
Hela Limam and Jalel Akaichi/ Elixir Comp. Sci. & Engg. 91 (2016) 38468-38472

38468

Introduction

With the advance of the World Wide Web, Web portals

related to business or leisure were created (O'Murchu et al.,

2004). Many of them have proven to be highly popular and

successful by acquiring millions of members. They offer

tremendous opportunities for empowering users and

organizations in various application domains including

electronic commerce, travel, intelligence information gathering

and analysis, health care, digital government, etc.

However, the technology to organize, search, integrate, and

evolve these portals has not kept pace with the rapid growth of

the available information space. Enjoying the above benefits

using current Web technologies is a very complex process for

end users.users and to enhance acting in groups according to

common interests.

In fact Web Services communities introduce management

problem resulting from the lack of a generic tool for community

building and the absence of interoperability among different

community support platforms. Community members often want

to query, monitor, and discover information about various

entities and relationships not only in their communities but also

in others communities.

A critical challenge therefore is to design a system able to

manage Communities taking into account many tasks such as

discovering and updating communities then building

relationships between them etc. Our solution is to design and to

implement a system able to manage Web Services communities

while addressing all of these issues.

This paper is organised as follows. In Section 2 we first

Present the related work then we introduce our modelling tool in

section3. The system requirements are detailed in section4. Our

system architecture is exposed in section 5. Then, in Section 6,

we illustrate our work a health care example for communities

building. We also use the same example to show the

communities relationships in section 7 and the query processing

in section 8. Finally, section 9 presents our conclusions and

future work.

RELATED WORKS

Two major areas of related research are building Catalog

Service Communities and the use of a multi agent approach for

managing Web Services Communities.

The project WS-CatalogNet (Benatallah et al., 2004)

proposes a framework in which Catalog Service Communities

are built, linked for interaction, and constantly monitored and

adapted over time. This enabled a potentially large number of

catalogs to act as one catalog to serve customers‟ queries. The

approach is based on a hybrid of P2P data management

paradigm and Web services architecture. It uses the notion of

Catalog Services communities where catalogs catering for

similar customer needs are grouped together, and form a single

community (ie., a peer node). WS-CatalogNet consists of a set

of integrated tools that allow for creating communities,

registering e-catalog members, querying individual communities

and routing queries among communities.

WS-CatalogNet work, so far, has focused on creating,

linking and querying the community network. An evolution of

the platform was proposed later. It consists investigating the

ability to evolve from the initial design of the system. The

evolution may involve capabilities like “discovering” members

(ie, catalogs) or other communities (ie, peers), splitting a

community, re-forming the relationships, etc.

In the agent context, (Yamada et al., 2004) discuss the multi

agent-based simulation approach to analyze online community

activities, and the design problem of the decision-making model

of an agent that constructs multi-agent systems. And (Lacher &

Koch 2000) outlined the possibilities communities provide for

enhanced information management and filtering. For tackling

the problem of interoperability among community support

systems and they introduced an agent-based architecture for

building community support systems and presented two projects

that are built based on this architecture.

Tele:

E-mail address: hela1.limam@laposte.net

 © 2016 Elixir All rights reserved

Designing web services communities with UML oriented agents
Hela Limam and Jalel Akaichi

Department of Computer Science, ISG University of Tunis Bouchoucha, Bardo Tunisia.

ABSTRACT

The incredible growth of the information space, the hard competition between enterprises

populating it, the need to collaborate and to share knowledge guiding to better decisions are

factors that push Web Services providers to join each other into Web Services communities.

Solutions proposed to tackle communities‟ management lack of a formal and clear design

which may alter the system evolving and maintenance. For these reasons, we propose to

design and to implement a system able to manage Web Services communities using an agent

oriented approach. As illustration, we design and implement a case tool for managing e-

health care Web Services communities.

 © 2016 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 18 December 2012;

Received in revised form:

15 February 2016;

Accepted: 22 February 2016;

Keywords

Web Services,

Communities,

M-UML,

Mediator,

Health care system

Elixir Comp. Sci. & Engg. 91 (2016) 38468-38472

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Hela Limam and Jalel Akaichi/ Elixir Comp. Sci. & Engg. 91 (2016) 38468-38472

38469

THE MODELLING TOOL

In the design of a communities‟ management system, the

use of modeling tools has a decisive impact on the success of the

system implementation. The use of UML seems to be crucial

and beneficial since it has a well-defined syntax and semantics.

However ,as our system is characterized by the mobility aspect

especially while collaborative query processing between

communities , the use of UML becomes inappropriate since it

can not provide Mobility description for all views and aspects

of the system. However, recently an extension to UML was

proposed (Kassem et al., 2003) . It is called M –UML and it

allows the explicit description of the mobility aspect .M –UML

provides mobility description for all views and aspects of

systems, hence covering all UML diagrams. It is a mobile agents

modeling tool.

Similar to E-catalog (as Web Service), mobile agent can

encapsulate business or application logic. Rather, mobile agents

can dynamically, combine and execute such processes, and

further offer multiple services or behaviors that can be processed

concurrently. In order to move from system to another, or even

to communicate with each other, mobile agents currently need a

common platform on which they operate. Thus, they are useful

for business partners only if theses actually share common

platform. The consistent use of web service standards for

description of capabilities, communication, and agent discovery

would establish interoperability not only between different agent

platforms but also between agent platforms and traditional web

services. Thus, the advantages of two worlds can be combined.

In our system, software agents are not used for services

communication front ends or as proxies. Rather, they are basic

entities that encapsulate Web services.

REQUIREMENTS

Use Cases

The communities‟ management system aims to meet the

requirements of a virtual collaboration system with both

autonomous and collaborative Web services, by supporting

communities whose members interact and form groups based on

their common interests. The main requirements of a

communities‟ management system can be resumed by

satisfying the users‟ requests, caching the queries results for a

future reuse and maintaining cache to remain available, these

requirements are detailed in the following:

Creating and Updating Communities: The process starts

with the elicitation of user requirements. In this phase,

requirements about important and interesting topics in the

domain are collected, the information goals of potential users of

the portal are elicited, and preferences or expectations

concerning the structure and layout of presented information are

documented. Results of this very first phase constitute the input

for the design of the communities‟ web portals.

 Building peer relationships between communities: Through a

peer relationship between communities, they forward queries to

each other. To form a peer relationship, community providers

need to discover other communities whose domains are

relevant/similar to their communities.

 Requesting a Service: The views and queries are described

and formalized during the query development step. At first,

their functionality is tested independently of the web site design.

To express the information needs formally, the developer has to

access the ontology, whereby additional rules or relations that

define new views or ease the definition of queries may become

necessary

 The query processing between communities: The

collaborative query processing technique consists of two steps.

Whenever a query is submitted to a community it does the

following:

First Step: Identify the combination of members whose

query capabilities, when put together, satisfy all constraints

expressed in the query. The members can be local (belonging to

the community), or external (belonging to the community

peers).

Second Step: Send the sub-queries to the identified

members and collect the results.

Queries answers storage: We develop a semantic cache to

store queries answers. This semantic cache collects the answers

after the query resolution .Its goal is the reuse of these results for

similar requests and to store the links to the communities

requested.

Actors

Even if we are using a mobile modeling tool, it may not

always be the best solution to represent all the actors as agents.

In function of the intelligence, autonomy and mobility level of

each actor, one must carefully decide if it should be represented

as a mobile actor. We do not propose a general rule for

determining the chosen representation of an entity, but the

designer‟s common sense and experience should make this

choice adequate. We will consider bellow each actor and justify

the chosen representation.

 The Community Manger: It is a mobile actor located at the

community supports the following tasks: The community

creation, the member (user/provider) subscription, the

communities update, Accept service requests and matching a

service request to potential provider(s).

 The Member Manager: It represents the members of the

community. It assists members in performing the following

tasks: request for member subscription and Interfaces human

Community members.

 The Query Manager: This is a mobile actor that has the

following characteristics: the capacity to migrate to other

communities and to the potential provider‟s site, the capacity of

collecting answers from other communities.

 The Web Services Provider: It is a mobile actor that performs

the following tasks: search to discover communities of interests

and join them via the registration process and it has the capacity

to join or leave a community of interest at any time

 The User: This type refers to the users who have not yet been

registered to the system. The Visitors may view and access

information about the community in general, but they are not

able to navigate through the system‟s functionality.

 In order to achieve this, they have to register to the system, by

completing a registration form, which will be approved by the

Community Manager. The user main role is to request a service.

Once all the actors of the system and their interactions are

identified, the next step is to model them and to associate them

with their corresponding use cases, An M – UML Use Case

diagram will help illustrating requirements and actors.

THE SYSTEM ARCHITECTURE

In this part we describe functionalities and architectural

issues in the design of a Web Services communities

management system. Our system can be seen as a mediator used

to process users‟ queries and identify relevant share knowledge.

When the query is received, the mediator analyzes the query and

locates relevant sources, and presents the answer that is merged,

assembled or redefined. Furthermore, it may keep, fully or in

part, the result of frequent queries

Hela Limam and Jalel Akaichi/ Elixir Comp. Sci. & Engg. 91 (2016) 38468-38472

38470

Fig .1 M-UML Use Case diagram for communities

management

The mediator is in charge of community creation,

community update, community members‟ participation and the

research of the best provider for a requested service. The

mediator architecture includes five main components. The

Community Knowledge Base (CKB) where information about

communities are stored, The User Queries Knowledge Base

(UQKB) where user queries are stored and a Query Solver (QS)

which main role is to extract and, route sub queries destined to

specific communities. The Semantic cache (SC) saves the

queries results in a queries cache for an immediate and future

use of these queries. And the cache maintainer (CM) is

responsible for the coherence and the availability of the cache.

The community Knowledge base (CKB)

The community Knowledge base is used in order to provide

context for queries and is influenced by the current interaction

of the user with the service. It represents all the entities that exist

on the system, these entities are objects that become source of

knowledge for the users of the Mediator .The Community

Knowledge Base support the community creation, the

community management and building relationships between

communities.

The User Queries Knowledge Base (UQKB)

The User Queries Knowledge Base offers a space to a user

in which he is able to retrieve information stored in the system,

communicate or interact. The User Queries Knowledge Base

performs the task of the description and the formalization of the

query.

The Query Solver (QS)

The main functionality assumed by the query solver

consists on processing the query ad answering it which requires

locating Web Services capable of giving an answer to the query

by routing the query among communities then querying

individual community .The result of this step is finding the

combination of members satisfying the query constraints

Fig.2 The system architecture

BUILDING COMMUNITIES

A community describes its ontology in terms of categories

and descriptive attributes. For example, the health care

community may have a category patient, which is described

using attributes such as name, birth date, height, weight, sex etc.

The community description language

To provide formal semantics in describing the ontology,

necessary for precise characterization of queries over the

catalogs, we use a (concept) class description language that

belongs to the family of description logics (Baader et al., 2003).

The community ontology (also called community schema) is

described in terms of classes (unary predicates) and attributes

(binary predicates). Class descriptions are denoted by

expressions formed by the following constructors:

Class conjunction (π), e.g., the description diagnosis π

pathologies denotes the class of diagnosis which are instances of

the classes‟ pathologies diagnosis

The universal attribute quantification (), for example, the

description Patient Diagnosis. Diagnosis the class of patients

for which all the values of the attribute Patient Diagnosis are

instances of the class Diagnosis (i.e., the data type of the

attribute Patient Diagnosis is Diagnosis),

The existential attribute quantification (R), e.g., the

description pathology denotes the class of patients having at

least one value for the attribute pathology

A community is a container of Web Services of the same

domain (e.g. Health care Community). It provides a description

of desired services without referring to actual providers (e.g.

Hospital). The schema of a community is described in terms of

categories and descriptive attributes. For example, the

community UrgentPatient may have a category Patients, which

is described using attributes such as name, weight, height, etc. In

fact, a community schema can be viewed as ontology (integrated

schema) of its underlying services.

Community creation

To provide formal semantics in describing categories and

attributes, we use the class description language. The users do

not describe schemas and queries directly using description

logic. Instead, a graphical interface is used to automatically

generate these descriptions.

To create a new community, a community administrator

creates the community ontology. S/he first defines the name of

the community and the root category. The sub categories are

then added and attributes are defined for each category.

 Note that a sub category inherits all attributes of its parent

category. As part of the community ontology, each category

(respectively for each attribute) is annotated with a list of

Hela Limam and Jalel Akaichi/ Elixir Comp. Sci. & Engg. 91 (2016) 38468-38472

38471

synonyms. After the initial ontology is defined, a description

logic converter automatically generates the class descriptions of

the given ontology. For example, the category Diagnosis in

figure may be described as follows:

 Diagnosis =Examination π diagnosisDate π Date π

DiagnosisType.VARCHAR π DiagnosisType.

It states that the category Diagnosis inherits all the attributes

of the category Examination, and has two additional attributes,

namely Diagnosis Date and Diagnosis Type.

Being a web service, a community in the management

system implements a standard set of operations which can be

invoked by the user or the peers (e.g., add Category(),

addPeer(),query Community() etc.

Fig.3 M-UML sequence diagram of community creation

The Members Subscription

Potential communities’ members are of two kinds:

1. Web Services Provider who already has his catalog accessible

via a web service.

2. Service Provider who needs to create a web service which

accesses his service. For the latter, the mediator provides a

Service Provider with functionality which is similar to the one

used in creating communities. Using the provided functionality,

the service provider can describe the service‟s ontology (in

terms of categories and attributes).

When registering, the member first indicates which categories,

in the community; the member‟s service belongs to. For each

category selected, the member specifies what kinds of attributes

are supported for the category (called member definition). The

member definition from a member are also converted to the

class descriptions and added to the community‟s ontology.

Fig.4 M-UML sequence diagram of registration into

community

Communities Update

The changes that alter communities can take two main

forms.

Community deletion The Community Manager deletes the

community does not contain any Web Service. For this purpose

he has to identify a community that users constantly leave

without performing any further action .The Deletion is logic to

allow users being members of other communities.

Community modification consists on adding or updating

members or adding new Web Services manually or

automatically

RELATIONSHIPS BETWEEN COMMUNITIES

Building Relationships

Relationships between communities fall into two types: Sub

Community Of relationships and peer relationships.

Sub Community Of relationships represent specialization

between two communities‟ domains (for example, Hospital is a

sub community of Medical Institutions).

Peer Community Of When a user cannot find (or is not

satisfied with) information from a community, she or he can

refer to other communities that the community considers as its

peers (for example, Patient is a peer community of

Examination). We do not assume that the opposite

systematically holds (for example, that Patient is a peer

community of Examination). A weight (a real value between 0

and 1) attached to each PeerCommunityOf relationship

represents the degree of relevancy as a peer. Communities can

also forward queries to each other via a PeerCommunityOf

relationship.

Relationship Update

Merging communities: Consist on identifying two

subcommunities of the same supercommunity that are always

accessed together (not viaPeerCommunityOf). This operation

merges two communities‟ members, Ci and Cj, which have the

same supercommunity. (An administrator uses this operation,

for example, when she or he observes that users almost always

access Ci and Cj together. So, merging these two communities

will be beneficial because most users will not have to visit two

separate communities each time.

Updating the weight of a PeerCommunityOf: This operation

updates the relationship‟s relevancy according to two cases

Upgrading the weight of a PeerCommunityOf: Assume that

many users navigate from community Ci, via a

PeerCommunityOf relationship, to community Cj and submit a

query to Cj. This indicates that the PeerCommunityOf

relationship from Ci to Cj positively contributed to finding the

target community, Hence the weight of the Peercommunity Of

has to be upgraded.

Downgrading the weight of a PeerCommunityOf: Assume

that many users who followed a PeerCommunityOf relationship

and arrived at a community Cj and ultimately leave the

community without performing any further action. This might

indicate that cj is not relevant to these users.

THE QUERY PROCESSING BETWEEN COMMUNITIES

Users in our mediator will typically be engaged in two steps

information research activities: navigating communities for

services location and semantic exploration(e.g., get communities

that are relevant to patient pathologies) then querying selected

communities

Searching Relevant Communities

Users would have a specific task to achieve (e.g.,Diagnosis

they wish to consult, a category of Examination they want to

investigate) .We assume that they use the following strategy :

Hela Limam and Jalel Akaichi/ Elixir Comp. Sci. & Engg. 91 (2016) 38468-38472

38472

1. Start at the root (i.e.health care Community), or at a specific

community (if they know the location of the community they

want to query).

2. While (current community C is not the target community T)

do

a) If any of the SubCommunity–Of relationships of C seems

likely to lead to T,follow the relationship that appears most

likely to lead to T.

b) Else, if any of the PeerCommunity–Of relationships of C

seems likely to lead to T, follow the relationship that appears

most likely to lead to T.

c) Else, either backtrack and follow SuperCommunity–Of

relationship of C, or give up.

Fig.5 M-UML sequence diagram of query processing

 Once the user has reached the target, s/he will submit a

query to the target. If the user ends up in the same community

again in step 2(a) or 2(b), s/he will follow a different

relationship, since her/his reasoning of which relationship is

likely to lead to the target has changed by then Querying

selected communities

The Communities querying process follows the following steps:

The User uses a community to express queries; he submits

the query to the current community. SubmitQuery (userId,

QueryQId) . For example, suppose that a healthcare unit from a

hospital A needs to get information about a patient from a

patient community which has been encoded in a different

hospital B, and that it has to check the updatability of that

information according to the system used in the hospital a in

order to provide the necessary (and minimal) information to the

units that carry on tests (so that they can schedule them), to the

administrative unit (so that it can manage the patient‟s case), to

the patient herself (so that she receives a readable but precise

résumé of her case), etc.

The Query Manager takes as input the UserId, the QueryQ

and the community definition C (userId, QueryQId, C) .It sends

directly the query to the Queries Cache before its processing.

The QC identifies the part of the query answer that exists

Qexistant inside it (user Id, Qexistant, Qanswer).Then return it

to the QM. If the answer satisfies most of the constraints

expressed by the query then the result is delivered to the user

Else the QM continues the processing of the rest of the

query. It rewrites Qnonexistant the others parts that cannot be

answered by the QC (userId, Qnonexistant, C). The community

will collaborate with peers to identify any external members

who can answer this part of the query.

Answers are collected by sub community then community

and are added to the answers given by the QC then sent to QM

which delivers the result to the user.

CONCLUSION AND FUTURE WORK

In this paper we proposed a design of a system able to

manage Web Services Communities taking into account many

tasks such as discovering and updating communities then

building relationships between them etc. Moreover, these

communities are built with the goal to be queried transparently

and easily by users which aim to satisfy their informational and

physical needs in a satisfactory time and in a pertinent retrieval

.For an efficient query processing we developed an advanced

caching mechanism to reduce the query response time.

To provide for availability of the cache even if a community

disappears, a replacement mechanism of the affected community

by one of its peers has to be envisaged. The idea of the cache

maintenance seems to be very promising and will be detailed in

our future work.

REFERENCES

Baina,K. Benatallah,B. Paik, H. and Toumani, F. (2004). „WS-

CatalogNet: An Infrastructure for Creating, Peering, and

Querying e-Catalog Communities‟, in Proc. of VLDB , Toronto,

Canada, demonstration paper.

Benatallah,B. Hacid, M.-S .Paik, H. Rey, C and Toumani, F

(2004). „Towards Semantic-driven, Flexible and Scalable

Framework for Peering and Querying e-Catalog Communities‟,

Information Systems Journal,Special issue on semantic web

services.

Benatallah, B .Hye-young ,Pan d Toumani, F .(2004).„Towards

Self-organizing Service Communities‟, IEEE transactions on

systems, man and cybernetics.

Kassem, S and El Morr,C .(2003). „M -UML an extension to

UML for the modelling of mobile agent based software

systems‟, information and software technology

K.Yamada, K. Nakakoj and K. Ueda.(2004). “A Mutli-agent

Systems Approach to Analyze Online Community Activities”

The Fourth International Conference on the Advanced

Mechatronics

Koch,M and lacher, M.(2000). „Integrating Community

Services-A common Infrastructure Proposal‟.

O'Murchu, I., Breslin, J.G., and Decker, S.(2004). “Online

Social and Business Networking Communities”. In

Proceedings of ECAI Workshop on Application of Semantic

Web Technologies to Web Communities.

