On T - curvature tensor in Trans-Sasakian manifolds

Abhishek Singh, Ramesh Kumar Pandey and Sachin Khare
Department of Mathematics, BBD University, Lucknow - 226005, UP India.

ARTICLE INFO

Article history:

Received: 8 January 2016;
Received in revised form:
9 March 2016;
Accepted: 14 March 2016;

Keywords

T - curvature tensor,
Trans-Sasakian manifold,
η - Einstein manifold.

> ABSTRACT
> In this chapter, quasi $-T$-flat, the $\xi-T$-flat, and $\varphi-T$ - flat trans-Sasakian manifolds are studied. It is proved that quasi $-T$-flat, the $\xi-T$-flat, and the $\varphi-T$ - flat trans-Sasakian manifolds are η-Einstein under the condition $\varphi(\operatorname{grad} \alpha)=(2 n-1)(\operatorname{grad} \beta)$.

© 2016 Elixir All rights reserved.

1. Introduction

Oubina [12] studied a new class of almost contact Riemannian manifold known as trans-Sasakian manifold which generalizes both α-Sasakian and β-Kenmotsu structure. A trans-Sasakian structure of type (0,0), ($\alpha, 0$) and ($0, \beta$) are cosympletic [1], α-Sasakian [2,19] and β-Kenmotsu [2,10] respectively. Sasakian, α-Sasakian, Kenmotsu, β-Kenmotsu are particular cases of trans-Sasakian manifold of type (α, β). Szabo [20,21] has obtained some curvature identities and Nomizu [11] has studied some curvature properties. It is also known that a locally trans-Sasakian manifold of dimension ≥ 5 is either cosympletic or α Sasakian or β-Kenmotsu manifold [9]. On other hand, 3 - dimensional proper trans-Sasakian manifold are constructed by Marrero [9]. De et al [5] etc. are also studied some important properties of trans-Sasakian manifold. In 2008, Tripathi and Dwivedi [22] defined and studied quasi projectively flat, ξ - projectively flat and φ - projectively flat almost contact metric manifold.
M.M. Tripathi and et al. [24] introduced the T - curvature tensor which in particular cases reduces to known curvatures like conformal, concircular and projective curvature tensors and some recently introduced curvature tensors like M - projective curvature tensor, $W i$ - curvature tensor $(i=0, \ldots, 9)$ and $W j-$ curvature tensors $(j=0,1)$.
M.M. Tripathi and P. Gupta [24] also found some important results on T - curvature tensor in $K-$ contact and Sasakian manifolds. However, the quasi $-T$ flat, the $\xi-T$-flat, and the $\varphi-T$-flat trans-Sasakian manifolds are almost not discussed so far. Let M be a $(2 n+1)-$ dimensional contact metric manifold. Since at each point $p \in M$, the tangent space $T p(M)$ can be decomposed into the direct sum $T p(M)=\varphi(T p(M)) \oplus\left\{\xi_{p}\right\}$, where $\left\{\xi_{p}\right\}$ is the 1 -dimensional linear subspace of $T p(M)$ generated by ξ_{p}, the $T-$ curvature tensor T is a map
$T: T p(M) \times T p(M) \times T p(M) \rightarrow \varphi(T p(M)) \oplus\left\{\xi_{p}\right\}$, such that
$T(X, Y) Z$
$=a_{0} R(X, Y) Z+a_{1} S(Y, Z) X+a_{2} S(X, Z) Y$
$+a_{3} S(X, Y) Z+a_{4} g(Y, Z) Q Y+a_{5} g(X, Z) Q Y$
$+a_{6} g(X, Y) Q Z+a_{7} r(g(Y, Z) X-g(X, Z) Y)$
where $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ and a_{7} are constants and R, S, Q and r are the Riemannian curvature-tensor, the Riccitensor, the Ricci-operator and the scalar curvature of the manifold respectively. It may be natural to consider the following particular cases:

1. If $T: \operatorname{Tp}(M) \times T p(M) \times T p(M) \rightarrow\left\{\xi_{p}\right\}$ i.e., the projection of the image of T in $\varphi(T p(M))$ is zero, such that $g(T(X, Y) Z, \varphi W)=0 ;$
2. If $T: T p(M) \times T p(M) \times T p(M) \rightarrow \varphi(T p(M))$ i.e., the projection of the image of T in $\left\{\xi_{p}\right\}$ is zero, such that $g(T(X, Y) \xi, W)=0$;
3. If $T: \varphi(T p(M)) \times \varphi(T p(M)) \times \varphi(T p(M)) \rightarrow\left\{\xi_{p}\right\}$
i.e., when C is restricted to $\varphi(T p(M)) \times \varphi(T p(M)) \times \varphi(T p(M))$, the projection of the image of T in $\varphi(T p(M))$ is zero, such that
$g(T(\varphi X, \varphi Y) \varphi Z, \varphi W)=0 ;$
A Riemannian manifold, satisfying the cases 1,2 and 3 is called quasi $-T$ - flat, the $\xi-T$ - flat, and the $\varphi-T$ - flat respectively. The present work is organized as under Section -2 contains necessary details about trans-Sasakian manifolds. Some basic results are also given in section - 2. In Section - 3, quasi $-T$ - symmetric trans-Sasakian manifold are discussed. Section - 4 contains $\xi-T$ - flat trans-Sasakian manifold and section -5 contains $\varphi-T$ - flat trans-Sasakian manifolds.

1. Preliminaries

In this section, we recall some general definitions and basic formulas which will be used later on. For this, we recommend the reference [2]. A $(2 n+1)$-dimensional Riemannian manifold (M, g) is said to be an almost contact metric manifold if there exist a (1,1) tensor field φ, a unique global non-vanishing structural vector field ξ (called the vector field) and a 1 -form η such that
$\varphi^{2} X=-X+\eta(X) \xi$,
(a) $\eta(\xi)=1$, (b) $g(X, \xi)=\eta(X)$,
(c) $\eta(\varphi X)=0,(d) \varphi \xi=0$,
$g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)$,
$d \eta(X, Y)=g(X, \varphi Y), \quad \eta \circ \varphi=0$,
Such a manifold is called contact manifold if $\eta \wedge(d \eta)^{n} \neq 0$, where n is $n^{\text {th }}$ exterior power. For contact manifold we also have $d \eta=\Phi$, where $\Phi(X, Y)=g(\varphi X, Y)$ is called fundamental 2 -form on M. An almost contact metric manifold is called trans-Sasakian manifold of type (α, β) if
$\left(\nabla_{X} \varphi\right)(Y)=\alpha(g(X, Y) \xi-\eta(X) Y)+\beta(g(\varphi X, Y) \xi-\eta(X) \varphi Y)$,
for all vector field X, Y on M, where α and β are some smooth real valued functions. Trans-Sasakian manifolds of type $(1,0)$ and $(0,1)$ are called Sasakian and Kenmotsu manifold respectively.

An almost contact metric manifold M is said to be η-Einstein if its Ricci-tensor S is of the form
$S(X, Y)=A g(X, Y)+B \eta(X) \eta(Y)$,
where A and B are smooth functions on M. A η-Einstein manifold becomes Einstein if $B=0$.
If $\left\{e_{1}, e_{2}, \ldots \ldots, e_{2 n}, \xi\right\}$ is a local orthonormal basis of vector fields in a $(2 n+1)-$ dimensional almost contact metric manifold M, then $\left\{\varphi e_{1}, \varphi e_{2}, \ldots \ldots ., \varphi e_{2 n}, \xi\right\}$ is also a local orthonormal basis. It is easy to verify that

$$
\begin{align*}
& \sum_{i=1}^{2 n} g\left(e_{i}, e_{i}\right)=\sum_{i=1}^{2 n} g\left(\varphi e_{i}, \varphi e_{i}\right)=2 n \tag{11}\\
& \sum_{i=1}^{2 n} g\left(e_{i}, Y\right) S\left(X, e_{i}\right)=\sum_{i=1}^{2 n} g\left(\varphi e_{i}, Y\right) S\left(X, \varphi e_{i}\right) \\
& =S(X, Y)-S(X, \xi) \eta(Y) \tag{12}
\end{align*}
$$

for all $X, Y \in T(M)$. In view of (8) and (12), we have

$$
\begin{align*}
\sum_{i=1}^{2 n} g\left(e_{i}, \varphi Y\right) S\left(\varphi X, e_{i}\right) & =\sum_{i=1}^{2 n} g\left(\varphi e_{i}, \varphi Y\right) S\left(\varphi X, \varphi e_{i}\right) \\
& =S(\varphi X, \varphi Y) \tag{13}
\end{align*}
$$

If M is a trans-Sasakian manifold, then it is known that
$R(X, \xi) \xi=\left(\alpha^{2}-\beta^{2}-\alpha \beta\right)[X-\eta(X) \xi]$,
for all $X \in T(M)$.
$S(X, \xi)=\left(2 n\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-(2 n-1) X \beta-(\varphi X) \alpha$
and
$S(\xi, \xi)=2 n\left(\alpha^{2}-\beta^{2}-\xi \beta\right)$,
From (16), we have
$\sum_{i=1}^{2 n} S\left(e_{i}, e_{i}\right)=\sum_{i=1}^{2 n} S\left(\varphi e_{i}, \varphi e_{i}\right)=r-2 n\left(\alpha^{2}-\beta^{2}-\xi \beta\right)$
where $r=\operatorname{trace}(Q)$ is the scalar curvature. In a trans-Sasakian manifold, we have
$g(R(\xi, Y) Z, \xi)=\left(\alpha^{2}-\beta^{2}-\xi \beta\right) g(\varphi Y, \varphi Z)$,
for all $Y, Z \in T(M)$. Consequently,
$\sum_{i=1}^{2 n} g\left(R\left(e_{i}, Y\right) Z, e_{i}\right)=\sum_{i=1}^{2 n} g\left(R\left(\varphi e_{i}, Y\right) Z, \varphi e_{i}\right)$
$=S(Y, Z)-\left(\alpha^{2}-\beta^{2}-\xi \beta\right) g(\varphi Y, \varphi Z)$,
$\left\{\begin{array}{c}\sum_{i=1}^{2 n} g\left(R\left(e_{i}, \varphi Y\right) \varphi Z, e_{i}\right)=\sum_{i=1}^{2 n} g\left(R\left(\varphi e_{i}, \varphi Y\right) \varphi Z, \varphi e_{i}\right) \\ =S(\varphi Y, \varphi Z)-\left(\alpha^{2}-\beta^{2}-\xi \beta\right) g(\varphi Y, \varphi Z),\end{array}\right.$
2. quasi T - flat trans-Sasakian manifold manifolds

We begin with the following lemma:
Lemma 1 The quasi- T - flat trans-Sasakian manifold takes the form of (10) under the condition $\varphi(\operatorname{grad} \alpha)=(2 n-1)(\operatorname{grad} \beta)$.
Proof. Let M be a $(2 n+1)$-dimensional trans-Sasakian manifold.
We write the curvature tensor T in its $(0,4)$ form as follows
$\left\{\begin{array}{c}g(T(X, Y) Z, W)=a_{0} g(R(X, Y) Z, W) \\ +a_{1} S(Y, Z) g(X, W)+a_{2} S(X, Z) g(Y, W) \\ +a_{3} S(X, Y) g(Z, W)+a_{4} g(Y, Z) S(X, W) \\ +a_{5} g(X, Z) S(Y, W)+a_{6} g(X, Y) S(Z, W) \\ +a_{7} r(g(Y, Z) g(X, W)-g(X, Z) g(Y, W))\end{array}\right.$
From (21), we have
$\left\{\begin{array}{c}g(T(\varphi X, Y) Z, \varphi W)=a_{0} g(R(\varphi X, Y) Z, \varphi W) \\ +a_{1} S(Y, Z) g(\varphi X, \varphi W)+a_{2} S(\varphi X, Z) g(Y, \varphi W) \\ +a_{3} S(\varphi X, Y) g(Z, \varphi W)+a_{4} g(Y, Z) S(\varphi X, \varphi W) \\ +a_{5} g(\varphi X, Z) S(Y, \varphi W)+a_{6} g(\varphi X, Y) S(Z, \varphi W) \\ +a_{7} r(g(Y, Z) g(\varphi X, \varphi W)-g(\varphi X, Z) g(Y, \varphi W))\end{array}\right.$
for all $X, Y, Z, W \in T(M)$. If $\left\{e_{1}, e_{2}, \ldots \ldots, e_{2 n}, \xi\right\}$ is a local orthonormal basis of vector fields in M. Now on putting $X=W=e_{i}$ and taking summation over $1 \leq i \leq 2 n$ in (22) we have
$\sum_{i=1}^{2 n} g\left(T\left(\varphi e_{i}, Y\right) Z, \varphi e_{i}\right)$
$=\sum_{i=1}^{2 n}\left(a_{0} g\left(R\left(\varphi e_{i}, Y\right) Z, \varphi e_{i}\right)+a_{1} S(Y, Z) g\left(\varphi e_{i}, \varphi e_{i}\right)\right.$
$+a_{2} S\left(\varphi e_{i}, Z\right) g\left(Y, \varphi e_{i}\right)+a_{3} S\left(\varphi e_{i}, Y\right) g\left(Z, \varphi e_{i}\right)$
$+a_{4} g(Y, Z) S\left(\varphi e_{i}, \varphi e_{i}\right)+a_{5} g\left(\varphi e_{i}, Z\right) S\left(Y, \varphi e_{i}\right)$
$+a_{6} g\left(\varphi e_{i}, Y\right) S\left(Z, \varphi e_{i}\right)$
$+a_{7} r\left(g(Y, Z) g\left(\varphi e_{i}, \varphi e_{i}\right)-g\left(\varphi e_{i}, Z\right) g\left(Y, \varphi e_{i}\right)\right.$
for all $Y, Z \in T(M)$. Using (11), (12), (17) and (19), we have
$\sum_{i=1}^{2 n} g\left(T\left(\varphi e_{i}, Y\right) Z, \varphi e_{i}\right)$
$=a_{0}\left(S(Y, Z)-\left(\alpha^{2}-\beta^{2}-\xi \beta\right) g(\varphi Y, \varphi Z)\right)$
$+2 n a_{1} S(Y, Z)+a_{2}(S(Y, Z)-S(Z, \xi) \eta(Y))$
$+a_{3}(S(Y, Z)-S(Y, \xi) \eta(Z))+a_{4} g(Y, Z)\left(r-2 n\left(\alpha^{2}-\beta^{2}-\xi \beta\right)\right)$
$+a_{5}(S(Y, Z)-S(Y, \xi) \eta(Z))$
$+a_{6}(S(Y, Z)-S(Z, \xi) \eta(Y))$
$+a_{7} r((2 n-1) g(Y, Z)-\eta(Y) \eta(Z))$
If M satisfies (2), then from (24), we have
$0=a_{0}\left(S(Y, Z)-\left(\alpha^{2}-\beta^{2}-\xi \beta\right) g(\varphi Y, \varphi Z)\right)$
$+2 n a_{1} S(Y, Z)+a_{2}(S(Y, Z)-S(Z, \xi) \eta(Y))$
$+a_{3}(S(Y, Z)-S(Y, \xi) \eta(Z))+a_{4} g(Y, Z)\left(r-2 n\left(\alpha^{2}-\beta^{2}-\xi \beta\right)\right)$
$+a_{5}(S(Y, Z)-S(Y, \xi) \eta(Z))$
$+a_{6}(S(Y, Z)-S(Z, \xi) \eta(Y))$
$+a_{7} r((2 n-1) g(Y, Z)-\eta(Y) \eta(Z))$
If $\varphi(\operatorname{grad} \alpha)=(2 n-1)(\operatorname{grad} \beta)$. then $\xi \beta=0$ [5], and by using (7) and (13) in (25) we get
$\left(a_{0}+2 n a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right) S(Y, Z)$
$=\left(a_{2}+a_{6}\right) 2 n\left(\alpha^{2}-\beta^{2}\right) \eta(Y) \eta(Z)$
$+\left(a_{3}+a_{5}\right) 2 n\left(\alpha^{2}-\beta^{2}\right) \eta(Y) \eta(Z)$
$+\left(a_{0}+2 n a_{4}\right)\left(\alpha^{2}-\beta^{2}\right) g(Y, Z)$
$-\left(a_{4}+(2 n-1) a_{7}\right) r g(Y, Z)$
$+a_{7} r((2 n-1) g(Y, Z)-\eta(Y) \eta(Z))$
If $a_{0}+2 n a_{1}+a_{2}+a_{3}+a_{5}+a_{6} \neq 0$, from (26) we have
$\left\{\begin{array}{c}S(Y, Z)=\left\{\frac{\left(a_{0}+2 n a_{4}\right)\left(\alpha^{2}-\beta^{2}\right)-\left(a_{4}+(2 n-1) a_{7}\right) r}{\left(a_{0}+2 n a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right)}\right\} g(Y, Z) \\ +\left\{\frac{2 n\left(\alpha^{2}-\beta^{2}\right)\left(a_{2}+a_{3}+a_{5}+a_{6}\right)-a_{0}\left(\alpha^{2}-\beta^{2}\right)+a_{7} r}{\left(a_{0}+2 n a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right)}\right\} \eta(Y) \eta(Z)\end{array}\right.$
we can rewritten (26), as

$$
\begin{equation*}
S=A_{0} g \times A_{1} \eta \otimes \eta \tag{28}
\end{equation*}
$$

where
$A_{0}=\frac{\left(a_{0}+2 n a_{4}\right)\left(\alpha^{2}-\beta^{2}\right)-\left(a_{4}+(2 n-1) a_{7}\right) r}{\left(a_{0}+2 n a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right)}$
\&
$A_{1}=\frac{2 n\left(\alpha^{2}-\beta^{2}\right)\left(a_{2}+a_{3}+a_{5}+a_{6}\right)-a_{0}\left(\alpha^{2}-\beta^{2}\right)+a_{7} r}{\left(a_{0}+2 n a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right)}$
Therefore M is an η - Einstein manifold. In particular, M becomes an Einstein manifold provided. in (28), we get the required lemma. In view of lemma 1, we can state that:

Theorem 1 A quasi T-flat trans-Sasakian manifold is η-Einstein if $\varphi(\operatorname{grad} \alpha)=(2 n-1)(\operatorname{grad} \beta)$.

3. $\xi-T$-flat trans-Sasakian manifolds

We begin with the following lemma:
Lemma 2 The $\xi-T$-flat trans-Sasakian manifold takes the form of (10) under the condition

$$
\varphi(\operatorname{grad} \alpha)=(2 n-1) \operatorname{grad} \beta
$$

Proof. Let M be $(2 n+1)-$ dimensional trans-Sasakian manifold. Putting $Z=\xi$ in (1), we have
$g(T(X, Y) \xi, W)$
$=a_{0} g(R(X, Y) \xi, W)+a_{1} S(Y, \xi) g(X, W)$
$+a_{2} S(X, \xi) g(Y, W)+a_{3} S(X, Y) g(\xi, W)$
$+a_{4} g(Y, \xi) S(X, W)+a_{5} g(X, \xi) S(Y, W)$
$+a_{6} g(X, Y) S(\xi, W)+a_{7} r(g(Y, \xi) g(X, W)-g(X, \xi) g(Y, W)$
for all $X, Y, W \in T(M)$. If $\left\{e_{1}, e_{2}, \ldots \ldots ., e_{2 n}, \xi\right\}$ is a local orthonormal basis of vector fields in M. Now on putting $Z=\xi$ and taking summation over $1 \leq i \leq 2 n$ in (29), we have
$\sum_{i=1}^{2 n} g(T(X, \xi) \xi, W)$
$=\sum_{i=1}^{2 n}\left(a_{0} g(R(X, \xi) \xi, W)+a_{1} S(\xi, \xi) g(X, W)\right.$
$+a_{2} S(X, \xi) g(\xi, W)+a_{3} S(X, \xi) g(\xi, W)$
$+a_{4} g(\xi, \xi) S(X, W)+a_{5} g(X, \xi) S(\xi, W)$
$+a_{6} S(\xi, W) g(X, \xi)+a_{7} r(g(\xi, \xi) g(X, W)-g(X, \xi) g(\xi, W))$
for all $Y, Z \in T(M)$. Using (8), (15), (16) and (18), we have
$\sum_{i=1}^{2 n} T(X, \xi, \xi, W)$
$=\sum_{i=1}^{2 n}\left[a_{0}\left(\left(\alpha^{2}-\beta^{2}-\xi \beta\right)(g(X, W)-\eta(X) \eta(W))\right.\right.$
$+a_{1}\left(\left(2 n\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-(2 n-1) X \beta-(\varphi X) \alpha\right) g(X, W)$
$+a_{2} 2 n\left(\alpha^{2}-\beta^{2}-\xi \beta\right) \eta(X) \eta(W)+a_{3} 2 n\left(\alpha^{2}-\beta^{2}-\xi \beta\right) \eta(X) \eta(W)$
$+a_{4} S(X, W)+a_{5} 2 n\left(\alpha^{2}-\beta^{2}-\xi \beta\right) \eta(X) \eta(W)$
$+a_{6} 2 n\left(\alpha^{2}-\beta^{2}-\xi \beta\right) \eta(X) \eta(W)+a_{7} r(g(X, W)-\eta(X) \eta(W))$
If M satisfies (3), then from (31), we have
$a_{0}\left\{\left(\alpha^{2}-\beta^{2}-\xi \beta\right)(g(X, W)-\eta(X) \eta(W))\right.$
$+a_{1}\left(\left(2 n\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-(2 n-1) X \beta-(\varphi X) \alpha\right) g(X, W)$
$+a_{2} 2 n\left(\alpha^{2}-\beta^{2}-\xi \beta\right) \eta(X) \eta(W)+a_{3} 2 n\left(\alpha^{2}-\beta^{2}-\xi \beta\right) \eta(X) \eta(W)$
$+a_{4} S(X, W)+a_{5} 2 n\left(\alpha^{2}-\beta^{2}-\xi \beta\right) \eta(X) \eta(W)$
$+a_{6} 2 n\left(\alpha^{2}-\beta^{2}-\xi \beta\right) \eta(X) \eta(W)$
$+a_{7} r(g(X, W)-\eta(X) \eta(W))=0$
If $\varphi(\operatorname{grad} \alpha)=(2 n-1)(\operatorname{grad} \beta)$, then $\xi \beta=0$, which implies that
$a_{4} S(X, W)$
$=-\left(a_{0}\left(\alpha^{2}-\beta^{2}\right)+a_{7} r\right) g(X, W)$
$+\left(a_{0}\left(\alpha^{2}-\beta^{2}\right) \eta(X) \eta(W)\right.$
$-2 n a_{1}\left(\alpha^{2}-\beta^{2}\right) g(X, W)$
$-2 n a_{2}\left(\alpha^{2}-\beta^{2}\right) g(X, W)$
$-2 n a_{3}\left(\alpha^{2}-\beta^{2}\right) \eta(X) \eta(W)$
$-2 n a_{5}\left(\alpha^{2}-\beta^{2}\right) \eta(X) \eta(W)$
$-2 n a_{6}\left(\alpha^{2}-\beta^{2}\right) \eta(X) \eta(W)$
$+a_{7} r \eta(X) \eta(W)$
If $a_{4} \neq 0$ then from (33), we get
$S(X, W)=-\left(\frac{\left.\left(a_{0}+2 n a_{1}\right)\left(\alpha^{2}-\beta^{2}\right)+a_{7} r\right)}{a_{4}}\right) g(X, W)$
$-\left(\frac{\left.\left(-a_{0}+2 n\left(a_{2}+a_{3}+a_{5}+a_{6}\right)\right)\left(\alpha^{2}-\beta^{2}\right)-a_{7} r\right)}{a_{4}}\right) \eta(X) \eta(W)$
we can rewritten (34), as
$S=A_{2} g+A_{3} \eta \otimes \eta$
where
$A_{2}=-\frac{\left.\left(a_{0}+2 n a_{1}\right)\left(\alpha^{2}-\beta^{2}\right)+a_{7} r\right)}{a_{4}}$
\&
$A_{3}=-\left(\frac{\left(-a_{0}+2 n\left(a_{2}+a_{3}+a_{5}+a_{6}\right)\right)\left(\alpha^{2}-\beta^{2}\right)-a_{7} r}{a_{4}}\right)$
in (35), we get the required lemma.
In view of lemma 2, we can state that:
Theorem 2 A Ricci tensor quasi $\xi-T$-flat trans-Sasakian manifold is η-Einstein if $\varphi(\operatorname{grad} \alpha)=(2 n-1)(\operatorname{grad} \beta)$.
4. $\varphi-T$ - flat trans-Sasakian manifold

Lemma 3 The $\varphi-T$ - flat trans-Sasakian manifold takes the form of (10) under the condition $\varphi(\operatorname{grad} \alpha)=(2 n-1) \operatorname{grad} \beta$.
Proof. Let M be $(2 n+1)$ - dimensional trans-Sasakian manifold. From (1), we have
$T(\varphi X, \varphi Y, \varphi Z, \varphi W)$
$=a_{0} R(\varphi X, \varphi Y, \varphi Z, \varphi W)+a_{1} S(\varphi Y, \varphi Z) g(\varphi X, \varphi W)$
$+a_{2} S(\varphi X, \varphi Z) g(\varphi Y, \varphi W)+a_{3} S(\varphi X, \varphi Y) g(\varphi Z, \varphi W)$
$+a_{4} g(\varphi Y, \varphi Z) S(\varphi X, \varphi W)+a_{5} g(\varphi X, \varphi Z) S(\varphi Y, \varphi W)$
$+a_{6} g(\varphi X, \varphi Y) S(\varphi Z, \varphi W)$
$+a_{7} r(g(\varphi Y, \varphi Z) g(\varphi X, \varphi W)-g(\varphi X, \varphi Z) g(\varphi Y, \varphi W)$
for all $X, Y, Z, W \in T(M)$. If $\left\{e_{1}, e_{2}, \ldots \ldots, e_{2 n}, \xi\right\}$ is a local orthonormal basis of vector fields in
a $(2 n+1)-$ dimensional almost contact manifold M, then $\left\{\varphi e_{1}, \varphi e_{2}, \ldots \ldots, \varphi e_{2 n}, \xi\right\}$ is local orthonormal basis. From (36), we have
$\sum_{i=1}^{2 n} T\left(\varphi e_{i}, \varphi Y, \varphi Z, \varphi e_{i}\right)$
$=\sum_{i=1}^{2 n}\left[a_{0} R\left(\varphi e_{i}, \varphi Y, \varphi Z, \varphi e_{i}\right)+a_{1} S(\varphi Y, \varphi Z) g\left(\varphi e_{i}, \varphi e_{i}\right)\right.$
$+a_{2} S\left(\varphi e_{i}, \varphi Z\right) g\left(\varphi Y, \varphi e_{i}\right)+a_{3} S\left(\varphi e_{i}, \varphi Y\right) g\left(\varphi Z, \varphi e_{i}\right)$
$+a_{4} g(\varphi Y, \varphi Z) S\left(\varphi e_{i}, \varphi e_{i}\right)+a_{5} g\left(\varphi e_{i}, \varphi Z\right) S\left(\varphi Y, \varphi e_{i}\right)$
$+a_{6} g\left(\varphi e_{i}, \varphi Y\right) S\left(\varphi Z, \varphi e_{i}\right)$
$+a_{7} r\left(g(\varphi Y, \varphi Z) g\left(\varphi e_{i}, \varphi e_{i}\right)-g\left(\varphi e_{i}, \varphi Z\right) g\left(\varphi Y, \varphi e_{i}\right)\right.$
Using (11), (13), (19) and (37), we have
$\sum_{i=1}^{2 n} T\left(\varphi e_{i}, \varphi Y, \varphi Z, \varphi e_{i}\right)$
$=\sum_{i=1}^{2 n}\left[a_{0}\left(S(\varphi Y, \varphi Z)-\left(\alpha^{2}-\beta^{2}-\xi \beta\right)(g(\varphi Y, \varphi Z))\right.\right.$
$+2 n a_{1} S(\varphi Y, \varphi Z)+a_{2} S(\varphi Y, \varphi Z)+a_{3} S(\varphi Y, \varphi Z)$
$\left.+a_{5} S(\varphi Y, \varphi Z)+a_{6} S(\varphi Y, \varphi Z)+a_{7} r(2 n g(\varphi Y, \varphi Z)-g(\varphi Y, \varphi Z))\right]$
If M is $\varphi-T$ - flat, then from (38), we have
$0=\left(a_{0}+2 n a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right) S(\varphi Y, \varphi Z)$
$\left.+\left(-a_{0}\left(\alpha^{2}-\beta^{2}\right)+(r-2 n)\left(\alpha^{2}-\beta^{2}\right) a_{4}+(2 n-1) a_{7} r\right) g(\varphi Y, \varphi Z)\right)$
If $a_{0}+2 n a_{1}+a_{2}+a_{3}+a_{5}+a_{6} \neq 0$, then from (39), we get
$S(\varphi Y, \varphi Z)=\left\{\frac{\left.a_{0}\left(\alpha^{2}-\beta^{2}\right)-(r-2 n)\left(\alpha^{2}-\beta^{2}\right) a_{4}+(2 n-1) a_{7} r\right)}{\left(a_{0}+2 n a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right)}\right\} g(\varphi Y, \varphi Z)$
we can rewritten (40), as
$S(\varphi Y, \varphi Z)=A_{4} g(\varphi Y, \varphi Z)$
where
$A_{4}=\left\{\frac{\left.a_{0}\left(\alpha^{2}-\beta^{2}\right)-(r-2 n)\left(\alpha^{2}-\beta^{2}\right) a_{4}+(2 n-1) a_{7} r\right)}{\left(a_{0}+2 n a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right)}\right\}$
and Using (4) and (41) in (38), we get
$a_{0} R(\varphi X, \varphi Y, \varphi Z, \varphi W)$
$=-\left(a_{1} A_{4}+a_{4} A_{4}+a_{7} r\right) g(\varphi Y, \varphi Z) g(\varphi X, \varphi W)$
$-\left(a_{2} A_{4}+a_{5} A_{4}-a_{7} r\right) g(\varphi X, \varphi Z) g(\varphi Y, \varphi W)$
$-\left(a_{3} A_{4}+a_{6} A_{4}\right) g(\varphi X, \varphi Y) g(\varphi Z, \varphi W)$
in (43), we get the required lemma.
In view of lemma 3, we can state that:
Theorem 3 A quasi $\varphi-T$ - flat trans-Sasakian manifold is η-Einstein if $\varphi(\operatorname{grad} \alpha)=(2 n-1)(\operatorname{grad} \beta)$.
5. A Trans-Sasakian manifold with respect to the $\varphi-T$ - flat

Lemma 4 The Ricci tensor of trans-Sasakian manifold takes the form of (10) under the condition $\varphi-T-$ flat and $\varphi(\operatorname{grad} \alpha)=(2 n-1) \operatorname{grad} \beta$.
Proof. Let M be a $(2 n+1)$ - dimensional trans-Sasakian manifold. Now, assume that M is $\varphi-T-$ flat. In a trans-Sasakian manifold, in view of (5), (6), (8) and (14) we can easily verify that
$R\left(\varphi^{2} X, \varphi^{2} Y, \varphi^{2} Z, \varphi^{2} W\right)=R(X, Y, Z, W)$
$-g(Y, Z) \eta(X) \eta(W)+g(X, Z) \eta(Y) \eta(W)$
$+g(Y, W) \eta(X) \eta(Z)-g(X, W) \eta(Y) \eta(Z)$
Replacing X, Y, Z, W by $\varphi X, \varphi Y, \varphi Z, \varphi W$ respectively in (4), we get
$-a_{0} R\left(\varphi^{2} X, \varphi^{2} Y, \varphi^{2} Z, \varphi^{2} W\right)$
$=\left(a_{1} A_{4}+a_{4} A_{4}+a_{7} r\right) g(\varphi Y, \varphi Z) g(\varphi X, \varphi W)$
$+\left(a_{2} A_{4}+a_{5} A_{4}-a_{7} r\right) g(\varphi X, \varphi Z) g(\varphi Y, \varphi W)$
$+\left(a_{3} A_{4}+a_{6} A_{4}\right) g(\varphi X, \varphi Y) g(\varphi Z, \varphi W)$
From (44) and (45), we get

$$
\left\{\begin{array}{c}
-a_{0} R(X, Y, Z, W) \\
=\left(A_{4} a_{1}+A_{4} a_{4}+a_{7} r\right) g(Y, Z) g(X, W) \\
+\left(A_{4} a_{2}+A_{4} a_{5}-a_{7} r\right) g(X, Z) g(Y, W) \\
+\left(A_{4} a_{3}+A_{4} a_{6}\right) g(X, Y) g(Z, W) \\
-\left(A_{4} a_{3}+A_{4} a_{6}\right) g(X, Y) \eta(Z) \eta(W) \\
-\left(A_{4} a_{3}+A_{4} a_{6}\right) g(Z, W) \eta(X) \eta(Y) \\
-\left(A_{4} a_{1}+A_{4} a_{4}+a_{7} r+a_{0}\right) \eta(Y) \eta(Z) g(X, W) \\
-\left(A_{4} a_{1}+A_{4} a_{4}+a_{7} r+a_{0}\right) \eta(X) \eta(W) g(Y, Z) \\
-\left(A_{4} a_{2}+A_{4} a_{5}+a_{7} r-a_{0}\right) \eta(Y) \eta(W) g(X, Z) \\
-\left(A_{4} a_{2}+A_{4} a_{5}+a_{7} r-a_{0}\right) \eta(X) \eta(Z) g(Y, W) \\
+\left(\sum_{i=1}^{6} a_{1}\right) A_{4} \eta(X) \eta(Y) \eta(Z) \eta(W)
\end{array}\right.
$$

for all $X, Y, Z, W \in T(M)$. If $\left\{e_{1}, e_{2}, \ldots \ldots ., e_{2 n}, \xi\right\}$ is a local orthonormal basis of vector fields in M. Now on putting $X=W=e_{i}$ and taking summation over $1 \leq i \leq 2 n$ in (46) we have
$S(Y, Z)=A_{5} g(\varphi Y, \varphi Z)+(2 n-1) \eta(Y) \eta(Z)$
where
$A_{5}=-\frac{1}{a_{0}}\left[(2 n-1)\left(a_{1} A_{4}+a_{4} A_{4}+a_{7} r\right)+A_{4}\left(a_{2}+a_{3}+a_{5}+a_{6}-a_{7} r\right)-a_{0}-a_{0}\left(\alpha^{2}-\beta^{2}\right)\right]$
Using (47) and (46) in (28), we get
$T(X, Y, Z, \varphi W)$
$=\left(a_{1}+a_{4}\right)\left(A_{5}-A_{4}\right) g(Y, Z) g(X, \varphi W)$
$+\left(a_{2}+a_{5}\right)\left(A_{5}-A_{4}\right) g(X, Z) g(Y, \varphi W)$
$+\left(a_{3}+a_{6}\right)\left(A_{5}-A_{4}\right) g(X, Y) g(Z, \varphi W)$
$+\left(\left(a_{3}+a_{6}\right) A_{4}+\left((2 n-1)-A_{5}\right) a_{3}\right) g(Z, \varphi W) \eta(X) \eta(Y)$
$+\left(\left(a_{1}+a_{4}\right) A_{4}+a_{7} r-a_{0}+\left((2 n-1)-A_{5}\right) a_{1}\right) g(X, \varphi W) \eta(Y) \eta(Z)$
$+\left(\left(a_{2}+a_{5}\right) A_{4}-a_{7} r-a_{0}+\left((2 n-1)-A_{5}\right) a_{2}\right) g(Y, \varphi W) \eta(X) \eta(Z)$
in (48), we get the required lemma. In view of lemma 4 we can state that:
Theorem 4 A trans-Sasakian manifold is η - Einstein if is $\varphi-T$ - flat and $\varphi(\operatorname{grad} \alpha)=(2 n-1)(\operatorname{grad} \beta)$.

Acknowledgment

The authors are thankful to Professor S. Ahmad Ali Dean School of Applied Sciences, B.B.D. University, Lucknow, providing suggestions for the improvement of this paper.

References

[1]D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, springer Verlag, 1976.
[2]D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203 (Boston, MA: Birkhauser Boston, Inc.) (2002).
[3]W. M. Boothby, and H. C. Wang, On contact manifolds, Ann. Math., 68 (1958), 721-734.
[4]J. L. Cabrerizo, L. M. Fernandez, M. Fernandez and G. Zhen, The structure of a class of K - contact manifolds, Acta Math. Hungar., 82 (4) (1999), 331-340.
[5]U.C. De, and M.M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian Manifolds, Kyungpook Math. J., 2, (2005), 247255.
[6]M. K. Dwivedi, and J.-S. Kim, On conharmonic curvature tensor in K - contact and Sasakian manifolds, Bull. Malays. Math.
Sci. Soc. 34(1) (2011), 171-180.
[7]L. P. Eisenhart, Riemannian Geometry, Princeton University Press, 1949.
[8]Y. Ishii, On conharmonic transformations, Tensor (N.S.), 7 (1957), 73-80.
[9]J.C. Marrero, The local structure of trans-Sasakian manifold, Ann. Mat. Pura Appl., 162(4)(1992),77-86.
[10]K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.[52]
[11]K. Nomizu, On hypersurfaces satisfying certain condition on the curvature tensor, Tohoku Math. J., 15, (1963), 148-161.
[12]K. Ogiue, On fibrings of almost contact manifolds, Kodai Math. Sem. Rep., 17 (1965) 53-62.
[13]J.A. Oubi~na, New Classes of almost contact metric structures, Pub. Math. Debrecen 32(1985), 187-193.
[14]G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance, Yokohama Math. J., 18 (1970), 105108.
[15]G. P. Pokhariyal, and R. S. Mishra, Curvature tensors and their relativistic significance II, Yokohama Math. J., 19 (2) (1971), 97-103.
[16]G. P. Pokhariyal, Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci., 5 (1) (1982), 133-139.
[17]B. Prasad, A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc., 94 (3) (2002), 163166.
[18]R. Prasad, Pankaj, M.M. Tripathi, and S.S. Shukla, On some special type of trans-Sasakian Manifolds, Rev. Mat. Univ. Parma, 8(2), (2009),1-17.
[19]S. Sasaki, On differentiable manifolds with certain structure which are closed related to an almost contact structure, Tohoku Math. Journal. 12 (1960), 459-476.
[20]Z.I. Szabo, Structure theorems on Riemannian space satisfying $R(X, Y) . R=0$, The Local version, J. Diff. Geom., 17, (1982),531-582.
[21]Z.I. Szabo, Classification and contraction of complete hypersurfaces satisfying $R(X, Y) \cdot R=0$, Acta Sci Math., 7, (1984), 321-348.
[22]M. M. Tripathi, and M. K. Dwivedi, The structure of some classes of K - contact manifolds,Proc. Indian Acad. Sci. (Math. Sci.), 118 (3) (2008), 371-379.
[23]M. M. Tripathi, and P. Gupta, T - curvature tensor on a semi-Riemannian manifold, J. Adv.Math. Stud. 4 (1) (2011), 117129.
[24]M. M. Tripathi, and P. Gupta, T - curvature tensor in K - contact and sasakian manifolds, International Electronic Journal of Geometry 4 (2011) 32.
[25]K. Yano, Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Im-perial Univ. Proc., 16 (1940), 195200.
[26]K. Yano, and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32,Princeton University Press, 1953.
[27]K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group,J. Di . Geom., 2 (1968), 161-184.
[28]G. Zhen, J. L. Cabrerizo, L. M. Fernandez, and M. Fernandez, On ξ - conformally flat contactmetric manifolds, Indian J. Pure Appl. Math., 28 (1997), 725-734.
[29]G. Zhen, On conformal symmetric K - contact manifolds, Chinese Quart. J. Math., 7 (1992), 5-10.

