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Introduction 

The study of MHD flow through porous medium with 

heat and mass transfer plays important roles in different areas 

of science and technology, like chemical engineering, 

biological science, mechanical engineering, petroleum 

engineering, biomechanics, irrigation engineering and 

aerospace technology. Such problems frequently occur in 

petro-chemical industry, chemical vapour deposition on 

surfaces, heat exchanger design, cooling of nuclear reactors, 

forest fire dynamics and geophysics. The influence of 

magnetic field on viscous, incompressible and electrically 

conducting fluid is of great importance in many applications 

such as magnetic material processing, glass manufacturing 

control processes and purification of crude oil. The response 

of laminar skin friction and heat transfer to fluctuations in the 

stream velocity was studied by Lighthill[1]. Free convection 

effects on the oscillating flow past an infinite vertical porous 

plate with constant Suction - I, was studied by 

Soundalgekar[3] which was further improved by Vajravelu et 

al[4]. The study of MHD flow past an impulsively started 

vertical plate with variable temperature and mass diffusion 

were studied by Rajput and Kumar[12]. MHD flow between 

two parallel plates with heat transfer was investigated by Attia 

et al[8]. Heat transfer in flow through a porous medium 

bounded by an infinite vertical plate under the action of 

magnetic field was studied by Raptis et al[6]. Raptis and 

Kafousias[7] have further studied flow of a viscous fluid 

through a porous medium bounded by a vertical surface. The 

researchers have studied the effect of Hall current in various 

flow models. Sulochana[14] has investigated Hall effects on 

unsteady MHD three dimensional flow through a porous 

medium in a rotating parallel plates channel with effect of 

inclined magnetic field. Attia[9] has considered the effect of 

variable properties on the unsteady Hartmann flow with heat 

transfer considering the Hall effect. Attia and Ahmed[10] have 

studied the Hall effect on unsteady MHD couette flow and 

heat transfer of a Bingham fluid with suction and injection. 

Deka[11] has considered Hall effects on MHD flow past an 

accelerated plate. Combined effects of radiation and Hall 

current on MHD flow past an exponentially accelerated 

vertical plate in the presence of rotation were studied by 

Thamizhsudar and Pandurangan[15].  Maripala and 

Naikoti[16] have analyzed Hall effects on unsteady MHD free 

convection flow over a stretching sheet with variable viscosity 

and viscous dissipation. Hall effects on free and forced 

convective flow in a rotating channel were studied by Rao et 

al[5]. Longitudinal vortices in natural convection flow on 

inclined plates were studied by Sparrow and Husar[2]. Heat 

and mass transfer in MHD boundary layer flow past an 

inclined plate with viscous dissipation in porous medium was 

analyzed by Singh[15]. We are considering the unsteady MHD 

flow through porous medium past an impulsively started 

inclined plate with variable temperature and mass diffusion in 

the presence of Hall current. The results are shown with the 

help of graphs. 

Mathematical Analysis 

In this paper we have consider MHD flow between two 

parallel electrically non conducting plates inclined at an angle 
  from vertical.  x axis is taken along the plate and  y normal 

to it.  A transverse magnetic field B0 of uniform strength is 

applied on the flow. The viscous dissipation and induced 

magnetic field has been neglected due to its small effect.  

Initially it has been considered that the plate as well as the 

fluid is at the same temperature  
T  and the concentration 

level 
C  everywhere in the fluid is same in stationary 
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ABSTRACT 

Unsteady MHD flow through porous medium past an impulsively started inclined plate 

with variable temperature and mass diffusion in the presence of Hall current is studied 

here. The fluid considered is gray, absorbing-emitting radiation but a non-scattering 

medium.  The Governing equations involved in the present analysis are solved by the 

Laplace-transform technique. The velocity profile is discussed with the help of graphs 

drawn for different parameters like thermal Grashof number, mass Grashof Number, 

Prandtl number, Hall current parameter, permeability parameter, magnetic field 

parameter and Schmidt number, and the numerical values of skin-friction have been 

tabulated. 
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condition. At time t > 0, the plate starts moving with velocity 

u0 in its own plane and temperature of the plate is raised to  

wT   and the concentration level near the plate is raised 

linearly with respect to time.  Due to the Hall effects there will 

be two components of the momentum equation, the flow 

modal is as under: 
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with the corresponding initial and boundary conditions: 
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  , , ,0 ,0   CCTTvu   as z . 

 

Where u is the Primary velocity, v - the secondary 

velocity, g- the acceleration due to gravity,  - volumetric 

coefficient of thermal expansion, t- time, m  is the Hall 

parameter, T- temperature of the fluid, K- the permeability 

parameter,  * - volumetric coefficient of concentration 

expansion, C- species concentration in the fluid,  - the 

kinematic viscosity,  - the density, pC - the specific heat at 

constant pressure, k- thermal conductivity of the fluid, D- the 

mass diffusion coefficient,  
wT - temperature of the plate at  z= 

0, 
wC - species  concentration at the plate z= 0, 

0B - the 

uniform magnetic field,  - electrically conductivity. Here 

eem   with 
e

- cyclotron frequency of electrons and 
e
- 

electron collision time. 

The following non-dimensional quantities are introduced 

to transform equations (1), (2), (3) and (4) into dimensionless 

form: 
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where u is the dimensionless Primary velocity, v - the 

secondary velocity, t - dimensionless time,  - the 

dimensionless temperature, K - the dimensionless  

permeability parameter, C - the  dimensionless concentration, 

rG - thermal Grashof number, 
mG - mass Grashof number, 

 - the coefficient of viscosity, 
rP - the Prandtl number, 

cS - 

the Schmidt number,  M- the magnetic parameter. 

 

Thus the model becomes 
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with the following boundary conditions:  

 

  ,0,0 ,0 ,0:0  Cvut      for all z , 

 , , ,0 ,1:0 tCtvut    at z =0,              (11)                  

,0 ,0 ,0 ,0  Cvu     as z . 

 

Dropping bars in the above equations, we get 
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with the following boundary conditions: 

 

 ,0,0,0,0 :0  Cvut    for all z, 

 tCtvut   , ,0 ,1:0  ,    at z=0,                    (16) 

 0 ,0 ,0 ,0  Cvu  ,   as .z  

 

Writing the equations (12) and (13) in Combined form: 
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where q =  u + i v, 

with the following boundary conditions: 

 

 ,0 ,0 ,0:0  Cqt    for all  z, 

 , , ,1:0 tCtqt      at z=0,                                (20) 

 ,0 ,0 ,0  Cq      as .z  
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The dimensionless governing equations (17) to (19), 

subject to the boundary conditions (20), are solved by the 

usual Laplace - transform technique. 

 

The solution obtained is as under: 
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The expressions for the constants involved in the above 

equations are given in the appendix. 

Skin friction  

The dimensionless skin friction at the plate z=0: 

           
yix

zdz

dq
 










  

0

 ,  

Separating real and imaginary part in

0









zdz

dq , the 

dimensionless skin – friction component   

0

 








zdz

du
x

and 

0

 








zdz

dv
y

can be computed. 

 

Result and Discussion  

The velocity profile for different parameters like, thermal 

Grashof number Gr, magnetic field parameter M, Hall 

parameter m, Prandtl number Pr and time t is shown in figures 

1.1 to 2.9. It is observed from figures 1.1 and 2.1 that the 

primary and secondary velocities of fluid decrease when the 

angle of inclination ( ) is increased.  It is observed from 

figure 1.2 and 2.2, when the mass Grashof number is increased 

then the primary and secondary velocities of fluid are 

increased. From figures 1.3 and 2.3 it is deduced that when 

thermal Grashof number Gr is increased then the primary and 

secondary velocities of fluid are increased. If Hall current 

parameter m is increased then the velocities are increased 

(figures 1.4 and 2.4). It is observed from figures 1.5 and 2.5 

that the effect of increasing values of the parameter M results 

in decreasing u and increasing v. Further, it is observed that 

velocities decrease when Prandtl number is increased (figures 

1.6 and 2.6). When the Schmidt number is increased then the 

velocities get decreased (figures 1.7 and 2.7). When the 

permeability parameter increases then the velocities increase 

(figures 1.8 and 2.8). Further, from figures 1.9 and 2.9 it is 

observed that velocities increase with time.  

Skin friction is given in table .The value of x  increases 

with the increase in thermal Grashof number, mass Grashof 

Number, the permeability parameter, Hall currents parameter 

and time, and it decreases with the angle of inclination of 

plate, the magnetic field, Prandtl number and Schmidt number. 

The value of  
y  increases with the increase in thermal 

Grashof number, mass Grashof Number, the permeability 

parameter, Hall current parameter and time, and it decreases 

with the angle of inclination of plate, the magnetic field, 

Prandtl number and Schmidt number. 
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Figure 1.1. Velocity u for different values of   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Velocity u for different values of Gm 

 

Table. Skin friction for different parameters 

 

  M m Pr Sc Gm Gr K t 
x  y  

15  2 0.5 0.71 2.01 100 10 0.2 0.2 0.106602 0.1696 

30  2 0.5 0.71 2.01 100 10 0.2 0.2 -0.17756 0.166477 

45  2 0.5 0.71 2.01 100 10 0.2 0.2 -0.6296 0.161509 

60  2 0.5 0.71 2.01 100 10 0.2 0.2 -1.21871 0.155035 

30  1 0.5 0.71 2.01 100 10 0.2 0.2 -0.00560 0.0864674 

30  3 0.5 0.71 2.01 100 10 0.2 0.2 -0.34444 0.240704 

30  5 0.5 0.71 2.01 100 10 0.2 0.2 -0.66377 0.374156 

30  2 0.5 0.71 2.01 100 10 0.2 0.2 -0.17756 0.166477 

30  2 0.5 5.00 2.01 100 10 0.2 0.2 -0.28861 0.16400 

30  2 0.5 7.00 2.01 100 10 0.2 0.2 -0.30619 0.163728 

30  2 1.0 0.71 2.01 100 10 0.2 0.2 -0.05289 0.21397 

30  2 2.0 0.71 2.01 100 10 0.2 0.2 0.079090 0.176259 

30  2 3.0 0.71 2.01 100 10 0.2 0.2 0.12487 0.133534 

30  2 0.5 0.71 2.01 100 10 0.2 0.2 -0.17756 0.166477 

30  2 0.5 0.71 3.00 100 10 0.2 0.2 -0.40746 0.161746 

30  2 0.5 0.71 4.00 100 10 0.2 0.2 -568469 0.158766 

30  2 0.5 0.71 2.01 10 10 0.2 0.2 -2.14411 0.145554 

30  2 0.5 0.71 2.01 50 10 0.2 0.2 1.27009 0.154853 

30  2 0.5 0.71 2.01 100 10 0.2 0.2 -0.17756 0.166477 

30  2 0.5 0.71 2.01 100 20 0.2 0.2 0.100766 0.170301 

30  2 0.5 0.71 2.01 100 50 0.2 0.2 0.935747 0.181773 

30  2 0.5 0.71 2.01 100 100 0.2 0.2 2.32738 0.200893 

30  2 0.5 0.71 2.01 100 10 0.2 0.2 -0.17756 0.166477 

30  2 0.5 0.71 2.01 100 10 0.5 0.2 0.493818 0.193325 

30  2 0.5 0.71 2.01 100 10 1.0 0.2 0.741891 0.204282 

30  2 0.5 0.71 2.01 100 10 0.2 0.2 -0.17756 0.166477 

30  2 0.5 0.71 2.01 100 10 0.2 0.4 3.8391 0.268724 

30  2 0.5 0.71 2.01 100 10 0.2 0.6 8.41871 0.409066 
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Figure 1.3. Velocity u for different values of Gr 

 

 

Figure 1.4. Velocity u for different values of m 

 

 

Figure 1.5. Velocity u for different values of M 

 

 

Figure 1.6. Velocity u for different values of Pr 

 

 

Figure 1.7. Velocity u for different values of Sc 

 

 

Figure 1.8. Velocity u for different values of K 

 

 

Figure 1.9. Velocity u for different values of t 

 

 

Figure 2.1. Velocity v for different values of   
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Figure 2.2. Velocity v for different values of Gm 

 

 

Figure 2.3. Velocity v for different values of Gr 

 

 

Figure 2.4. Velocity v for different values of m 

 

 

Figure 2.5. Velocity v for different values of M 

 

 

Figure 2.6. Velocity v for different values of Pr 

 

 

Figure 2.7. Velocity v for different values of Sc 

 

 

Figure 2.8. Velocity v for different values of K 

 

 

Figure 2.9. Velocity v for different values of t
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Conclusion 

The conclusions of the study are as follows: 

 Primary Velocity increases with the increase in thermal 

Grashof number, mass Grashof Number, permeability, Hall 

current parameter, and time. 

 Primary Velocity decreases with the angle of inclination of 

plate, the magnetic field, Prandtl number and Schmidt number.         

 Secondary Velocity increases with the increase in thermal 

Grashof number, mass Grashof Number, the magnetic field, 

permeability, and time. 

 Secondary Velocity decreases with the angle of inclination 

of plate, Hall currents parameter,  Prandtl number and Schmidt 

number. 

 x  increases with the increase in Gr, Gm, K, m and t, and it 

decreases with angle of inclination of  plate, M, Pr and Sc.    

 y  increases with the increase in Gr, Gm, M, K and t, and it 

decreases with  angle of inclination of  plate, m, Pr  and Sc.  
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