

relative to cohesion (LCOO, RFC, LCOM, CBO) and

complexity of operations (WOC (WMC), RFC, DIT). In general,

the AO solutions were superior in terms of RFC, WMC and

LCOM measures, since the use of AspectJ reduces the overuse

of inheritance mechanisms. However, as illustrated in Table 2,

most measures indicated that AspectJ implementations resulted

in higher coupling (CBO (CBC)).However, a careful analysis of

the implementation show that these higher CBC and LOC values

for AO solutions in general are related to the presence of generic

aspects in several AspectJ pattern implementations, which have

the intension of making the solution more reusable. In this paper,

we assessed that the impact of the observer pattern on AOP

design quality attributes such as maintainability,

understandability, reusability, efficiency and testability. We

argue that based on measures of metrics and their combined

effect on software quality attributes AOP solutions are superior

to OOP solutions , but this statement cannot be generalized still

AOP adoption needs a lot more empirical studies to accepted it

as a better quality than OOP. The comparative analysis of

improved AOP software quality measures are shown in Table

4.The complete description of the data and a more detailed

discussion of the results of this empirical study are beyond the

scope of this paper.

TABLE IV. IMPROVED AOP SOFTWARE QUALITY

Metric
AOP Software Quality

Characteristics Winner Loser

RFC/

RFM

Understandability
AO OO

Testability

WOM/

WMC

Performance

AO OO Maintainability

Complexity

CBO/

CBM

Maintainability
OO AO

Reusability

LCOM/

LCO

Reusability
AO OO

Efficiency

Kotrappa Sirbi and Prakash J Kulkarni/ Elixir Comp. Sci. & Engg. 91 (2016) 38605-38609 38608

Threats to validity

We have seen a number of limitations of this research that

are significance mentioning. Applying metric gives numeric

value for some property as a result, but that alone is not useful in

general. Every metric model must define how it should be

measured and what are good/bad measured mean values. Also,

the metrics is used to improve software quality based on their

relation with quality factors and what are methods and

techniques required to improve the software to improve results.

Metrics gives us objective information about properties of

software to evaluate software quality. As depth of inheritance

(DIT) grows, it is likely that classes on the lower level inherits

lots of methods and overrides few. DIT measures reuse via

inheritance and larger DIT means greater design complexity.

Response for a class (RFC) as it grows complexity of software

increases and understandability decreases. Number of children

(NOC) with very high value may be a candidate for refactoring

to create much maintainable hierarchy. NOC is a measure of

reuse and also indicator of required testing time. As RFC grows

testability become harder and with high RFC, there would be a

better class division. High coupling between objects (CBO)

would decreases understandability, increases complexity and

makes maintenance difficult. With high LCOM classes can be

more fault-prone and also good class encapsulation. Weighted

methods per class (WMC) is an indicator of the amount of

efforts required to implement and test a class. As the number of

methods for a class grows, they become more specific to

application and thus limiting possibilities for reusability. High

coupling between object classes (CBO) is undesirable because

more coupling between object classes is harmful to modular

design and prevents reusability.

Related work

There is a few related research works focusing on

quantitative and qualitative assessment of AOP design patterns

quality. Some different reimplementations of DPs in existing

systems from real world have been performed to improve the

Dips quality [1, 7]. A set of existing metrics has been used to

evaluate the quality of different AOP implementations [7, 14]. In

[4] Hannemann and Kiczales give an implementation of the

original solution to the observer pattern. Although it is known

that AOP Aspect J provides developer separating crosscutting

concerns, the impact of AOP on software modularity is not yet

well investigated [2]. Acceptable value for metrics evaluation

with different views of quality , and it is hard to find a numerical

value for quality which could be acceptable by all the people.

Also, having different views affects software categorization in

certain classification by considering the numerical value as the

only parameter on software evaluation [6]. A very large

collection of C&K’s metrics values for OOP is already provided

by an online measurement repository called OOMJ[12].

Recently the experiment was conducted by Adam P [2]. He also

compared the AO and OO implementations of the Gang-of-Four

patterns. Threshold of software metrics can be used as indicators

to identify possible anomalies in software [14]. There are 10 AO

software metrics proposed by Ceccato and Tonella, which revise

the well known C& K’s metrics suite [8, 14].

Conclusion/future work

In this paper, we investigate OO DPs and AOP effect on

design quality. Our evaluation is based on measurements on

AOP software metrics such as RFC, CBM, LCO and WMC from

the C&K metric suite, which was adapted to AOP. An approach

to reimplement observer patterns by AOP & Aspect J is

presented in this paper and analyzed for its quality factors. Based

on quality metrics, experimental results indicate that AO

improves reusability, maintainability, understandability and

testability. We hope that this research work stimulates some

argument about the effect of AOP in software development. We

argue that AOP has significance effect on improving AOP

software quality, but this statement can’t be generalized, it needs

further investigation.

Future work will consider experimentation consisting of 23

GoF DPs and non-GoF DPs from different domains and also

from the definition of new design solutions to improve the

quality of AOP system. As for as we know, this is the first

presentation of experimental study to this effect on OO DPs and

AOP design quality.

References

[1] Khan .R.A and Mustafa, K et, al, “An Empirical Validation

of Object -Oriented Design Quality Metrics”, J King Saud

Univesity., Vol, 19, Comp. & Info, Sci., pp 1-16, Riyadh

(1427H), 2007.

[2] Adam, P, “An Empirical Assessment of the Impact of

Aspect –Oriented Programming on Software Modularity”,

ENASE’2010, Athens – Greece, 22 - 24 July 2010.

[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design

Patterns: Elements of Reusable Object-Oriented Software”,

Addison-Wesley, 1995.

[4] Hannemann, J and Kiczales, G., “Design Patterns

Implementation in Java and AspectJ”, Proc. of Object Oriented

Programming Systems Languages and Applications, OOPSLA

’02, 161-173, Nov 2002.

[5] Hachani, O and Bardou D., “On Aspect-Oriented

Technology and Object-Oriented Design Patterns” , Proc. of

European Conference on Object Oriented Programming

,ECOOP 2003.

[6] Khashayar, K and Yann-Ga., “On Issues with Software

Quality Models”, workshop on quantitative approaches in

Object-Oriented Software Engineering, 2005.

[7] Bernardi.M.L and Di Lucca, G.A, “Improving Design

Pattern Quality Using Aspect Orientation”, 13th IEEE

Workshop on Software Technology and Engineering Practice,

2005.

[8] Chidamber and Kemerer, “A Metrics Suite for Object

Oriented Design”. IEEE Trans. Softw. Eng.20 (6), 476–493,

1994.

[9] Madeyski and Szała, “Impact of aspect-oriented

programming on software development efficiency and design

quality: an empirical study”. IET Software Journal 1(5), 180–

187, 2007.

[10] Kumar and Grover, “A quantitative evaluation of aspect-

oriented software quality model”, AOSQUAMO, ACM

SIGSOFT Software Engineering Notes Volume 34, Issue 5,

September 2009.

[11] Stochmiałek , AOPmetrics, Web site

http://aopmetrics.tigris.org

[12] Konstantina,G., Ayaz F, et al., Web site

http://donner.cs.unimagdeburg.de:8080/oomj

[13] Basili, Caldiera and Rombach, “The Goal Question Metric

Approach”, Encyclopedia of Soft. Eng., vol. 2, September 1994,

pp. 528-532, John Wiley & Sons, Inc, 1994.

[14] Komsan S and Pornsiri M, "Determining Threshold of

Aspect-Oriented Software Metrics", the Third International Joint

Conference on Computer Science and Software Engineering

(JCSSE2006), Bangkok, Thailand, June 29-30, 2006.

[15] Kotrappa S and Prakash J Kulkarni, “Design Patterns Vs

Aspect Oriented Programming –A Qualitative and a

Quantitative Assessment Systems”, International Journal of

Computer Science & Communication (IJCSC), Volume 1, No.2,

Kotrappa Sirbi and Prakash J Kulkarni/ Elixir Comp. Sci. & Engg. 91 (2016) 38605-38609 38609

pp: 233-237, July-December 2010.

[16] Foutse K and Yann-Gael, G, “Do Design Patterns Impact

Software Quality Positively?” CSMR, 12th European

Conference on software Maintenance and reengineering, 2008.

 Kotrappa Sirbi received the Bachelor of Engineering

from Mysore University, Mysore in 1985, M S (Software

System) from BITS, Pilani in 1994 and M Tech (CSE) from

VTU, Belgaum. In 2005 he became a PhD candidate in the

Department of Computer Science & Engineering, Walchand

College of Engineering, Sangli, India. He has published more

than 10 research articles both in international and national

conferences and journals. He is presently working at KLE’s

BCA, Belgaum, on deputation from K L E’s College of

Engineering & Technology, Belgaum. His current research

interests include software engineering, object oriented software

development, and aspect oriented software development and

quality metrics for OOP and Aspect-Oriented Programming.

