Design of coding schemes with low peak to average power ratio for OFDM systems

Sabhyata Uppal ${ }^{1}$, Sanjay Sharma ${ }^{2}$ and Hardeep Singh ${ }^{2}$
${ }^{1}$ ECED, UIET,Chandigarh, India.
${ }^{2}$ ECED, Thapar University, Patiala, India.

ARTICLE INFO

Article history:

Received: 29 March 2013;
Received in revised form:
18 February 2016;
Accepted: 23 February 2016;

Keywords

OFDM,

PAPR,

Golay complementary sequences, Reed-Muller codes,
Squared Euclidean distance.

Abstract

A coding scheme for OFDM transmission is proposed, exploiting a connection between pairs of Golay complementary sequences and second-order Reed-Muller codes. Using a realization of 16-QAM or 64 QAM constellation as the vector sum or two or three QPSK constellation respectively we construct 16 QAM and 64 QAM sequences having low PAPR. In this paper, we further examine the squared Euclidean distance of these M-QAM sequences and their variations. Our aim here is to combine the block coded modulation (BCM) and Golay complementary sequences to trade off the PAPR, the code rate, and the squared Euclidean distance of M-QAM OFDM signals

© 2016 Elixir All rights reserved

Introduction

Today's needs of bandwidth and flexibility are imposing the use of efficient modulations that may be fit to the characteristics of wireless channels. This is one of the reasons why multicarrier modulation techniques are finding growing interest for Wireless Local Area Networks (WLAN). Recent WLAN standards, such as Hiperlan type 2 and IEEE 802.11a [1], have adopted them for transmission of high bit rates in these networks. The choice of OFDM (Orthogonal Frequency Division Multiplexing) is due to its good performance in multipath environments and the number of sub-carriers has been chosen so as to mitigate the indoor channel effects. Basically, OFDM divides bandwidth into several orthogonal sub-carriers and sends information into these sub-carriers. Nevertheless, one of the main disadvantages of this modulation is its high PAR (Peak-to-Average power Ratio) requiring the use of linear HPAs (High Power Amplifiers) that are very power-inefficient and have an enormous impact on equipment's autonomy. Since OFDM is a good technique to mitigate multipath effects, it is interesting to try to improve its disadvantage and reduce the high PAR of this kind of signals. There are a lot of techniques for this purpouse like Complementary Golay Sequences [2], Partial Transmit Sequences (PTS) [3], Selective Mapping (SLM)[3], Tone Reservation [4], Clustered Transmission [5] and Orthogonal Pilot Sequences (OPS) [6]. Golay Sequences have been chosen for two reasons.

First, with this technique, PAR is limited up to 3 dB , independently of the number of carriers and input data. This is very important, because we know in advance how is the dynamic range for HPA. Second is the error correction capability of these codes that allow us to improve the whole system.

Construction of 16 QAM and 64 QAM OFDM codes with low papr and large euclidean distance

In general, to construct a length n BCM modulation code over a QPSK constellation, we choose two length n binary codes B_{1}, as the first level component code, and $B_{\mathbf{2}}$ as the second level component code, with proper minimum Hamming distance $d_{\mathbf{1}}$ and $d_{\mathbf{2}}$ respectively. Since the minimum Hamming distance of a coset of a code is equal to the minimum distance of the code itself, i.e., $\mathrm{d}\left(B_{\mathbf{2}}\right)=\mathrm{d}\left(e+B_{\mathbf{2}}\right)$ for any e, we can also choose an arbitrary coset of $B_{\mathbf{2}}$ as the second level component code for each codeword in B_{1}. In other words, if $B_{1}=\left(x_{1}, x_{\mathbf{2}} \ldots x_{M}\right)$ consisting M code words is the first level component code, then it is possible to use the following M cosets of $B_{\mathbf{2}}\left\{t_{\mathbf{1}}+B_{\mathbf{2}}, t_{\mathbf{2}}+B_{\mathbf{2}}, \ldots, t_{M}+B_{\mathbf{2}}\right\}$ as the second level component codes for each codeword $X_{\mathbf{1}} \in B_{\mathbf{1}}$. The

[^0]overall minimum squared Euclidean distance of this QPSK BCM code consisting of $B_{\mathbf{1}}$ and $\left\{t_{\mathbf{1}}+B_{\mathbf{2}}, t_{\mathbf{2}}+B_{\mathbf{2}}, \ldots, t_{M}+B_{\mathbf{2}}\right\}$ is equal to $D_{E}^{2}=\min \left\{1 . \mathrm{d}\left(B_{1} 1\right), 2 . \mathrm{d}\left(B_{1}{ }^{2}\right)\right\} . E^{\mathbf{2}}$.

We will denote the associated component-codes of this QPSK code C by B_{1} and $B_{\mathbf{2}}$ instead of B_{1} and $t_{v}+B_{\mathbf{2}}$.
To construct a 16-QAM OFDM code using block coded modulation scheme with low PAPR, we take two low PAPR QPSK codes $C_{\mathbf{1}}$ and $C_{\mathbf{2}}$ by

$$
\begin{aligned}
& C_{1}=\mathbf{U}_{\downarrow}(i=\neq 1)^{\mathrm{T}}\left(b_{1} 1\right)=\square\left\{2 x_{1}(i) \square \quad 4 \mathrm{u}_{1}: u_{i \epsilon} Z_{\mathbf{4}}\right\}
\end{aligned}
$$

The two associated binary codes of $C_{\mathbf{1}}$ are

$$
B_{1}=\langle G 1\rangle \text { and } B_{2} \bigcup_{i=1}^{b_{1}} I\left(x_{i} \overline{\mathbb{Z}}+B_{1}\right)
$$

and the two associated binary codes of $C_{\mathbf{2}}$ are

$$
B_{a}=\left\langle G_{a}\right\rangle \text { and } B_{4}=C_{1}=\bigcup_{i=1}^{b_{2}}\left(y_{i} \rrbracket+B_{3}\right)
$$

To keep the resulting 16-QAM BCM with high code rate and large Euclidean distance., we might choose these four binary component codes with the property of $\mathrm{d}\left(B_{\mathbf{1}} \mathbf{1}\right)=2 \mathrm{~d}\left(B_{\mathbf{1}} \mathbf{2}\right)=4 \mathrm{~d}\left(B_{\mathbf{1}} \mathbf{3}\right)=8 \mathrm{~d}\left(B_{\mathbf{4}}\right)$

16-QAM and 64 QAM OFDM Sequences

Let $\mathrm{C}=2 Q_{\pi+} R M_{\mathbf{4}(1, \mathrm{~m})}$, consisting of $\frac{m!}{2} \mathbf{4}^{m+1}$ Golay Sequence of length $\mathbf{2}^{m}$ over $z_{\mathbf{4}}$ where $Q_{\pi=x_{\pi(1)}} x_{\pi(2)}+\cdots+x_{\pi(m-1)} x_{\pi(m)}$. The set C can be decomposed into two binary codes $B_{1=} R M_{\mathbf{2}}(1, \mathrm{~m})$ and $\mathrm{B}_{2}=Q_{\pi+} R M_{\mathbf{2}}(1, \mathrm{~m})$ with the property that $\operatorname{PAPR}(C)=2$ and $d(B 1)=2 d(B 2)=2^{m-1}$. We will use the set of these 4 -ary Golay Complementary sequences and its modification as the building blocks for the construction of 16 - QAM and 64 -QAM OFDM sequences with low PAPR and large squared Euclidean distance. Here Q_{π} denotes all $\frac{m!}{2}$ second order Boolean polynomials of the form $x_{\pi(1)} x_{\pi(2)}+\ldots+x_{\pi(m-1)} x_{\pi(m)}$ and $\mathrm{Q}=x_{1} x_{2}+\ldots+x_{m-\mathbf{1}} x_{m}$ as one of them.

16 -QAM OFDM Codes From Four BPSK Sequences

Let two QPSK component codes $C_{\mathbf{1}}$ and $C_{\mathbf{2}}$ be $\mathbf{2} Q_{\pi+} R M_{\mathbf{4}}(1, \mathrm{~m})$, then the resulting 16-QAM code $Z_{\mathbf{1}}$ can be constructed from four BPSK component codes $B_{\mathbf{1}}, B_{\mathbf{2}}, B_{\mathbf{3}}$ and $B_{\mathbf{4}}$ where $C_{\mathbf{1}}$ and $C_{\mathbf{2}}$ respectively is associated with its component codes $B_{\mathbf{1}}$ and $B_{\mathbf{2}}$, $B_{\mathbf{a}}$ and $B_{\mathbf{4}}$ respectively. Since $B_{\mathbf{1}}=B_{\mathbf{3}}=R M_{\mathbf{2}}(1, \mathrm{~m})$ and $B_{\mathbf{2}}=B_{\mathbf{4}}=Q_{\pi+} R M_{\mathbf{2}}(1, \mathrm{~m}) \in R M_{\mathbf{2}}(2, \mathrm{~m})$, the size of 16 QAM code $Z_{\mathbf{1}}$ of length $\mathrm{n}=\mathbf{2}^{m}$ is $\left(\frac{m!}{2}\right)^{\mathbf{2}} \mathbb{K}\left(4 \rrbracket^{m+1}\right)^{\mathbf{z}}$ and the squared Euclidean Distance is $D_{E}^{2}\left(Z_{1}\right)=\min \left(1.2^{m-1}, 2.2^{m-2}, 4 \cdot 2^{m-1}, 8 \cdot 2^{m-\mathbf{2}}\right)=$ 2^{m-1}. It has been shown that the average power of C is 2.5 n and the PAPR of $Z_{\mathbf{1}}$ is bounded above by $\left.\frac{\mathbf{1}}{(\sqrt{2}} \sqrt{2 n}+\sqrt{2} \sqrt{2 n}\right) 2 / 2.5$ $\mathrm{n}=3.6$, shown in the first code of Table 1. This is the 16-QAM OFDM code constructed .[9] We can trade off the code rate, the PAPR, and the squared Euclidean distance of a 16-QAM code by proper choice of QPSK codes $C_{\mathbf{1}}$ and $C_{\mathbf{2}}$, where the code rate of a code C of length n is defined as $\mathrm{R}(\mathrm{C})={ }^{\log _{\mathbf{2}} \frac{|C|}{n}}$ bits/symbol . We then use the modifications of 4ary- Golay sequences satisfying these criteria as the component codes to keep the resulting 16-QAM OFDM codes with low PAPR. For Example, let $B_{\mathbf{1}}=R M_{\mathbf{z}}(0, \mathrm{~m})$ and $B_{\mathbf{2}}=\left(x_{1} x_{\mathbf{2}}+x_{\mathbf{2}} x_{\mathbf{a}}+\ldots+x_{m-\mathbf{1}} x_{m}\right)+R M_{\mathbf{z}}(1, \mathrm{~m})$ be one specific coset consisting of $\mathbf{2}^{m+\mathbf{1}}$ binary golay sequences and $C_{\mathbf{2}}=$
$2 Q_{\pi+} R M_{4}(1, \mathrm{~m})$; then the resulting $16-\mathrm{QAM}$ code $Z_{\mathbf{2}}$ has $\operatorname{PAPR}\left(Z_{\mathbf{1}} \mathbf{2}\right)=3.6 D_{E}^{2}\left(Z_{\mathbf{2}}\right)=\min \left(1.2^{m}, 2.2^{m-1}, 4.2^{m-1}\right.$,

Table 1. 16 QAM OFDM codes with PAPR=3.6

	$Z_{\mathbf{1}}$
$B_{\mathbf{1}}$	$\mathrm{RM}(1, \mathrm{~m})$
$B_{\mathbf{2}}$	$Q_{\pi}+\mathrm{RM}(1, \mathrm{~m})$
$B_{\mathbf{3}}$	$\mathrm{RM}(1, \mathrm{~m})$
$B_{\mathbf{4}}$	$Q_{\pi+\mathrm{RM}(1, \mathrm{~m})}$
size	$\left(\frac{m!}{\mathbf{2}}\right)^{\mathbf{2}} \mathbf{4}^{2(m+1)}$
PAPR	≤ 3.6
$D_{E}^{\mathbf{2}}$	$\mathbf{2}^{m \mathbf{m} \mathbf{1}}$

	$Z_{\mathbf{2}}$
$B_{\mathbf{1}}$	$\mathrm{RM}(0, \mathrm{~m})$
$B_{\mathbf{2}}$	$\mathrm{Q}+\mathrm{RM}(1, \mathrm{~m})$
$B_{\mathbf{3}}$	$\mathrm{RM}(1, \mathrm{~m})$
$B_{\mathbf{4}}$	$Q_{\pi+} \mathrm{RM}(1, \mathrm{~m})$
size	$\frac{m!}{\mathbf{2}} \mathbf{2}^{m+\mathbf{2}} \mathbf{4}^{m+\mathbf{1}}$
PAPR	≤ 3.6
$D_{E}^{\mathbf{2}}$	$\mathbf{2}^{m}$

If we choose $B_{\mathbf{1}}=R M_{\mathbf{z}}(0, \mathrm{~m}), B_{\mathbf{2}}=Q+R M_{\mathbf{z}}(1, \mathrm{~m})$ and $\quad C_{\mathbf{2}}=\square\left(\mathbf{2} \boldsymbol{\varphi}_{\square} \pi{ }_{+}+R M_{\mathbf{4}}(1, \mathrm{~m}-1)\right) \quad \square\left(2 Q \square_{\downarrow} \pi+R M_{\mathbf{4}}(1, \mathrm{~m}-1)\right)$, the
 $)=\min \left(1 . \mathbf{2}^{m}, 2 . .^{m-\mathbf{1}}, 4 . \mathbf{2}^{m-\mathbf{2}}, 8 . .^{m-\mathbf{3}}\right)=\mathbf{2}^{m}$.

The PAPR of $Z_{\text {a }}$ is bounded above by $\left.\frac{1}{(\sqrt{2}} \sqrt{2 n}+\sqrt{2} \sqrt{4 n}\right) / 5 n=5.86$ shown in the first code of Table 2 .
Table 2. 16 QAM OFDM codes with PAPR=5.86

	Z_{3}		Z_{4}
B_{1}	RM(0,m)	B_{1}	RM(1,m)
B_{2}	Q+RM(1,m)	B_{2}	$Q_{\pi}+\mathrm{RM}(1, \mathrm{~m})$
B_{3}	RM (1,m-1) RM(${ }_{\text {, m-1) }}$	B_{3}	RM (1,m-1) RM(1,m-1)
B_{4}	$\begin{aligned} & \square\left(Q \square_{\downarrow} \pi+\mathrm{RM}(1, \mathrm{~m}-1)\right) \\ & \square\left(Q \square_{\downarrow} \pi+\mathrm{RM}(1, \mathrm{~m}-1)\right) \end{aligned}$	B_{4}	$\begin{aligned} & \left.\left.\quad \mathbb{(Q} \square_{\downarrow} \pi+\mathrm{RM}(\not) \mathrm{m}-1\right)\right) \\ & \mathrm{a}\left(Q \square_{\downarrow} \pi+\mathrm{RM}(1, \mathrm{~m}-1)\right) \end{aligned}$
size	$\left(\frac{(m-1)!}{2}\right)^{2}(2)^{(m+2)}\left(4^{m}\right)^{2}$	Size	$\sum_{\substack{(\mathbf{2})!\\(4)^{m+1} \llbracket\left(4 \rrbracket^{m}\right)^{2}}}^{m}\left(\frac{(m-1)!}{2}\right)^{2}$
$\begin{array}{ll} & \text { PAP } \\ \text { R } \end{array}$	≤ 5.86	$\begin{array}{ll} \hline & \text { PAP } \\ R^{2} & \end{array}$	≤ 5.86
D_{E}^{2}	2^{m}		2^{m-1}

We then take $C_{\mathbf{2}}=\left(2 Q_{\pi}+R M_{\mathbf{4}}(1, \mathrm{~m}-1) \oplus \quad\left(2 Q_{\pi}+R M_{\mathbf{4}}(1, \mathrm{~m}-1)\right)\right.$ with PAPR $\left(C_{\mathbf{2}}\right) \leq 4$ for the first 16-QAM OFDM code $Z_{\mathbf{4}}$ and $C_{\mathbf{2}}=\left(2 Q_{\pi}+R M_{4}(1, \mathrm{~m}-2)\right) \quad\left(2 Q_{\pi}+R M_{\mathbf{4}}(1, \mathrm{~m}-2)\right)$ with
$\operatorname{PAPR}\left(C_{\mathbf{2}}\right) \leq 8$ for the second 16-QAM OFDM code $Z_{\mathbf{5}}$. The PAPR of $Z_{\mathbf{5}}$ is bounded by $\left.\frac{\mathbf{1}}{\sqrt{2}} \sqrt{2 n}+\sqrt{2} \sqrt{8 n}\right) / 2.5 \mathrm{n}=10$ shown in table 3.

Table 3. 16 QAM OFDM codes with PAPR=10

	Z_{5}
B_{1}	RM(1,m)
B_{2}	$Q_{\pi}+\mathrm{RM}(1, \mathrm{~m})$
B_{3}	$\mathrm{RM}(1, \mathrm{~m}-2) \quad \mathrm{RM}(1, \mathrm{~m}-2)_{\oplus} \mathrm{RM}(1, \mathrm{~m}-2) \oplus \mathrm{RM}(1, \mathrm{~m}-2){ }^{(} \oplus$
B_{4}	
size	$\frac{m}{(2)!}\left(\frac{(m-2)!}{2}\right)^{4}(4)^{m+1}\left[(4]^{m-1}\right)^{4}$
$\begin{array}{ll} & \text { PAP } \\ \mathrm{R} & \end{array}$	≤ 10
D_{E}^{2}	2^{m-1}

We have constructed 16 QAM codes $\mathrm{Z} 2-\mathrm{Z} 5$ by a proper selection of BPSK component subcodes. Now we compare the PAPR, squared Euclidean distance, code rate of the constructed codes for different lengths n.

Table 4. Comparison of 16-QAM OFDM codes

$\mathrm{e}^{\operatorname{Cod}}$	C_{c}	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}
PAPR 2.8		3.6	3.6	5.86	5.86	10
$6^{\mathrm{n}=1}$	$D_{E}^{2} 88$	8	16	16	8	8
	$\begin{aligned} & \text { R } \\ & 1.218 \end{aligned}$	1.698	1.224	1.573	2.047	2.350
$2^{\mathrm{n}=3}$	$D_{E}^{2} \quad 16$	16	32	32	16	16
	$\begin{array}{ll} \hline & \mathrm{R} \\ 0.752 & \end{array}$	1.119	0.778	1.068	1.409	1.758
$4^{\mathrm{n}=6}$	$D_{E}^{2} \quad 32$	32	64	64	32	32
	$\begin{array}{ll} \hline & \mathrm{R} \\ 0.451 & \end{array}$	0.703	0.476	0.685	0.911	1.201
$28^{\mathrm{n}=1}$	$D_{E}^{2} \quad 64$	64	128	128	64	64
	$\begin{array}{ll} \hline & R \\ 0.265 & \end{array}$	0.426	0.284	0.422	0.565	0.773
$56^{\mathrm{n}=2}$	$128^{D_{E}^{2}}$	128	256	256	128	128
	$\begin{array}{ll} & \mathrm{R} \\ 0.153 & \end{array}$	0.252	0.166	0.252	0.340	0.478

64-QAM OFDM codes from QPSK sequences

The 64-QAM OFDM constellation symbols, denote by $S_{64 Q A M}$ can be written as the sum of three QPSK symbols:

$$
S_{6 थ Q A M}=\frac{1}{\sqrt{2}} S_{Q P S K}+\sqrt{2} S_{Q P S K}+\sqrt{2} S_{Q P S K}
$$

As with 16 QAM we can trade off the size ,the PAPR, the squared Euclidean distance of a 64 QAM OFDM code by an appropriate selection of $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$.

If we let $B_{1}=R M_{2}(0, \mathrm{~m})$ and $B_{2}=\left(x_{1} x_{2}+x_{2} x_{3}+\ldots+x_{m-1} x_{m}\right)+R M_{2}(1, \mathrm{~m})=\mathrm{Q}+R M_{2}(1, \mathrm{~m})$. The resulting OFDM code is shown in Table 5. We can further increase the size of the 64 QAM OFDM code. The resulting code is shown in Table 6.

Table 5. 64- QAM OFDM codes with $\mathrm{PAPR}=4.67$

B_{1}	$\mathrm{RM}(1, \mathrm{~m})$
$B_{\mathbf{2}}$	$Q_{\pi+\mathrm{RM}(1, \mathrm{~m})}$
$B_{\mathbf{3}}$	$\mathrm{RM}(1, \mathrm{~m})$
$B_{\mathbf{4}}$	$Q_{\pi+\mathrm{RM}(1, \mathrm{~m})}$
$B_{\mathbf{5}}$	$\mathrm{RM}(1, \mathrm{~m})$
B_{6}	$Q_{\pi+\mathrm{RM}(1, \mathrm{~m})}$
size	$\left(\frac{m!}{2}\right)^{\mathbf{a}} \mathbb{4}\left(4 \mathbb{Z}^{m+1}\right)^{\mathbf{a}}$
PAP	≤ 4.67
R	
D_{E}^{2}	$\mathbf{2}^{m-1}$

$B_{\mathbf{1}}$	$\mathrm{RM}(0, \mathrm{~m})$
$B_{\mathbf{2}}$	$Q+\mathrm{RM}(1, \mathrm{~m})$
$B_{\mathbf{3}}$	$\mathrm{RM}(1, \mathrm{~m})$
$B_{\mathbf{4}}$	$Q_{\pi}+\mathrm{RM}(1, \mathrm{~m})$
$B_{\mathbf{5}}$	$\mathrm{RM}(1, \mathrm{~m})$
$B_{\mathbf{6}}$	$Q_{\pi+\mathrm{RM}(1, \mathrm{~m})}$
Size	$\left(\frac{m!}{\mathbf{2}}\right)^{\mathbf{2}}\left[\mathbf{2}^{m+\mathbf{2}}(4]^{m+1}\right)^{\mathbf{2}}$
PAP	≤ 4.67
R	

Table 6. 64- QAM OFDM codes with PAPR=7.14

B_{1}	RM(0,m)
B_{2}	$Q+\mathrm{RM}(1, \mathrm{~m})$
B_{3}	RM(1,m)
B_{4}	$Q_{\pi}+\mathrm{RM}(1, \mathrm{~m})$
B_{5}	$\mathrm{RM}(1, \mathrm{~m}-1) \quad \mathrm{RM}(1, \mathrm{~m}-1) \quad \oplus$
B_{6}	$\left(Q_{\pi}+\mathrm{RM}(1, \mathrm{~m}-1)\right) \quad\left(Q_{\pi}+\mathrm{RM}(1, \mathrm{~m}-1)\right)$
size	$\frac{m}{(2)!}\left(\frac{(m-1)!}{2}\right)^{2} \mathbf{2}^{m+2} \mathbf{4}^{m+1}(\underline{1})^{m^{2}}$
$\mathrm{R}^{\text {PAP }}$	≤ 7.14
D_{E}^{2}	2^{m}

Table 7. 64- QAM OFDM codes with PAPR=13.32

B_{1}	RM(1,m)
B_{2}	$Q_{\pi}+\mathrm{RM}(1, \mathrm{~m})$
B_{3}	$\mathrm{RM}(1, \mathrm{~m}-1) \quad \mathrm{RM}(1, \mathrm{~m}-1) \quad \oplus$
B_{4}	$\left(Q_{\pi}+\mathrm{RM}(1, \mathrm{~m}-1)\right) \quad\left(Q_{\pi+\mathrm{RM}(1, \mathrm{~m}-1))} \oplus\right.$
B_{5}	RM (1,m-2) $\quad \mathrm{RM}(1, \mathrm{~m}-2) \quad \mathrm{RM}(1, \mathrm{~m} \boldsymbol{\oplus}) \quad \mathrm{RM}(1, \mathrm{~m}-2)$
B_{6}	$\left(Q_{\pi+\mathrm{RM}(1, \mathrm{~m}-2)} \oplus\left(Q_{\pi+\mathrm{RM}(1, \mathrm{~m}-2))} \oplus\left(Q_{\pi+\mathrm{RM}(1, \mathrm{~m}-2))} \quad \oplus^{\left.Q_{\pi+\mathrm{RM}(1, \mathrm{~m}-2)}\right)}\right.\right.\right.$
size	$\left.\left.\frac{m}{(2)!}\left(\frac{(m-1)!}{2}\right)^{2}\left(\frac{(m-2)!}{2}\right)^{4} 2^{m+2} 4^{m+1} \mathbb{Z}(4]^{m}\right)^{2} \mathbb{M}(4]^{m-1}\right)^{4}$

PAP	≤ 13.32
R	
	D_{E}^{2}

Conclusion

We have considered in this paper the reduction of peak-to average power ratio in OFDM systems for 16-QAM and 64-QAM signals. We examined the squared Euclidean distance of a quaternary code over QPSK modulation and then analyzed the 16-QAM OFDM sequences by combining the block coded modulation techniques and some variations of Golay complementary sequences. Some 16-QAM and 64-QAM OFDM sequences with low PAPR and large squared Euclidean distance are presented.

References

[1] IEEE802. Wireless lan medium access control (mac) and physical layer (phy) specifications: High-speed physical layer in the 5 ghz band. 1999.
[2] J. A. Davis and J. Jedwab. "Peak-to-Mean Power Control in OFDM, Golay Complementary Sequences and Reed-Muller Codes". Dec. 97.
[3] L.Cimini Jr and N.R. Sollenberger. "Peak-to-Aberage Power Ratio Reduction of an OFDM Signal Using Partial Transmit Sequences". Icc, 1999.
[4] J. Tellado and J. Cioffi. "Peak Power Reduction for Multicarrier Transmission". Globecomm, Nov 1998.
[5] L.J. Cimini Jr, B. Daneshrad, and N.R. Sollenberger. "Clustered OFDM with Transmitter Diversity and Coding". Globecom, 1996.
[6] M. J. Fernández-Getino, J. M. Páez-Borrallo, and O. Edfors. "Orthogonal Pilot Sequences for Peak-to-Average Power Reduction in OFDM". Procedings of IEEE VTC, 2001.
[7] M. Lobeira, A. García, R. Torres, and J. L. García. "Parameter estimation and indoor channel modelling at 17 GHz for OFDMbased broadband WLAN". Procedings of IST Mobile Summit, 2000.
[8] J. Tellado. "Peak-to-Average Power Reduction". PhD thesis, Standford University, September 1999.
[9] C. R"oßing and V. Tarokh, "A construction of OFDM 16-QAM sequences having low peak powers," IEEE Trans. Inf. Theory, vol.47, no.5, pp.2091-2094, July 2001

[^0]: Tele:
 E-mail address: sabhyata2@gmail.com

