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Introduction 

The nanofluid is considered as a homogeneous fluid containing colloidal suspensions of nano-sized particles named 

nanoparticles in the base fluid (water, ethylene glycol, oil). The nanoparticles used in nanofluids are generally prepared of metals, 

oxides, carbides, or carbon nanotubes. The purpose of using nanofluids is to obtain a higher value of heat transfer coefficient 

compared with that of the base fluid , this remarkable properties make them potentially useful in many practical applications , for 

example in modern science and engineering including rotating machineries like nuclear reactors, petroleum industry, biochemical 

and geophysical problems. 

In the recent years, the problem of natural convection in a confined medium filled of a Newtonian nanofluid layer has been 

studied in different situations by several authors [1-7]. When the volumetric fraction of nanoparticles is constant at the horizontal 

walls limiting the layer, they found that the critical Rayleigh number can be decreased or increased by a significant quantity 

depending on the relative distribution of nanoparticles between the top and bottom walls.  

Today, the problem of natural convection for the nanofluids is studied by some authors [8-13] using a new type of boundary 

conditions for the nanoparticles which combines the contribution of the Brownian motion and the thermophoresis of the 

nanoparticles instead to impose a nanoparticle volume fraction at the boundaries of the layer.  

The new model of boundary conditions assumes that the nanoparticle flux must be zero on the impermeable boundaries. D.A. 

Nield and A.V. Kuznetsov [8] are considered as the first ones who were used this type of boundary conditions for the 

nanoparticles. Until now, the precedent boundary conditions are used to study only the problem of natural convection in a porous 

(Darcy or Brinkman model) or non-porous medium Saturated by a nanofluid using the Galerkin weighted residuals method based 

only on some test functions. 

Our work consists of studying the Rayleigh-Bénard problem in a rotating Hele-Shaw cell  filled of a Newtonian nanofluid 

layer in the rigid-rigid case where the nanoparticle flux is assumed to be zero on the boundaries, our problem will be solved with a 

more accurate numerical method based on analytic approximations (power series  method ). In this investigation we assume that 

the effect of the rotation in the momentum equation is restricted to the Coriolis force and also the centrifugal acceleration is 

negligible compared to the buoyancy force. In this investigation we assume that the nanofluid is Newtonian and the parameters 

which appear in the governing equations are considered constant in the vicinity of the temperature of the cold wall  which we 

took it as a reference temperature. Finally we will impose that the flow is laminar and the radiation heat transfer mode between the 

horizontal walls will be negligible compared to other modes of heat transfer.  

To show the accuracy of our method in this study, we will check some results treated by Chandrasekhar [14] , Guo and 

Kaloni [15] and D.Yadav and  J. Lee [16]  concerning the study of the convective instability of the regular fluids .Our numerical 

method is used in this investigation to give results with an absolute error of the order of 10
-6

 to the exact critical values 

characterizing the onset of the convection. 
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 ABSTRACT 

The aim of this paper, is to use a more realistic model which incorporates the effects of 

Brownian motion and  the thermophoresis of nanoparticles for studying the effect of 

some control parameters on the onset of convective instability in a rotating Hele-Shaw 

cell filled of a Newtonian nanofluid layer and heated from below, this layer is assumed to 

have a low concentration of nanoparticles. The linear study which was achieved in this 

investigation shows that the thermal stability of Newtonian nanofluids depends of the 

Coriolis force generated by the rotation of the system, the Hele-Shaw cell parameter, the 

Brownian motion, the thermophoresis of nanoparticles, the buoyancy forces and other 

thermo-physical properties of nanoparticles. The studied problem will be solved 

analytically by converting our boundary value problem to an initial value problem, after 

this step we will approach numerically the searched solutions by polynomials of high 

degree to obtain a fifth-order-accurate solution.  
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Mathematical Formulation: 

We consider a dilute layer saturated by an incompressible Newtonian nanofluid, vertically confined between two parallel 

rigid impermeable boundaries (    and   ) and heated uniformly from below where the temperature is constant and 

the nanoparticle flux is zero on the boundaries (Fig 1), such that:  

 
 

 

The nanofluid layer shall be infinitely extended in the direction but confined in the   direction by vertical impermeable 

boundaries (   and ) such that  , this layer will be subjected to a uniform rotation characterized by an angular 

velocity    and also acted upon by the gravity force   .The thermo-physical properties of nanofluid (viscosity, 

thermal conductivity, specific heat) are assumed constant  in the vicinity of the temperature of the cold wall   except for the 

density variation in the momentum equation which is based on the Boussinesq approximations .The asterisks are used to 

distinguish the dimensional variables from the nondimensional variables (without asterisks). 

 

  

Figure 1. Physical configuration . 

When the Hele-Shaw cell gap width is not sufficiently small with regard to the appearing wavelength of the instability, the 

correction to Darcy’s law is needed [15] .Within the framework of the assumptions which were made by Buongiorno [3] and Tzou 

[4,5] in their publications for the Newtonian nanofluids we can write the basic equations of conservation which govern our 

problem under the Boussinesq and Hele-Shaw approximation in dimensionless form as follows: 

 

 (1) 

 
(2) 

 
(3) 

 
(4) 

Where   is the vector differential operator. 

If we consider the following dimensionless variables: 

 

Then, we can get from the equations (1)-(4) the following adimensional forms: 

 
(5) 

 

(6) 

 

(7) 

 

(8) 

Such that: 
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Stability Analysis 

Basic Solutions 

The basic solution of our problem is a quiescent thermal equilibrium state, it’s assumed to be independent of time where the 

equilibrium variables are varying only in the z-direction, therefore: 

 (9) 

 
(10) 

 
(11) 

If we introduce the precedent results into equations (6)-(8), we obtain: 

 (12) 

 
(13) 

 
(14) 

After using the boundary conditions (10) and (11), we can integrate the equation (14) between  and  for obtaining: 

 (15) 

Where     is the relative nanoparticle volume fraction at     , such that:  . 

If we take into account the expression (15), we can get after simplification of the equation (13): 

 
(16) 

Finally, we obtain after an integrating of the equation (16) between 0 and 1: 

 (17) 

 (18) 

Perturbation of the basic state 

For analyzing the stability of the system, we superimpose infinitesimal perturbations on the basic solutions as follows: 

 (19) 

In the framework of the Oberbeck-Boussinesq approximations, we can neglect the terms coming from the product of the 

temperature and the volumetric fraction of nanoparticles in equation (6), if we suppose also that we are in the case of small 

temperature gradients in a dilute suspension of nanoparticles, we can obtain after introducing the expressions (19) into equations 

(5)-(8) the following linearized equations: 

 (20) 

 
(21) 

 
(22) 

 
(23) 

After application of the curl operator twice to the equation (21) and using the equation (20), we obtain the following 

equations: 

 
(24) 

 
(25) 
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Where     and  . 

Analyzing the disturbances into normal modes, we can simplify the equations (22) - (25) by assuming that the perturbation 

quantities are of the form: 

 (26) 

After introducing the expressions (26) into equations (22) - (25), we obtain: 

 (27) 

 (28) 

 (29) 

 (30) 

Where   and   . 

The equations (27) - (30) will be solved subject to the following rigid-rigid boundary conditions: 

 (31) 

Method of Solution  

Numerical Method 

Very recently, Nield and Kuznetsov [8] and Agarwal [9] observed that the oscillatory convection is ruled out for nanofluids 

with this new type of boundary conditions due to very large nanofluid Lewis number, so the stationary convection  is the 

predominant mode. Hence, the equations (27)-(30) become: 

 (32) 

 (33) 

 (34) 

 (35) 

We can solve the equations (32)-(35) which are subjected to the conditions (31), by making a suitable change of variables that 

makes the number of variables equal to the number of boundary conditions to obtain a set of ten first order ordinary differential 

equations which we can write it in the following form: 

 
(36) 

The solution of the system (36) in matrix notation can be written as follows: 

 (37) 

Where   and . 

If we assume that the matrix  is written in the following form: 

 
(38) 

Therefore, the use of five boundary conditions at   , allows us to write each variable  as a linear combination for 

five functions   , such that: 

 (39) 

Where     is the Kronecker delta symbol . 

After introducing the new expressions of the variables   in the system (36), we will obtain the following equations:   

 
(40) 

For each value of   , we must solve a set of ten first order ordinary differential equations which are subjected to the initial 

conditions (39) , by approaching these variables with power series defined in the interval [0,1]  and truncated at the order  ,  

such that: 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CDMQFjADahUKEwif54Gs88LIAhVHuBoKHRnhDuo&url=http%3A%2F%2Fwww2.imperial.ac.uk%2F~rvcras%2FM2M1%2FM2M1sheet7.pdf&usg=AFQjCNHeqTuiGntbYXQe32V9_48wEImLSg&sig2=P2C90SbOPCSUKvYFkvcP3A


         Abderrahim Wakif et al./ Elixir Thermal Engg. 92 (2016) 38976-38985 38980 

 

(41) 

A linear combination of the solutions  satisfying the boundary conditions (31) at    leads to a homogeneous 

algebraic system for the coefficients of the combination. A necessary condition for the existence of nontrivial solution is the 

vanishing of the determinant which can be formally written as: 

 (42) 

If we give to each control parameter    its value, we can plot the neutral curve of the 

stationary convection by the numerical research of the smallest real positive value of the thermal Rayleigh number    

which corresponds to a fixed wave number  and verifies the dispersion relation (42). After that, we will find a set of 

points  which help us to plot our curve and find the critical value  which characterizes the onset of the 

convective stationary instability, this critical value represents the minimum value of the obtained curve. 

Validation of the Method 

The main aim of our study consists to study the influence of a uniform rotation on the convective instability in a 

Hele-Shaw cell filled of a Newtonian nanofluid layer in the rigid-rigid case. Our study shows that the thermal stability of 

Newtonian nanofluids depends on six parameters:  . 

The truncation order   which corresponds at the convergence of our method is determined, when the five digits after 

the comma of the critical Hele-Shaw Rayleigh number  for the nanofluids and the regular fluids remain unchanged 

(Tables 1 and 2) .To validate our method, we compared our results respectively with those obtained by Chandrasekhar 
[14] , Guo and Kaloni [15] and D.Yadav and  J. Lee [16]  concerning the classical Rayleigh-Bénard problem in a rotating 

medium  and the Rayleigh-Bénard problem in a Hele-Shaw cell in a non-rotating medium  for the regular fluids  (Tables 

3 and 4).  

Table 1. The stationary instability threshold of the regular fluids for different values of the Taylor number TA and 

the truncation order N in the case where PHS =10 

      

      
36 4.15175 395.50422 4.34366 442.72134 4.50613 486.57282 

37 4.15175 395.50419 4.34367 442.72113 4.50620 486.57215 

38 4.15175 395.50419 4.34367 442.72114 4.50619 486.57197 

39 4.15175 395.50419 4.34367 442.72115 4.50619 486.57210 

40 4.15175 395.50419 4.34367 442.72114 4.50619 486.57206 

41 4.15175 395.50419 4.34367 442.72115 4.50619 486.57207 

42 4.15175 395.50419  4.34367 442.72115 4.50619 486.57207 

43 4.15175 395.50419  4.34367 442.72115 4.50619 486.57207 

44 4.15175 395.50419  4.34367 442.72115 4.50619 486.57207 

45 4.15175 395.50419  4.34367 442.72115 4.50619 486.57207 

46 4.15175 395.50419  4.34367 442.72115 4.50619 486.57207 

Table 2. The stationary instability threshold of a nanofluid (H2O + Al2O3) characterized by NB=0.0075, Le=5000, 

RN=0.1 and NA=5 (D.Yadav et al. [17]) for different values of the Taylor number TA and the truncation order N in 

the case where PHS =10 

      

      
36 2.33515 29.14817 3.28921 103.03361 3.70296 159.09402 

37 2.33515 29.14818 3.28922 103.03379 3.70297 159.09534 

38 2.33515 29.14818 3.28922 103.03374 3.70298 159.09493 

39 2.33515 29.14818 3.28922 103.03375 3.70297 159.09501 

40 2.33515 29.14818 3.28922 103.03375 3.70297 159.09501 

41 2.33515 29.14818 3.28922 103.03375 3.70297 159.09500 

42 2.33515 29.14818  3.28922 103.03375 3.70297 159.09500 

43 2.33515 29.14818  3.28922 103.03375 3.70297 159.09500 

44 2.33515 29.14818  3.28922 103.03375 3.70297 159.09500 

45 2.33515 29.14818  3.28922 103.03375 3.70297 159.09500 

46 2.33515 29.14818  3.28922 103.03375 3.70297 159.09500 

Table 3. The comparison of critical values of Rayleigh number and the corresponding wave number with 

Chandrasekhar [13] for the regular fluids  for different values of the Taylor number TA in the case where PHS = 0 

 

Chandrasekhar   Present study 

     

  3.117 1707.762 3.11632 1707.76177 28 

 

3.10 1713 3.12087 1712.67407 28 

 

3.15 1756.6 3.16081 1756.34730 27 

 

3.30 1940.5 3.31925 1940.19924 29 

 

3.50 2151.7 3.48471 2151.34119 30 

10000 4.80 4713.10  4.78484 4712.04201 42 
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Table 4. The comparison of critical values of Rayleigh number and the corresponding wave number with Guo and 

Kaloni [14] and D.Yadav and  J. Lee [15]  for the regular fluids  for different values of the Hele-Shaw cell 

parameter PHS in the case where TA = 0 

 

 

Guo and Kaloni   D.Yadav and  J. Lee  Present study 

 

      

 

9.70 1752.20 9.734 1751.871 9.73587 1752.21039 28 

 

9.92 215.06 9.923 215.02 9.91699 215.06029 28 

 

10.47 60.36 10.439 60.395 10.43952 60.39782 38 

According to the above results, we notice that there is a very good agreement between our results and the previous 

works, hence the accuracy of the used method.  In this study we find that the convergence of the results depends greatly 

on the truncation order N of the power series, the Hele-Shaw cell parameter  and also of the Taylor number   .  

5.  Results and Discussion: 

To study the effect of a parameter  on the onset of the convective instability in a rotating Hele-

Shaw cell filled of a Newtonian nanofluid layer (for example : Water + Alumina) we must fix the others and determine 

the variation of the critical Hele-Shaw Rayleigh number as a function of the Taylor number   in the interval 

 for different values of this parameter (Figs 2-6) and then compare the obtained results with those of the 

regular fluids. To ensure the accuracy of our study, we will take as truncation order: 

-   for the regular fluids. 

-   for the nanofluids. 

 

 
Figure 2. Plot of RHSC as a function of TA for different values of PHS 
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Figure 3. Plot of RHSC as a function of TA for different values of NB 

 

 
 

Figure 4. Plot of RHSC as a function of TA for different values of Le 
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Figure 5. Plot of RHSC as a function of TA for different values of RN 

 
Figure 6. Plot of RHSC as a function of TA for different values of NA 

Generally the variation in the critical Hele-Shaw Rayleigh number  with the Taylor number  is an increasing 

function whatever the value taken for the parameters  ,  ,  ,    and    , so the presence of the Coriolis forces 

allows us to reduce the effect of the buoyancy forces , hence the Taylor number  has a stabilizing effect. 

From the Fig 2 we conclude that an increase in the Hele-Shaw cell parameter   allows us to accelerate the onset of the 

convection, so the permeability of the Hele-Shaw cell has a stabilizing effect. Hence, an infinite horizontal layer is 

more stable compared with that in the Hele-Shaw cell. 

The Fig 3 shows that the modified particle-density increment   has almost no effect on the convective instability of the 

nanofluids, this result may be explained by its low value  which appears only in the perturbed energy 

equation (22) as a product with the inverse of the Lewis number  near the temperature gradient and the 

volume fraction gradient of nanoparticles, so the effect of this parameter on the onset of convection in nanofluids will be 
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very small which we can neglect it . 

From The Figs 4 and 5 we conclude that an increase either in the Lewis number  or in the concentration Rayleigh 

number   allows us to accelerate the onset of the convection, hence they have a destabilizing effect .Therefore, to 

ensure the stability of the nanofluids, we can use the nanofluids which are having a less thermal diffusivity or containing 

less dense nanoparticles. 

  In this investigation, we find also that an increase in the volume fraction of nanoparticles destabilizes the 

nanofluids, because an increase in this parameter, increases also the Brownian motion and the thermophoresis of 

nanoparticles, which cause the destabilizing effect, this result confirm that the regular fluids are more stable than the 

nanofluids. 

When the modified diffusivity ratio  increases, the temperature difference between the horizontal plates also 

increases. The Fig 6 shows that an increase in the modified diffusivity ratio  allows us to decrease the critical Hele-

Shaw Rayleigh number  ,this result can be explained by the increase in the Buoyancy forces which destabilizes the 

system.  

Conclusions 

In this paper, we have examined the effect of a uniform rotation on the onset of convection in a Hele-Shaw cell  filled 

of a Newtonian nanofluid layer, heated uniformly from below and cooled from above for rigid-rigid boundaries in the 

case where the nanoparticle flux is zero on the boundaries. The contribution of the Brownian motion and the 

thermophoresis in the equation expressing the buoyancy effect coupled with the conservation of nanoparticles have a  

major effect on the onset of convection  compared with their contributions in the thermal energy equation . 

The resulting eigenvalue problem is solved analytically and numerically using the power series method (PSM). The 

behavior of various parameters like the Taylor number   , the Hele-Shaw cell parameter   , the modified particle-

density increment , the Lewis number  , the concentration Rayleigh number  and the modified diffusivity ratio 

 on the onset of convection has been analysed. The principal results of this investigation can be summarized as 

follows: 

- The presence of the Coriolis forces allows us to stabilize the nanofluids, such that an increase in the Taylor number   

induces also an increase in the critical Hele-Shaw Rayleigh number . 

- An increase in the permeability of the Hele-Shaw cell allows us to increase also the critical Hele-Shaw Rayleigh 

number  . Hence, this parameter has a stabilizing effect. 

- An infinite horizontal layer of a nanofluid (also of a regular fluid) is more stable compared with that in the Hele-Shaw 

cell. 

- To ensure the stability of the nanofluids, we can use the nanofluids which are having a less thermal diffusivity, a low 

concentration of nanoparticles or consisting of less dense nanoparticles. 

- An increase in the volume fraction of nanoparticles, in the Brownian motion, in the thermophoresis of nanoparticles or 

in the Buoyancy forces allows us to destabilize the nanofluids. 

- The regular fluids are more stable than the nanofluids. 
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