

Average Co-Isolated Locating Domination Number on Trees

S. Muthammai ${ }^{1}$ and N. Meenal ${ }^{2}$
${ }^{1}$ Government Arts College for Women (Autonomous), Pudukkottai - 622 001, India.
${ }^{2}$ J.J. College of Arts and Science (Autonomous), Pudukkottai - 622 422, India.

ARTICLE INFO

Article history:

Received: 21 January 2016;
Received in revised form:
1 March 2016;
Accepted: 5 March 2016;

Keywords

Locating Dominating Set,
Co-Isolated Locating
Dominating Set,
Co-Isolated Locating
Domination Number,
Average Domination Number.

Abstract

Let G (V, E) be a simple, finite, undirected connected graph. A dominating set $\mathrm{S} \subseteq \mathrm{V}$ is called a locating dominating set, if for any two vertices $v, w \in V-S, N(v) \cap S \neq N(w) \cap$ S. A locating dominating set $\mathrm{S} \subseteq \mathrm{V}$ is called a co - isolated locating dominating set, if there exists atleast one isolated vertex in $\langle\mathrm{V}-\mathrm{S}\rangle . \gamma_{\text {Dcild }}$ is the number of minimum co isolated locating dominating set of a graph G. The co - isolated locating domination number $\gamma_{\text {cild }}$ is the minimum cardinality of a co - isolated locating dominating set. In this paper average co - isolated domination number $\gamma_{\text {agcild }}(G)$ is defined and, $\gamma_{\text {cild }}$ and $\gamma_{\text {agcild }}$ are obtained for binomial trees, binary trees, ternary trees and complete c - ary trees. Also the bounds for $\gamma_{\text {agcild }}(\mathrm{G})$ are found.

© 2016 Elixir all rights reserved.

Introduction

Let $G=(V, E)$ be a simple graph of order p. For $v \in V(G)$, the neighborhood $N_{G}(v)$ (or simply $N(v)$) of v is the set of all vertices adjacent to v in G . A graph which contains no cycles is said to be acyclic (forest). A tree is a connected acyclic graph. The concept of domination in graphs was introduced by Ore [9]. A non - empty set $S \subseteq V(G)$ of a graph G is a dominating set, if every vertex in $V(G)-S$ is adjacent to some vertex in S. A special case of dominating set S is called a locating dominating set. It was defined by D. F. Rall and P. J. Slater in [10]. A dominating set S in a graph G is called a locating dominating set in G, if for any two vertices v, $w \in V(G)-S, N_{G}(v) \cap S, N_{G}(w) \cap S$ are distinct. The locating dominating number of G is defined as the minimum number of vertices in a locating dominating set in G. A locating dominating set $S \subseteq V(G)$ is called a co-isolated locating dominating set, if $\langle\mathrm{V}-\mathrm{S}\rangle$ contains atleast one isolated vertex. The minimum cardinality of a co - isolated locating dominating set is called the co - isolated locating domination number $\gamma_{\text {cild }}(\mathrm{G}) . \gamma_{\text {Dcild }}$ is the number of minimum co - isolated locating dominating sets of a graph G. Henning[5] introduced the concept of average independence and average domination number. The average domination number $\gamma_{\mathrm{ag}}(\mathrm{G})$ is defined as $\frac{\mathbf{1}}{|\mathbf{V}(\mathbf{G})|} \sum_{\mathbf{v} \in \mathbf{V}(\mathbf{G})} \boldsymbol{\gamma}_{\mathbf{v}}(\mathbf{G}), \mathbf{w} \mathbf{h}^{\text {ere }} \boldsymbol{\gamma}_{\mathbf{v}}(\mathrm{G})$ is the minimum cardinality of a dominating set that contains v . The average co-isolated locating domination number $\gamma_{\text {agcild }}(\mathrm{G})$ defined as $\frac{\mathbf{1}}{|\mathbf{V}(\mathbf{G})|} \sum_{\mathbf{v} \in \mathbf{V}(\mathbf{G})} \boldsymbol{\gamma}_{\mathbf{v c i l d}}(\mathbf{G}), \mathbf{w h}{ }^{\text {ere }} \boldsymbol{\gamma}_{\mathbf{v c i l d}}(\mathrm{G})$ is the minimum cardinality of a $\gamma_{\text {cild }}-$ set that contains v. In this paper $\gamma_{\text {cild }}$ and $\gamma_{\text {agcild }}$ are obtained for binomial trees, binary trees, ternary trees and complete $\mathrm{c}-$ ary trees. Also the bounds for $\gamma_{\text {agcild }}(\mathrm{G})$ are found.

Prior Results

The following results are obtained in [6], [7] \& [8]
Theorem 2.1 [6]
For a path P_{p} on p vertices,
$\gamma_{\text {cild }}\left(\mathrm{P}_{\mathrm{p}}\right)=\left[\frac{2 p+4}{5}\right], \mathrm{p} \geq 3$.

Theorem 2.2 [6]

If $\mathrm{C}_{\mathrm{p}}(\mathrm{p} \geq 3)$ is a cycle on p vertices, then $\gamma_{\text {cild }}\left(\mathrm{C}_{\mathrm{p}}\right)=\left\lceil\frac{2 \boldsymbol{p}}{5}\right\rceil$.

Theorem 2.3[8]

For any integer $\mathrm{n} \geq 1, \gamma_{\text {Dcild }}\left(\mathrm{P}_{5 \mathrm{n}}\right)=1$.

Theorem 2.4[8]

For any integer n,
$\gamma_{\text {Dcild }}\left(\mathrm{P}_{5 n+1}\right)=\frac{(\boldsymbol{n}+\mathbf{3})\left(\boldsymbol{n}^{2}+\mathbf{9 n + 2)}\right)}{\mathbf{6}}$, if $n \geq 1$
$\gamma_{\text {Dcild }}\left(\mathrm{P}_{5 n+2}\right)=\mathrm{n}+2, \quad$ if $\mathrm{n} \geq 1$

Tele:

E-mail address:muthammai .sivakami@gmail.com
$\begin{array}{ll}\gamma_{\text {Dcild }}\left(\mathrm{P}_{5 n+3}\right)=\frac{\left(5 n^{2}+51 n-44\right)}{2}, & \text { if } n \geq 4 \\ \gamma_{\text {Dcild }}\left(\mathrm{P}_{5 n+4}\right)=\frac{\left(n^{2}+7 n+8\right)}{2}, & \text { if } \mathrm{n} \geq 1\end{array}$
Theorem 2.5[7]
For $\mathrm{n} \geq 1$,
$\gamma_{\text {Dcild }}\left(\mathrm{C}_{5 \mathrm{n}}\right)=4, \quad$ if $\mathrm{n} \equiv 0,2,4(\bmod 5)$
$\gamma_{\text {Dcild }}\left(\mathrm{C}_{5 \mathrm{n}}\right)=10 \mathrm{n}-2$, if $\mathrm{n} \equiv 1,3(\bmod 5)$.

Main Results

In the following, co-isolated locating domination number for binomial trees is found.
Definition 3.1
A binomial tree of order $k \geq 0$ with root R is the tree B_{k} defined as follows.
(1) If $k=0$, then $B_{k}=B_{0}=\{R\}$. That is, the binomial tree of order zero consists of a single vertex R.
(2) If $k \geq 0$ then $B_{k}=\left\{R, B_{0}, B_{1}, \ldots, B_{k-1}\right\}$. That is, the binomial tree of order $k \geq 0$ comprises the root and k binomial subtrees $\mathrm{B}_{0}, \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{k}-1}$.
The first five binomial subtrees are given in Figure 3.1.

Figure 3.1

Theorem 3.1

For a binomial tree $\mathrm{B}_{\mathrm{k}}, \gamma_{\mathrm{cild}}\left(\mathrm{B}_{\mathrm{k}}\right)=2^{\mathrm{k}-1}$, where $\mathrm{k} \geq 0$.

Proof

In a binomial tree B_{k}, each support has exactly one leaf (a vertex of degree 1) and there are no intermediate vertices of degree 2. By the definition of co-isolated locating dominating set, $\gamma_{\text {cild }}$ - sets of B_{k} contain either all the leaves or its corresponding support. If S is a $\gamma_{\text {cild }} —$ set of B_{k}, then $N(u) \cap S \neq N(v) \cap S$ for $u, v \in V\left(B_{k}\right)-S$. Hence $\gamma_{\text {cild }}\left(B_{k}\right)$ is the number of leaves of B_{k}. Let n_{k} be the number of leaves of B_{k}. For $k=1$, the number n_{1} of leaves of B_{1} is $1=2^{1-1}=2^{0}$. For $k=2$, the number n_{2} of leaves of B_{2} is $2=2^{1}$. Proceeding like this, the number of leaves in $\boldsymbol{B}_{\boldsymbol{k}}$ is given by $\boldsymbol{n}_{\boldsymbol{k}}=\boldsymbol{2}^{\boldsymbol{k}}$, for all $\boldsymbol{k} \geq 1$. Hence $\gamma_{\text {cild }}\left(B_{k}\right)=2^{k-1}$.

Definition 3.2

A tree in which one vertex (called the root) is distinguished from all the others is called a rooted tree. In a rooted tree, the level (depth) of a vertex v is the length of the unique path from the root to v. Hence the root is at level 0 . The height of a rooted tree is the length of a longest path from the root. If the vertex u immediately precedes the vertex v on the path from the root to v, then u is the parent of v and v is a child of u. Vertices having the same parent are called siblings. A vertex v is said to be descendant of a vertex u (u is then said to be an ancestor of v), if u is on the unique path from the root to v. If, in addition, $v \neq u$, then v is a proper descendant of $\mathrm{u}(\mathrm{u}$ is a proper ancestor of v$)$.

Definition 3.3

A leaf in a rooted tree is any vertex having no children. An internal vertex of a rooted tree is any vertex that is not a leaf.

Definition 3.4

An m - ary tree $(m \geq 2)$ is a rooted tree in which each vertex has less than or equal to m children. When $m=2$, 3 , the corresponding m - ary trees are called as binary tree and ternary tree respectively. In the following, co-isolated locating domination number for binary trees is found.
Theorem 3.2

$$
\gamma_{\text {cild }}\left(B_{t}\right)=\left\{\begin{array}{c}
\frac{2^{2} \times\left(\left(2^{3}\right)^{k}-1\right)}{2^{3}-1} ; t=3 k \\
\frac{\left(\left(2^{3}\right)^{k}-1\right)}{2^{3}-1} ; t=3 k+1 \\
\frac{2^{1} \times\left(\left(2^{3}\right)^{k}-1\right)}{2^{3}-1} ; t=3 k+2
\end{array}\right.
$$

Proof

Let B_{t} denote a binary tree formed at the depth t . Let $\boldsymbol{B}_{\boldsymbol{t}}^{\prime}$ set of vertices in the $\mathrm{t}^{\text {th }}$ stage. Then $\boldsymbol{B}_{\mathbf{1}}^{\prime}=\{$ the root $\}, \boldsymbol{B}_{\mathbf{1}}^{\prime}=\left\{\mathrm{v}_{11}\right\}$, $\mathrm{V}\left(\mathrm{B}_{1}\right)=\boldsymbol{B}_{\mathbf{1}}^{\prime}$ and $\left|\boldsymbol{B}_{\mathbf{1}}^{\prime}\right|=1$. Since each parent has two children, $\boldsymbol{B}_{\mathbf{2}}^{\prime}=\left\{\mathrm{v}_{21}, \mathrm{v}_{22}\right\}$ and $\mathrm{V}\left(\mathrm{B}_{2}\right)=\boldsymbol{B}_{\mathbf{1}}^{\prime} \cup \boldsymbol{B}_{\mathbf{2}}^{\prime}$ and $\left|\boldsymbol{B}_{\mathbf{2}}^{\prime}\right|=2^{1}=2$. Similarly $\boldsymbol{B}_{\mathbf{3}}^{\prime}=\left\{\mathrm{v}_{31}, \mathrm{v}_{32}, \mathrm{v}_{33}, \mathrm{v}_{34}\right\}$ and $\mathrm{V}\left(\mathrm{B}_{3}\right)=\boldsymbol{B}_{\mathbf{1}}^{\prime} \cup \boldsymbol{B}_{\mathbf{2}}^{\prime} \cup \boldsymbol{B}_{\mathbf{3}}^{\prime}$ and $\left|\boldsymbol{B}_{\mathbf{3}}^{\prime}\right|=2^{2}=4$. Proceeding in this way, the Binary tree B_{t} is obtained by $\boldsymbol{B}_{\boldsymbol{t}}^{\prime}=\left\{\boldsymbol{v}_{\boldsymbol{t} \mathbf{1}}, \boldsymbol{v}_{\boldsymbol{t} \mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{t}\left(\mathbf{2}^{\boldsymbol{t}-\mathbf{1}}\right)}\right\} ; \mathrm{V}\left(\mathrm{B}_{3}\right)=\boldsymbol{B}_{\mathbf{1}}^{\prime} \cup \boldsymbol{B}_{\mathbf{2}}^{\prime} \cup \ldots \cup \boldsymbol{B}_{\boldsymbol{t}}^{\prime}$ and $\left|\boldsymbol{B}_{\boldsymbol{t}}^{\prime}\right|=2^{\mathrm{t}-1}$. Let S_{t} be the $\gamma_{\text {cild }}-$ set of B_{t}. From the definition of the co - isolated locating dominating set, it is observed that S_{t} contains 2^{t-2} vertices on the $t^{\text {th }}$ stage (that is, one child form each parent) and 2^{t-2} vertices on the $(t-1)^{\text {th }}$ stage (that is, all the parents) no vertices on the $(t-2)^{\text {th }}$ stage and so on. Let t take the values $3 \mathrm{k}, 3 \mathrm{k}+1,3 \mathrm{k}+2$ and the theorem is proved by the method of induction on k .

Case 1 t = 3k

If $k=1$, then a $\gamma_{\text {cild }}-$ set S_{3} of B_{3} is given by $S_{3}=\left\{\boldsymbol{v}_{\mathbf{3 1}}, \boldsymbol{v}_{\mathbf{3 2}}, \boldsymbol{v}_{\mathbf{2 1}}, \boldsymbol{v}_{\mathbf{2 2}}\right\}$ and hence $\boldsymbol{\gamma}_{\text {cild }}\left(B_{3}\right)=4$.
If $k=2$, a $\gamma_{\text {cild_set }} S_{6}$ of B_{6} is given by
$\mathrm{S}_{6}=\left\{\boldsymbol{v}_{\mathbf{6 1}}, \boldsymbol{v}_{\mathbf{6 3}}, \boldsymbol{v}_{\mathbf{6 5}}, \ldots, \boldsymbol{v}_{\mathbf{6}\left(\mathbf{2}^{\mathbf{5}} \mathbf{- 1}\right)}, \boldsymbol{v}_{\mathbf{5 1}}, \boldsymbol{v}_{\mathbf{5 2}}, \ldots, \boldsymbol{v}_{\mathbf{5}\left(\mathbf{2}^{\mathbf{4}}\right)}\right\} \cup \mathrm{S}_{3}$ and hence $\gamma_{\text {cild }}\left(\mathrm{B}_{6}\right)=2^{4}+2^{4}+2^{2}=2^{2}\left(2^{3}+1\right)$.
Similarly if $k=3$, then a $\gamma_{\text {cild }}-$ set S_{9} of B_{9} is given by
$S_{9}=\left\{\boldsymbol{v}_{\mathbf{9 1}}, \boldsymbol{v}_{\mathbf{9 3}}, \ldots, \boldsymbol{v}_{\mathbf{9}\left(\mathbf{2}^{\mathbf{8}}-\mathbf{1}\right)}, \boldsymbol{v}_{\mathbf{8 1}}, \boldsymbol{v}_{\mathbf{8 2}}, \ldots, \boldsymbol{v}_{\mathbf{8 7}}\right\} \cup \mathrm{S}_{6}$ and hence $\gamma_{\text {cild }}\left(\mathrm{B}_{9}\right)=2^{7}+2^{7}+2^{5}+2^{2}=2^{8}+2^{5}+2^{2}=2^{2}\left(\left(2^{3}\right)^{2}+2^{3}+\right.$ 1).

By induction hypothesis
if $\mathrm{k}=\mathrm{k}-1, \gamma_{\text {cild }}\left(\mathrm{B}_{3(\mathrm{k}-1)}\right)=2^{2}\left(1+2^{3}+\left(2^{3}\right)^{2}+\ldots+\left(2^{3}\right)^{\mathrm{k}-2}\right)$. Therefore, $\gamma_{\text {cild }}\left(\mathrm{B}_{3 \mathrm{k}}\right)=\gamma_{\text {cild }}\left(\mathrm{B}_{3(\mathrm{k}-1)}\right)+2^{3 \mathrm{k}-2}+2^{3 \mathrm{k}-2}=2^{2}\left(1+2^{3}+\left(2^{3}\right)^{2}\right.$ $\left.+\ldots+\left(2^{3}\right)^{\mathrm{k}-2}\right)+2^{3 \mathrm{k}-1}=2^{2}\left(1+2^{3}+\left(2^{3}\right)^{2}+\ldots+\left(2^{3}\right)^{\mathrm{k}-2}+\left(2^{3}\right)^{\mathrm{k}-1}\right)=\frac{\mathbf{2}^{2} \times\left(\left(\mathbf{2}^{3}\right)^{k}-\mathbf{1}\right)}{\mathbf{2}^{\mathbf{3}-\mathbf{1}}}$.

Case 2 t = 3k + 1

If $k=1$, then a $\gamma_{\text {cild }}$-set S_{4} of B_{4} is given by
$\mathrm{S}_{4}=\left\{\boldsymbol{v}_{\mathbf{4 1}}, \boldsymbol{v}_{\mathbf{4 3}}, \boldsymbol{v}_{\mathbf{4 5}}, \boldsymbol{v}_{\mathbf{4 7}}, \boldsymbol{v}_{\mathbf{3 1}}, \boldsymbol{v}_{\mathbf{3 2}}, \boldsymbol{v}_{\mathbf{3 3}}, \boldsymbol{v}_{\mathbf{3 4}}, \boldsymbol{v}_{\mathbf{1 1}}\right\}$ and $\gamma_{\text {cild }}\left(\mathrm{B}_{4}\right)=2^{2}+2^{2}+1=2^{3}+1$.
If $k=2$, then a $\gamma_{\text {cild_set }} S_{7}$ of B_{7} is given by
$\mathrm{S}_{7}=\left\{\boldsymbol{v}_{\mathbf{7 1}}, \boldsymbol{v}_{\mathbf{7 3}}, \ldots, \boldsymbol{v}_{\mathbf{7}\left(\mathbf{2}^{\mathbf{6}} \mathbf{1}\right)}, \boldsymbol{v}_{\mathbf{6 1}}, \boldsymbol{v}_{\mathbf{6 2}}, \ldots, \boldsymbol{v}_{\mathbf{6}\left(\mathbf{2}^{\mathbf{5}}\right)}\right\} \cup \mathrm{S}_{4}$ and $\gamma_{\text {cild }}\left(\mathrm{B}_{7}\right)=2^{5}+2^{5}+2^{3}+1=2^{6}+2^{3}+1=1+2^{3}+\left(2^{3}\right)^{2}$.
By induction hypothesis if $k=k-1, \gamma_{\text {cild }}\left(B_{3(k-1)+1}\right)=1+2^{3}+\left(2^{3}\right)^{2}+\ldots+\left(2^{3}\right)^{k-1}$ and $\gamma_{\text {cild }}\left(B_{3 k+1}\right)=\gamma_{\text {cild }}\left(B_{3(k-1)+1}\right)+\left(2^{3}\right)^{k-1}+$ $\left(2^{3}\right)^{\mathrm{k}-1}=1+2^{3}+\left(2^{3}\right)^{2}+\ldots+\left(2^{3}\right)^{\mathrm{k}-1}+\left(2^{3}\right)^{\mathrm{k}}=\frac{\left(\left(\mathbf{2}^{3}\right)^{\boldsymbol{k}}-\mathbf{1}\right)}{\mathbf{2}^{3}-\mathbf{1}}$.
Case 3 t $=3 k+2$
If $k=1$, then a $\gamma_{\text {cild }}-$ set S_{5} of B_{5} is given by
$\mathrm{S}_{5}=\left\{\boldsymbol{v}_{\mathbf{5 1}}, \boldsymbol{v}_{\mathbf{5 3}}, \ldots, \boldsymbol{v}_{\mathbf{5 (\mathbf { 2 } ^ { \mathbf { 4 } } \mathbf { 1 })}}, \boldsymbol{v}_{\mathbf{4 1}}, \boldsymbol{v}_{\mathbf{4 2}}, \ldots, \boldsymbol{v}_{\mathbf{4 8}}, \boldsymbol{v}_{\mathbf{2 1}}, \boldsymbol{v}_{\mathbf{2 2}}\right\}$ and $\gamma_{\text {cild }}\left(\mathrm{B}_{5}\right)=2^{3}+2^{3}+2^{1}=2\left(1+2^{3}\right)$.
Similarly if $\mathrm{k}=2$, then a $\gamma_{\text {cild }}-$ set S_{8} of B_{8} is given by
$\mathrm{S}_{8}=\left\{\boldsymbol{v}_{\mathbf{8 1}}, \boldsymbol{v}_{\mathbf{8 3}}, \ldots, \boldsymbol{v}_{\mathbf{8 (\mathbf { 2 } ^ { 7 } - 1)}}, \boldsymbol{v}_{\mathbf{7 1}}, \boldsymbol{v}_{\mathbf{7 2}}, \ldots, \boldsymbol{v}_{\mathbf{7 , (\mathbf { 2 } ^ { 6 })}}\right\} \cup \mathrm{S}_{5}$ and $\gamma_{\text {cild }}\left(\mathrm{B}_{8}\right)=2^{6}+2^{6}+2^{4}+2^{2}=2^{7}+2^{4}+2=2\left(1+2^{3}+\right.$ $\left.\left(2^{3}\right)^{2}\right)$.
By induction hypothesis if $k=k-1$, then $\gamma_{\text {cild }}\left(B_{3(k-1)+2}\right)=2\left(1+2^{3}+\left(2^{3}\right)^{2}+\ldots+\left(2^{3}\right)^{k-1}\right)$ Therefore, $\gamma_{\text {cild }}\left(B_{3 k+2}\right)=\gamma_{\text {cild }}\left(B_{3(k-1)+2}\right)$ $+2^{3 \mathrm{k}}+2^{3 \mathrm{k}}=2\left(1+2^{3}+\left(2^{3}\right)^{2}+\ldots+\left(2^{3}\right)^{\mathrm{k}-1}+\left(2^{3}\right)^{\mathrm{k}}\right)=\frac{\mathbf{2}^{\mathbf{1}} \times\left(\left(\mathbf{2}^{3}\right)^{\boldsymbol{k}}-\mathbf{1}\right)}{\mathbf{2}^{\mathbf{3}-1}}$

Remark 3.1

For a ternary tree T_{t}, in which each parent has 3 children with the depth t, a co _ isolated locating dominating set contains two children from each parent in the $\mathrm{t}^{\text {th }}$ stage and all the parents in the $(\mathrm{t}-1)^{\text {th }}$ stage and no vertices on the $(\mathrm{t}-2)^{\text {th }}$ stage and so on.
Therefore $\gamma_{\text {cild }}\left(T_{t}\right)$ is given by $\gamma_{\text {cild }}\left(T_{t}\right)=\left\{\begin{array}{c}\frac{3^{2} \times\left(\left(3^{3}\right)^{\mathbf{k}}-1\right)}{3^{3}-1} ; \mathbf{t}=3 \mathbf{k} \\ \frac{\left(\left(3^{3}\right)^{\mathbf{k}}-1\right)}{3^{3}-1} ; \mathbf{t}=3 \mathbf{k}+\mathbf{1} \\ \frac{3^{1} \times\left(\left(3^{3}\right)^{\mathbf{k}}-1\right)}{3^{3}-1} ; \mathbf{t}=3 \mathbf{k}+2\end{array}\right.$

Definition 3.5

A complete c -ary tree is an c - ary tree in which each internal vertex has exactly c children and all leaves have the same depth.

Remark 3.2

For a complete c - ary binary tree B_{c}, in which each parent has children with the depth t , then $\boldsymbol{\gamma}_{\text {cild }}\left(\mathrm{B}_{\mathrm{c}}\right)$ is given by

$$
\boldsymbol{\gamma}_{\text {cild }}\left(B_{c}\right)=\left\{\begin{array}{l}
\frac{\mathbf{c}^{2} \times\left(\left(\mathbf{c}^{3}\right)^{k}-1\right)}{\mathbf{c}^{3}-1} ; t=3 k \\
\frac{\left(\left(\mathbf{c}^{3}\right)^{k}-1\right)}{\mathbf{c}^{3}-1} ; t=3 k+1 \\
\frac{\mathbf{c}^{1} \times\left(\left(\mathbf{c}^{3}\right)^{\mathbf{k}}-1\right)}{\mathbf{c}^{3}-1} ; t=3 k+2
\end{array}\right.
$$

In the following, bounds on $\gamma_{\text {agcild }}$ are obtained.

Theorem 3.3

For any connected graph G, $\gamma_{\text {cild }}(\mathrm{G}) \leq \gamma_{\text {agcild }}(\mathrm{G}) \leq \gamma_{\text {cild }}(\mathrm{G})+1$.

Proof

Let G be a connected graph with $|V(G)|=$ p. Let $S_{1}, S_{2}, \ldots, S_{r}$, S be $\gamma_{\text {cild }}-$ sets of G with $\left|S_{1}\right|=\left|S_{2}\right|=\ldots=\left|S_{r}\right|=|S|=\gamma_{\text {cild }}(G)$ and $S_{1} \neq S_{2} \neq \ldots \neq S_{r}$. Hence $\gamma_{\text {vcild }}(G)=|S|$, for every $\boldsymbol{v} \in S_{i} ; i=1,2, \ldots$, r. If there exists a vertex u which does not belong to S_{i}, for $\mathrm{i}=1,2, \ldots, \mathrm{r}$, then $\gamma_{\text {cild }}(\mathrm{G})=|\mathrm{S}|+1$, since including the vertex u to any $\gamma_{\text {cild }}-$ set also forms a $\gamma_{\text {cild }}-$ set of G and let the number of these vertices be k. Let A be the set of vertices which does not belong to any of the $\gamma_{\text {cild }}-$ set of G with $|A|=p-k$. By definition,

$$
\begin{aligned}
\gamma_{\text {agcild }}(\mathrm{G}) & =\frac{\mathbf{1}}{|\boldsymbol{V}(\boldsymbol{G})|} \sum_{\boldsymbol{v} \in \boldsymbol{V}(\boldsymbol{G})} \boldsymbol{\gamma}_{\mathbf{v c i l d}}(\mathbf{G}) \\
& =\frac{\mathbf{1}}{\boldsymbol{p}}\left(\sum_{\boldsymbol{v}_{\boldsymbol{i}} \in S_{\boldsymbol{i}}} \boldsymbol{\gamma}_{\mathbf{v c i l d}}(\mathbf{G})+\sum_{\boldsymbol{v}_{\boldsymbol{i}} \notin \boldsymbol{S}_{\boldsymbol{i}}} \boldsymbol{\gamma}_{\mathbf{v c i l d}}(\mathbf{G})\right) \\
& =\frac{\mathbf{1}}{\boldsymbol{p}}(|\mathrm{S}| \times \mathrm{k}+|\mathrm{A}|(|\mathrm{S}|+1)) \\
& =\frac{\mathbf{1}}{\boldsymbol{p}}(|\mathrm{S}| \times \mathrm{k}+(\mathrm{p}-\mathrm{k}) \quad(|\mathrm{S}|+1)) \\
& =\frac{\mathbf{1}}{\boldsymbol{p}} \times \mathrm{p} \times|\mathrm{S}|+\frac{(\boldsymbol{p}-\boldsymbol{k})}{\boldsymbol{p}} \\
& \leq|\mathrm{S}|+1, \text { since } \mathrm{p}-\mathrm{k}<\mathrm{p} .
\end{aligned}
$$

Hence, $\gamma_{\text {agcild }}(\mathrm{G})+1 \leq \gamma_{\text {cild }}(\mathrm{G})$.
In the following, average co-isolated locating domination number for binomial trees, binary trees, ternary trees and complete n - ary trees are obtained.

Observation 3.1

There are 3 possibilities for $\gamma_{\text {agcild }}$ - sets of G.
(1) Each vertex of G belongs to any one of $\gamma_{\text {cild }} _$sets of G and in this case, $\gamma_{\text {cild }}(G)=\gamma_{\text {agcild }}(G)$. This is illustrated in Example 3.1.

Example 3.1

Let $G \cong C_{7}$ and $V\left(C_{7}\right)=\left\{v_{1}, v_{2}, \ldots, v_{7}\right\}$. Let $S_{r}(r=1,2,3)$ be $\gamma_{\text {cild }}$ - sets of C_{7} with $S_{1}=\left\{v_{1}, v_{4}, v_{6}\right\} ; S_{2}=\left\{v_{2}, v_{5}, v_{7}\right\}$ and S_{3} $=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{6}\right\}$. Therefore, $\left|\mathrm{S}_{\mathrm{r}}\right|=3, \mathrm{r}=1,2,3$. Also all the vertices belong to any one of the $\gamma_{\text {cild }}-$ sets of C_{7}. Hence, $\gamma_{\text {cild }}(\mathrm{G})=$ $\gamma_{\text {agcild }}(G)=3$.
(2) If there exists exactly one $\gamma_{\text {cild }}$ _ set S of G, then $\gamma_{\text {agcild }}(G)=|S|+\frac{|\boldsymbol{V}(\boldsymbol{G})|-|\boldsymbol{S}|}{|\boldsymbol{V}(\boldsymbol{G})|}$. This is illustrated in Example 3.2.

Example 3.2

Let $G \cong P_{5}$ and $V\left(P_{5}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$. Then $\mathrm{S}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}\right\}$ is the only $\gamma_{\text {cild }}-$ set of $\mathrm{G} . \gamma_{\text {agcild }}(\mathrm{G})=\frac{\mathbf{2} \times \mathbf{2}+(\mathbf{5 - 2}) \times(\mathbf{2}+\mathbf{1})}{\mathbf{5}}=2+$ $\frac{\mathbf{3}}{\mathbf{5}}=|S|+\frac{|V(G)|-|S|}{|V(G)|}$.
(3) If there exists more than one $\gamma_{\text {cild }}$ _ sets of G and if there exists atleast one vertex that does not belong to any of the $\gamma_{\text {cild }}$ _ sets of G, then $\gamma_{\text {agcild }}(\mathrm{G})=|\mathrm{S}|+\frac{\boldsymbol{p}-\boldsymbol{k}}{\boldsymbol{p}}$ where $|\mathrm{V}(\mathrm{G})|=\mathrm{p}$; S is a $\gamma_{\text {cild }}$ - set of G and k is the number of vertices belonging to any one of the $\gamma_{\text {cild }} _$sets. This is illustrated in Example 3.3.

Example 3.3

Let $G \cong P_{9}$ and $V\left(P_{9}\right)=\left\{v_{1}, v_{2}, \ldots, v_{9}\right\}$. Let $S_{r} ; r=1,2,3$; be a $\gamma_{\text {cild }} —$ set of P_{9} with $S_{1}=\left\{v_{1}, v_{3}, v_{6}, v_{8}\right\} ; S_{2}=\left\{v_{2}, v_{4}, v_{7}, v_{9}\right\}$ and $S_{3}=\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}\right\}$. Therefore, $\left|\mathrm{S}_{\mathrm{r}}\right|=3, \mathrm{r}=1,2,3$ and v_{5} does not belong to any $\gamma_{\text {cild }}-$ sets of P_{9}. Hence, $\gamma_{\text {agcild }}\left(\mathrm{P}_{9}\right)=$ $\frac{8 \times 4+1 \times 9}{9}=4+\frac{1}{9}$.

Observation 3.2

Let S be a $\gamma_{\text {cild }}$ - set of a connected graph G. If A denotes the set of vertices which does not belong to any of the $\gamma_{\text {cild }}-$ sets of G, then $\gamma_{\text {agcild }}(G)=|S|+\frac{|A|}{|V(G)|}$.

Remark 3.3

Let S be a $\gamma_{\text {cild }}$ - set of the binomial tree B_{k}. Then if S_{1} is a set obtained from S by removing the supports from S and including the corresponding leaves, then S_{1} will also be a $\gamma_{\text {cild }}$ - set of B_{k}. Similarly all the roots can be included in any one of the $\gamma_{\text {cild }}-$ sets of B_{k}.
Therefore $\gamma_{\text {agcild }}\left(B_{k}\right)=\gamma_{\text {cild }}\left(B_{k}\right)$.
Theorem 3.4
Let $\boldsymbol{A}_{\boldsymbol{t}}$ denote the set of vertices which does not belong to any of the $\gamma_{\text {cild }}-$ sets of binary tree $\boldsymbol{B}_{\boldsymbol{t}}$, then

$$
\left|A_{t}\right|=\left\{\begin{array}{c}
\frac{\left(2^{3}\right)^{k}-1}{2^{3}-1} ; t=3 k \\
\frac{2 \times\left(2^{3}\right)^{k}-1}{2^{3}-1} ; t=3 k+1 \\
\frac{2^{2} \times\left(2^{3}\right)^{k}-1}{2^{3}-1} ; t=3 k+2
\end{array}\right.
$$

Proof

Let $\boldsymbol{B}_{\boldsymbol{t}}$ denote a binary tree formed at the depth t and $\boldsymbol{B}_{\boldsymbol{t}}^{\prime}$ denote the number of vertices at the $\mathrm{t}^{\text {th }}$ stage. Let $\boldsymbol{S}_{\boldsymbol{t}}$ be the $\gamma_{\text {cild }}-$ set of $\boldsymbol{B}_{\boldsymbol{t}}$. Let $\boldsymbol{A}_{\boldsymbol{t}}$ denote the number of vertices which does not belong to any of the $\gamma_{\text {cild }}-$ sets of $\boldsymbol{B}_{\boldsymbol{t}}$. Let the children in B_{t} be denoted by $\mathrm{v}_{\mathrm{ij},}$.

There exist exactly two $\gamma_{\text {cild }}-$ sets of $\boldsymbol{B}_{\boldsymbol{t}}$, one having the child with the second suffix j even and the other having the second suffix j odd. From the definition of the co - isolated locating dominating set and from the structure of the binary tree $\boldsymbol{B}_{\boldsymbol{t}}$, it is observed that the set $\boldsymbol{S}_{\boldsymbol{t}}$ contains $\mathrm{Z}^{\mathrm{t}-2}$ vertices on the th ${ }^{\text {th }}$ stage (That is, one $\gamma_{\text {cild }}$ - set contains one child from each parent having even second suffix and the other $\gamma_{\text {cild }}-$ set contains child having odd second suffix) and $2^{\mathrm{t}-2}$ vertices on ($\left.\mathrm{t}-1\right)^{\text {th }}$ stage (That is, all the parents) and no vertices in the $(t-2)^{\text {th }}$ stage and so on.

Let the values of t be $3 \mathrm{k}, 3 \mathrm{k}+1,3 \mathrm{k}+2$. This theorem is proved by the method of induction on k .
Case $1 \quad t=3 k$
If $\mathrm{k}=1$, then the set $\boldsymbol{A}_{\mathbf{3}}$ of B_{3} is given by $\boldsymbol{A}_{\mathbf{3}}=\boldsymbol{B}_{\mathbf{1}}^{\prime} ;\left|\boldsymbol{A}_{\mathbf{3}}\right|=2^{0}=1$.
If $\mathrm{k}=2$, then the set $\boldsymbol{A}_{\mathbf{6}}$ of $\boldsymbol{B}_{\mathbf{6}}$ is given by $\boldsymbol{A}_{\mathbf{6}}=\boldsymbol{B}_{\mathbf{4}}^{\prime} \cup \boldsymbol{A}_{\mathbf{3}} ;\left|\boldsymbol{A}_{\mathbf{6}}\right|=2^{3}+1$.
Similarly if $\mathrm{k}=3$, then the set $\boldsymbol{A}_{\mathbf{9}}$ of B_{9} is given by $\mathrm{A}_{9}=\boldsymbol{A}_{\mathbf{3}(\mathbf{3})}=\boldsymbol{B}_{\mathbf{7}}^{\prime} \cup \boldsymbol{A}_{\mathbf{6}}$ and $\left|\boldsymbol{A}_{\mathbf{9}}\right|=2^{6}+2^{3}+1=1+2^{3}+\left(\mathbf{2}^{\mathbf{3}}\right)^{\mathbf{2}}$.
By induction hypothesis if $\mathrm{k}=\mathrm{k}-1$, then $\left|\boldsymbol{A}_{\mathbf{3}(\boldsymbol{k}-\mathbf{1})}\right|=1+2^{3}+\left(\mathbf{2}^{\mathbf{3}}\right)^{\mathbf{2}+\ldots+}\left(\mathbf{2}^{\mathbf{3}}\right)^{\boldsymbol{k}-\mathbf{2}}$.
Now for k, $\boldsymbol{A}_{\mathbf{3 k}}=\boldsymbol{B}_{\mathbf{3}(\boldsymbol{k}-\mathbf{1})+\mathbf{1}}^{\prime} \cup \boldsymbol{A}_{\mathbf{3}(\boldsymbol{k}-\mathbf{1})}$
$\left|\boldsymbol{A}_{\mathbf{3} \boldsymbol{k}}\right|=1+2^{3}+\left(\mathbf{2}^{3}\right)^{2+\ldots+}\left(\mathbf{2}^{3}\right)^{k-2}+\left(\mathbf{2}^{3}\right)^{\boldsymbol{k}-\mathbf{1}}=\frac{\left(\mathbf{2}^{3}\right)^{k}-\mathbf{1}}{\mathbf{2}^{3}-\mathbf{1}}$
Case $2 \mathrm{t}=\mathbf{3 k}+1$
If $\mathrm{k}=1$, then the set $\boldsymbol{A}_{\mathbf{4}}$ of B_{4} is given by $\boldsymbol{A}_{\mathbf{4}}=\boldsymbol{B}_{\mathbf{2}}{ }^{\prime}$;
$\left|\boldsymbol{A}_{\mathbf{4}}\right|=2^{1}=2$.
If $\mathrm{k}=2$, then the set $\boldsymbol{A}_{\mathbf{7}}$ of B_{7} is given by $\boldsymbol{A}_{\mathbf{7}}=\boldsymbol{B}_{\mathbf{5}}^{\prime} \cup \boldsymbol{A}_{\mathbf{4}}$;
$\left|\boldsymbol{A}_{7}\right|=2^{4}+2=2\left(1+2^{3}\right)$.
Similarly if $\mathrm{k}=3$, then the set $\boldsymbol{A}_{\mathbf{1 0}}$ of B_{10} is given by
$\mathrm{A}_{10}=\boldsymbol{A}_{\mathbf{3 (\mathbf { 3 }) + \mathbf { 1 }}}=\boldsymbol{B}_{\mathbf{8}}^{\prime} \cup \boldsymbol{A}_{\mathbf{7}}$ and $\left|\boldsymbol{A}_{\mathbf{1 0}}\right|=2^{7}+2^{4}+1=2\left(1+2^{3}+\left(\mathbf{2}^{\mathbf{3}}\right)^{\mathbf{2}}\right)$.
By induction hypothesis if $\mathrm{k}=\mathrm{k}-1$, then
$\left|\boldsymbol{A}_{\mathbf{3}(\boldsymbol{k}-\mathbf{1})+\mathbf{1}}\right|=2\left(1+2^{3}+\left(\mathbf{2}^{\mathbf{3}}\right)^{\mathbf{2}+\ldots+}\left(\mathbf{2}^{\mathbf{3}}\right)^{\boldsymbol{k}-\mathbf{2})}\right.$.
Now for k, $\left|\boldsymbol{A}_{\mathbf{3} \boldsymbol{k}+\mathbf{1}}\right|=2\left(1+2^{3}+\left(\mathbf{2}^{\mathbf{3}}\right)^{2+\ldots+}\left(\mathbf{2}^{\mathbf{3}}\right)^{\boldsymbol{k}-\mathbf{2}+}\left(\mathbf{2}^{\mathbf{3}}\right)^{\boldsymbol{k}-\mathbf{1})}=2 \times \frac{\left(\mathbf{2}^{\mathbf{3}}\right)^{\boldsymbol{k}}-\mathbf{1}}{\mathbf{2}^{3}-\mathbf{1}}\right.$
Case $3 \mathbf{t}=\mathbf{3 k}+\mathbf{2}$
If $\mathrm{k}=1$, then the set $\boldsymbol{A}_{\mathbf{5}}$ of B_{5} is given by $\boldsymbol{A}_{\mathbf{5}}=\boldsymbol{B}_{\mathbf{3}}^{\prime}$;
$\left|\boldsymbol{A}_{5}\right|=2^{2}=4$.
If $\mathrm{k}=2$, then the set $\boldsymbol{A}_{\mathbf{8}}$ of B_{8} is given by $\boldsymbol{A}_{\mathbf{8}}=\boldsymbol{B}_{6}^{\prime} \cup \boldsymbol{A}_{\mathbf{5}}$;
$\left|\boldsymbol{A}_{\mathbf{8}}\right|=2^{5}+2^{2}=2^{2}\left(1+2^{3}\right)$.
Similarly if $\mathrm{k}=3$, then the set $\boldsymbol{A}_{\mathbf{1 1}}$ of B_{11} is given by
$\mathrm{A}_{11}=\boldsymbol{A}_{\mathbf{3 (3) + 2}}=\boldsymbol{B}_{\mathbf{9}}^{\prime} \cup \boldsymbol{A}_{\mathbf{8}}$ and
$\left|\boldsymbol{A}_{\mathbf{1 1}}\right|=2^{8}+2^{5}+2^{2}=2^{2}\left(1+2^{3}+\left(\mathbf{2}^{3}\right)^{2}\right)$.
By induction hypothesis if $\mathrm{k}=\mathrm{k}-1$, then for
$\left|\boldsymbol{A}_{\mathbf{3}(\boldsymbol{k}-1)+2}\right|=2^{2}\left(1+2^{3}+\left(\mathbf{2}^{3}\right)^{2}+\ldots+\left(\mathbf{2}^{3}\right)^{\boldsymbol{k}-2}\right)$.

Remark 3.4

The average co - isolated locating domination number for the binary tree $\boldsymbol{B}_{\boldsymbol{t}}$ is given by
$\gamma_{\text {agcild }}\left(\boldsymbol{B}_{\boldsymbol{t}}\right)=\gamma_{\text {cild }}\left(\boldsymbol{B}_{\boldsymbol{t}}\right)+\frac{\boldsymbol{A}_{\boldsymbol{t}}}{\left|\boldsymbol{V}\left(\boldsymbol{B}_{\boldsymbol{t}}\right)\right|}$ where $\gamma_{\text {cild }}\left(\boldsymbol{B}_{\boldsymbol{t}}\right)$ and $\left|\boldsymbol{A}_{\boldsymbol{t}}\right|$ are given in Theorem 3.2 and Theorem 3.4.

Remark 3.5

For a ternary tree $\boldsymbol{T}_{\boldsymbol{t}}$, if $\boldsymbol{A}_{\boldsymbol{t r}}$ denote the set of vertices which does not belong to any of the $\gamma_{\text {cild }}-$ sets of the ternary tree $\boldsymbol{T}_{\boldsymbol{t}}$, then
$A_{t r}=\left\{\begin{array}{c}\frac{\left(3^{3}\right)^{k}-1}{3^{3}-1} ; t=3 k \\ \frac{3 \times\left(3^{3}\right)^{k}-1}{3^{3}-1} ; t=3 k+1 \\ \frac{3^{2} \times\left(3^{3}\right)^{k}-1}{3^{3}-1} ; t=3 k+2\end{array}\right.$

Remark 3.6

For a complete $\mathrm{c}-$ ary tree $\boldsymbol{B}_{\boldsymbol{c}}$, if $\boldsymbol{A}_{\boldsymbol{c}}$ denote the set of vertices which does not belong to any of the $\boldsymbol{\gamma}_{\text {cild }}-$ sets of the tree $\boldsymbol{B}_{\boldsymbol{c}}$ the set $\boldsymbol{A}_{\boldsymbol{c}}$ is given by

$$
A_{c}=\left\{\begin{array}{c}
\frac{\left(c^{3}\right)^{k}-1}{c^{3}-1} ; t=3 k \\
\frac{c \times\left(c^{3}\right)^{k}-1}{c^{3}-1} ; t=3 k+1 \\
\frac{c^{2} \times\left(c^{3}\right)^{k}-1}{c^{3}-1} ; t=3 k+2
\end{array}\right.
$$

Conclusion

In this paper, the average co - isolated locating domination number is defined and $\gamma_{\text {cilid }}(G)$ and $\gamma_{\text {ageild }}(G)$ are obtained for binomial trees, binary trees, ternary trees and complete c - ary trees. Also the bounds for $\gamma_{\text {agcild }}(\mathrm{G})$ are found. $\gamma_{\text {agcild }}(\mathrm{G})$ can be related with other parameters of G.

References

[1] M. Blidia, M. Chellai, F. Maffray, J. Moncel, "On Average Lower Independence And Domination Numbers In Graphs", Discrete Mathematics., Vol. 295 (2005)., pp. 1-11.
[2] Ersin Aslan., "The Average Lower Connectivity Of Graphs", Research Article., Hindawi Publishing Corporation., Journal Of Applied Mathematics., Vol. 2014., pp. 1 - 4.
[3] Ermelinda DeLaVina., Ryan Pepper., Bill Waller., "A Note on Dominating Sets And Average Distance", Discrete Mathematics., Vol. 309., pp. 2615 - 2619.
[4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, "Fundamental Of Domination In Graphs", (Marcel Dekker, New York, 1997).
[5] M.A. Henning, "Trees With Equal Average Domination And Independent Domination Numbers", Ars Combin., Vol. 71 (2004)., pp. 305-318.
[6] S. Muthammai, N. Meenal, "Co - isolated Locating Domination Number for Cartesian Product Of Two Graphs", International Journal of Engineering Science, Advanced Computing and Bio - Technology, VOL 6, No.1, January - March 2015, pp. 17 - 27.
[7] S. Muthammai, N. Meenal, "The Number Of Minimum Co - isolated Locating Dominating Sets Of Cycles", International Research Journal of Pure Algebra (RJPA) - 5[4], April 2015, pp. 45 - 49, ISSN: 2248 - 9037.
[8] S. Muthammai, N. Meenal, "The Number Of Minimum Co - isolated Locating Dominating Sets Of Paths", International Journal of Mathematical Archive (IJMA) - 6[5], May 2015, pp. 63 - 74, ISSN: 2229 - 5046.
[9] O. Ore, "Theory of Graphs", Amer. Math. Soc. Coel. Publ. 38, Providence, RI, 1962.
[10] D. F. Rall, P. J. Slater, "On location domination number for certain classes of graphs", Congrences Numerantium, 45 (1984), pp. $77-106$.

