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Introduction 

Dynamical systems are mathematical objects used to 

model physical phenomena whose state changes over time that 

its can be viewed in two different ways: the internal and the 

external view. The prototype (mechanical) problem is 

describing the motion of the planets. It is natural to give a 

complete characterization of the motion of all planets that this 

involves careful analysis of the effects of gravitational pull 

and the relative positions of the planets in a system for 

mechanical problems. 

Classical mechanics, under the influence of specified 

force laws, is the investigation of the motion of dynamical 

systems of particles in Euclidean three-dimensional space. 

Also, the motion's evolution determined by Newton's second 

law that is a differential equation. So, mechanical problems 

are to determine the positions of all the particles at all times 

for given certain laws determining physical forces, some 

boundary conditions on the positions of the particles at some 

particular times. Classical mechanics of a system of point 

particles and rigid object is usually divided into statics, 

kinematics and dynamics. 

Classical field theory utilizes traditionally the language of 

Hamiltonian dynamics. Hamiltonian mechanics is a theory 

developed as a reformulation of classical mechanics. Also, this 

theory has extended to time-dependent classical mechanics. 

Contact geometry has been seen to underlay many physical 

phenomena and be related to many other mathematical 

structures. Contact geometry is in many ways an odd-

dimensional counterpart of symplectic geometry such that it 

belongs to the even-dimensional world. Both contact and 

symplectic geometry are motivated by the mathematical 

formalism of classical and analytical mechanics. Besides, one 

can consider either the even-dimensional phase space of a 

mechanical system or the odd-dimensional extended phase 

space that includes the time variable. 

 

A mathematical model is a precise representation of a 

system's dynamics used to answer questions via analysis and 

simulation. The mathematical models choose depends on lots 

of questions, so there may be multiple models for physical 

systems in the space. 

In this study, the movements for moving objects modeling 

Hamilton equations to be found on the space defined on 

contact 5-manifolds. Also, the graphics of the path taken by 

the object that will be drawn when the angle changes. 

Bellettini obtained almost complex structures J that satisfy, for 

any vector v in the horizontal distribution, dα(v,Jv)=0 such 

that a contact manifold is (M⁵,α) [1]. Janssens and Vanhecke 

determined an orthogonal decomposition of the vector space 

of some curvature tensors on a co-Hermitian real vector space 

[2]. Chaubey studied some geometrical properties of almost 

contact metric manifolds equipped with semi-symmetric non-

metric connection [3]. Kodama classified the local structure of 

complex contact manifolds of dimension three with 

Legendrian vector fields [4]. Piercey defined contact 

manifolds and identify simple examples and basic properties 

[5]. Doubrov and Komrakov submitted the complete 

classification of all real Lie algebras of contact vector fields 

on the first jet space of one-dimensional submanifolds in the 

plane [6]. Attarchi and Rezaii submitted that a comprehensive 

study of contact and Sasakian structures on the indicatrix 

bundle of Finslerian warped product manifolds is 

reconstructed [7]. Kashiwara showed that the existence of the 

stack of micro-differential modules on an arbitrary contact 

manifold, although he cannot expect the global existence of 

the ring of micro-differential operators [8]. Manev and 

Gribachev examined the main classes of almost contact 

manifolds with B-metric [9]. Iglesias-Ponte and Wade gave 

simple characterizations of contact 1-forms in terms of 
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Dirac structures [10]. Manev and Ivanova examined that the 

canonical-type connection on the almost contact manifolds 

with B-metric is constructed [11]. Etnyre showed any almost 

contact structure on a 5-manifold is homotopic to a contact 

structure [12]. Sekiya introduced generalized almost contact 

structures which admit the B-field transformations on odd 

dimensional manifolds [13]. Dwivedi et al proved that a (k,μ)-

manifold with vanishing Endo curvature tensor is a Sasakian 

manifold [14]. Malek and Balgeshir introduced the notion of 

slant submanifold of an almost contact metric 3-structure 

manifold [15]. Davidov observed that the CR-structures on the 

twistor space are induced by almost contact metric structures 

[16]. Kasap and Tekkoyun examined Lagrangian and 

Hamiltonian formalism for mechanical systems using 

para/pseudo-Kähler manifolds, representing an interesting 

multidisciplinary field of research [17]. Kasap obtained that 

the Weyl-Euler-Lagrange and Weyl-Hamilton equations on 

ℝ²ⁿn such that is a model of tangent manifolds of constant W-

sectional curvature [18]. Tekkoyun showed paracomplex 

analogue of Euler-Lagrange and Hamiltonian equations [19]. 

Preliminaries 

Definition 1 

A real dynamical system, real-time dynamical system, 

continuous time dynamical system, or flow is a triple (T,M,Φ) 

where T=(a,b) is a monoid, written additively, M a manifold 

locally diffeomorphic to a Banach space and Φ(t,x) is a 

function Φ(t,x):U⊂T×M→M with 

I(x)={t∈T: (t,x)∈U}, 

Φ(0,x)=x, Φ(t₂,Φ(t₁,x))=Φ(t₁+t₂,x),                        (1) 

for t₁,t₂,t₁+t₂∈I(x). The function Φ(t,x) is called the evolution 

function of the dynamical system: it associates to every point 

in the set M a unique image, depending on the variable t, 

called the evolution parameter. M is called phase space or 

state space, while the variable x is called initial state of the 

system. If the manifold M is locally diffeomorphic to ℝⁿ, the 

dynamical system is finite-dimensional; if not, the dynamical 

system is infinite-dimensional. 

Definition 2 

In three dimensions, the vector from the origin to the 

point with cartesian coordinates (x,y,z) can be written as [20] :  

r=xi+yj+zk=x((∂/(∂x)))+y((∂/(∂y)))+z((∂/(∂z))).         (2) 

Definition 3 

Let M be a manifold of odd dimension (2n+1). A contact 

structure is a maximally non-integrable hyperplane field 

ξ=kerα⊂TM, that is, the defining 1-form α is required to 

satisfy α∧(dα)ⁿ≠0 (meaning that it vanishes nowhere). Such a 

1-form α is called a contact form. The pair (M,ξ) is called a 

contact manifold. 

Definition 4 

Symplectic geometry is a branch of differential geometry 

and differential topology that studies symplectic manifolds; 

that is, differentiable manifolds equipped with a closed, 

nondegenerate 2-form. 

Symplectic geometry has its origins in the Hamiltonian 

formulation of classical mechanics where the phase space of 

certain classical systems takes on the structure of a symplectic 

manifold. 

 

Definition 5 

Let V be a vector space. Let ω:V×V→ℝ be a skew-

symmetric, bilinear 2-form, ω∈Λ²V
*
. The form ω is 

nondegenerate if for every v∈V, ω(v,u)=0, ∀u∈V⇒v=0. Note 

that since ω is skew-symmetric ω(u,v)=-ω(v,u), hence 

ω(v,v)=0. 

Definition 6 

Let M²ⁿ be an even-dimensional manifold. A symplectic 

structure on M²ⁿ is a closed nondegenerate differential 2-form 

ω on M²ⁿ: (1) dω=0 is closed,    (2) ∀x∈M, ∃ξ∈TxM, if 

ω(ξ,η)=0, ∀η∈ TxM, then ξ=0 (nondegenerate). 

The pair (M,ω) a symplectic manifold. Symplectic manifolds 

arise naturally in abstract formulations of classical mechanics 

and analytical mechanics as the cotangent bundles of 

manifolds, in the Hamiltonian formulation of classical 

mechanics, which provides one of the major motivations for 

the field.    The set of all possible configurations of a system is 

modelled as a manifold, and this manifold's cotangent bundle 

describes the phase space of the system. 

Example 1 

An almost complex symplectic manifold is standard 

Euclidean space (ℝ²ⁿ,ω₀) with its standard almost complex 

structure J₀ obtained from the usual identification with ℂⁿ. 

Thus, one sets zj=x2j-1+ix2j for j=1,...,n and defines J₀ by 

J₀(∂2j-1)=∂2j,   J₀(∂2j)=-∂2j-1                                                      (3) 

where ∂j=∂/∂xj is the standard basis of Txℝ²ⁿ [21]. 

Lemma 1 

Let M be a smooth manifold. If M admits a complex 

structure A , then M admits an almost complex structure J. Let 

dimℂM=m and (z,U) be any holomorphic chart inducing a 

coordinate frame ∂x₁,∂y₁,...,∂xm,∂ym. Then J is given locally 

as 

Jp(∂xi|p)=∂yi|p  ,   Jp(∂yi|p)=-∂xi|p,                                        (4) 

where 1≤i≤m and p∈U [22]. 

Definition 7 

A pseudo J-holomorphic curve is a smooth map from a 

Riemannian surface into an almost complex manifold such 

that satisfies the Cauchy-Riemann equation [21]. 

Definition 8 

Let M be a differentiable manifold of dimension (2n+1), 

and suppose J is a differentiable vector bundle isomorphism 

J:TM→TM such that Jx:TxM→TxM is a (almost) complex 

structure for TxM, i.e. J²=J∘J=-I where I is the identity (unit) 

operator on V. Then J is called an (almost) complex structure 

for the differentiable manifold M. A manifold with a fixed 

(almost) complex structure is called an (almost) complex 

manifold. 

Definition 9 

An almost complex structure on a differentiable manifold 

M²ⁿ is a differentiable endomorphism on the tangent bundle 

J:TℝM→TℝM with J²=-Id. A differentiable manifold with 

some fixed almost complex structure is called an almost 

complex manifold. 

A celebrated theorem of Newlander and Nirenberg [23] 

says that an almost complex structure is a complex structure if 

and only if its Nijenhuis tensor or torsion vanishes. 
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Theorem 1 
The almost complex structure J on M is integrable if and 

only if the tensor NJ vanishes identically, where NJ is defined 

on two vector fields X and Y by 

NJ[X,Y]=[JX,JY]-J[X,JY]-J[JX,Y]-[X,Y].                            (5) 

The tensor (2,1) is called the Nijenhuis tensor (5). We say 

that J is torsion free if NJ=0. Complex Nijenhuis tensor of an 

almost complex manifold (M,J) is given by (5). 

Complex Structures on Contact 5-Manifolds 

A 5-manifold is a 5-dimensional topological manifold, 

possibly with a piecewise linear or smooth structure. Contact 

geometry is the study of a geometric structure on smooth 

manifolds given by a hyperplane distribution in the tangent 

bundle and specified by a one-form.  

Definition 10 

Assume that, on a contact 5-manifold (M⁵,α), given a 

horizontal 2-form ω is given, that satisfies ω∧dα=0 and 

ω∧ω≠0. 

Here it should be understood ω is horizontal. Decompose 

ω=ω₊+ω₋, where ω₊ is the self-dual part and ω₋ is the anti 

self-dual part and ω∧dα=ω₊∧dα+ω₋∧dα. The notation ‖ ‖ 

denotes here the standard norm for differential forms coming 

from the metric on the manifold and ω₊=(( 2 )/(‖ω₊‖))ω₊. We 

can choose an orthonormal basis for P∈M of the form {e₁=X, 

e₂=IX, e₃=Y, e₄=IY} and denote by {e¹,e²,e³,e⁴} the dual basis 

of orthonormal one-forms. Then dα has the form e¹∧e²+e³∧e⁴. 
The forms e¹∧e²+e³∧e⁴, e¹∧e³+e⁴∧e² and e¹∧e⁴+e²∧e³ are an 

orthonormal basis for ∧₊². The fact that ω₊ is orthogonal to dα 

implies that ω₊=a(e¹∧e³+e⁴∧e²)+b(e¹∧e⁴+e²∧e³) and 

‖ω₊‖²=2(a²+b²), therefore 

ω₊=cosθ(e¹∧e³+e⁴∧e²)+sinθ(e¹∧e²+e³∧e⁴) for some θ 

depending on the chosen point, 

2222 /sin,/cos babbaa   .                            (6) 

Proposition 1 

Then the explicit expression J are, any point v∈P, there 

exist local coordinates (x₁,x₂,x₃,x₄,θ) centered at P, 

J(e₁)=cosθe₃+sinθe₄, J(e₂)=-cosθe₄+sinθe₃, 
J(e₃)=-cosθe₁-sinθe₂, J(e₄)=cosθe₂-sinθe₁.                            (7) 

Proposition 2 

      The dual form J* of the above J is as follows: 

J*(dx₁)=cosθdx₃+sinθdx₄, J*(dx₂)=-cosθdx₄+sinθdx₃, 
J*(dx₃)=-cosθdx₁-sinθdx₂, J*(dx₄)=cosθdx₂-sinθdx₁,          (8) 

and an easy computation shows that dα(v,J(v))=0 for any v∈P. 

The above structures (7) have been taken from [1]. 

Proof 
Instead of J conformal structure representing the structure 

of J* will be used and ei=dxi. J* denote the structure of the 

holomorphic property: 

J*²(dx₁)=cosθJ*(dx₃)+sinθ J*(dx₄)=-dx₁,                             (9) 

and similar manner it is shown that 

J*²(dxi)=-dxi, i=1,...,4.                                                          (10) 

As can be seen from (9) and (10) J*²=-I are the complex 

structures. 

Hamiltonian Mechanical System 

It is well-known that a Hamiltonian space has been 

certified as an excellent model for some important problems in 

relativity, gauge theory and electromagnetism. Hamilton's 

equations can be easily shown to be equivalent to Newton's 

equations. Also, Hamiltonian gives a model for both the 

gravitational and electromagnetic field in a very natural 

blending of the geometrical structures of the space with the 

characteristic properties of these physical fields and 

Hamiltonian dynamics is used as a model for field theory, 

quantum physics, optimal control, biology and fluid dynamics. 

Lemma 2. The closed 2-form on a vector field and 1-form 

reduction function on the phase space defined of a mechanical 

system is equal to the differential of the energy function 1-

form of the Lagrangian and the Hamiltonian mechanical 

systems [24,25]. 

Theorem 2 

If α and β are 1-forms, then α∧β is a 2-forms. 

Definitions 11 
Let M is the configuration manifold and its cotangent 

manifold T*M. By a symplectic form we mean a 2-form Φ on 

T*M such that 

(i) Φ is closed , that is, dΦ=0; (ii) for each z∈ T*M, Φ: 

T*M×T*M →ℝ  is weakly nondegenerate. If Φz in (ii) is 

nondegenerate, we speak of a strong symplectic form. If (ii) is 

dropped we refer to Φ as a presymplectic form. Let (T*M,Φ) 

be a symplectic manifold. A vector field XH:T*M→T*M is 

called Hamiltonian if there is a C¹ function H:T*M→ℝ such 

that dynamical equation is determined by 

iXHΦ=dH.                                                                              (11) 

We can say that XH is locally Hamiltonian vector field if 

iXHΦ is closed and where Φ shows the canonical symplectic 

form so that Φ=-dΩ, Ω=J*(ω), J* a dual of J, ω a 1-form on 

T*M. The trio (T*M,Φ,XH) is named Hamiltonian system 

which it is defined on the cotangent bundle T*M [26,27]. 

Definitions 12 

The vector field X on T*M given by iXω=dH is called the 

geodesic flow of the metric g. 

Definitions 13 
If γ:(a,b)→ T*M is an integral curve of the geodesic flow, 

then the curve p(γ) in M is called a geodesic. 

Recall from elementary physics that momentum of a particle, 

pi, is defined in terms of its velocity qi by iii qmp  . In fact, 

the more general definition of conjugate momentum, valid for 

any set of coordinates, is given in terms of the Lagrangian: 

)./(,)/( iiii qLpqLp                                                    (12) 

Note that these two definitions are equivalent for Cartesian 

variables. In terms of cartesian momenta, the kinetic energy is 

given by 
i

n

i

n

i mpT 2/
1 

 . Then, the Hamiltonian, which is 

defined to be the sum, H=T+V, expressed as a function of 

positions and momenta, will be given by 

),...,(2/),( 11 ni

n

i

n

iii qqVmppqH  
,                             (13) 

where p=p₁,...,pn. The function H is equal to the total energy 

of the system. In terms of the Hamiltonian, the equations of 
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motion of a system are given by Hamilton's equations: 

)./(,)/( iiii qHppHq                                              (14) 

Hamilton Equations 

Now, we, using Lemma 2 and (11), present Hamilton 

equations and Hamiltonian mechanical systems for quantum 

and classical mechanics constructed on a contact 5-manifold. 

Proposition 3 
Let (T*M,J*,ω) be on a contact 5-manifold. Suppose that 

the complex structures, a Liouville form and a 1-form on a 

contact 5-manifold are shown by J*, Ω and ω, respectively. 

Let a 1-form ω be as follows: 

ω=(1/2)[x₁dx₁+x₂dx₂+x₃dx₃+x₄dx₄].                       (15) 

Then, we obtain the Liouville form as follows: 

Ω=-J*(ω)=(1/2)[x₁(cosθdx₃+sinθdx₄)+x₂(-cosθdx₄+sinθdx₃) 

+x₃(-cosθdx₁-sinθdx₂)+x₄(cosθdx₂-sinθdx₁)].                    (16) 

It is well known that if Φ is a closed on a contact 5-

manifold, then Φ is a symplectic structure on (T*M,J*,ω). 

Therefore the 2-form Φ=-dΩ indicates the canonical 

symplectic form and derived from the 1-form Ω to find to 

mechanical equations. Also, dH is 

  ii i dxxHdH  


4

1
)/(                                       (17) 

Then the 2-form Φ is calculated as below: 

Φ=-dΩ 

=-(1/2)[((dx₁)/(dx₁))(cosθ)dx₁∧dx₃+sinθdx₁∧dx₄) 
+((dx₂)/(dx₂))  (-cosθdx₂∧dx₄+sinθdx₂∧dx₃) 
+((dx₃)/(dx₃))(-cosθdx₃∧dx₁-sinθdx₃∧dx₂)+((dx₄)/(dx₄)) 
(cosθdx₄∧dx₂-sinθdx₄∧dx₁)]. 

=(1/2)[cosθdx₃∧dx₁+sinθdx₄∧dx₁)+(cosθdx₄∧dx₂ 
+sinθdx₃∧dx₂)+(-cosθdx₁∧dx₃-sinθdx₂∧dx₃) 
+(cosθdx₂∧dx₄-sinθdx₁∧dx₄)]. 

(18) 

Take a vector field XH so that called to be Hamiltonian vector 

field associated with Hamiltonian energy H and determined by 

)/(
4

1 ii

i

H xXX  
                        (19) 

Φ(XH) will be calculated using Φ and XH. Calculations use 

external product feature. These properties are 

f∧g=-g∧f, f∧g(v)=f(v)g-g(v)f, dxi(∂/(∂xi))=1, dxi(∂/(∂xk))=0. 

                                                                  (20) 

We have 

iXHΦ=Φ(XH) 

=(1/2)[-X¹cosθdx₃-X¹sinθdx₄-X¹cosθdx₃-
X¹sinθdx₄+X²cosθdx₄-X²sinθdx₃-X²sinθdx₃+X²cosθdx₄ 
+X³cosθdx₁+X³sinθdx₂+X³cosθdx₁+X³sinθdx₂+X⁴sinθdx₁ 
-X⁴cosθdx₂-X⁴cosθdx₂+X⁴sinθdx₁]. 

(21) 

Furthermore, the differential of Hamiltonian energy H is 

obtained by 

dH=((∂H)/(∂x₁))dx₁+((∂H)/(∂x₂))dx₂+((∂H)/(∂x₃))dx₃ 
+((∂H)/(∂x₄))x₄.                                                    (22) 

 

X¹, X², X³, X⁴ are obtained using the iXHΦ=dH the following 

equations: 

cosθX³+sinθX⁴=((∂H)/(∂x₁)), 
sinθX³-cosθX⁴=((∂H)/(∂x₂)), 
-cosθX¹-sinθX²=((∂H)/(∂x₃)), 
-sinθX¹+cosθX²=((∂H)/(∂x₄)).                                             (23) 

They are 

X¹=-cosθ((∂H)/(∂x₃))-sinθ((∂H)/(∂x₄)), 
X²=-sinθ((∂H)/(∂x₃))+cosθ((∂H)/(∂x₄)), 
X³=cosθ((∂H)/(∂x₁))+sinθ((∂H)/(∂x₂)), 
X⁴=sinθ((∂H)/(∂x₁))-cosθ((∂H)/(∂x₂)).         (24) 

Consider the curve and its velocity vector fields; 

α(t):I⊂ℝ→M, I is an index set. 

 )/()/(/)(
4

1 ii i xdtdxtt   
 ,                              (25) 

such that an integral curve of the Hamiltonian vector field XH, 

XH(α(t))=(∂/(∂t))(α), t∈I.                                         (26) 

This equations are as follows: 

  [-cosθ((∂H)/(∂x₃))-sinθ((∂H)/(∂x₄))](∂/(∂x₁)) 
+[-sinθ((∂H)/(∂x₃))+cosθ((∂H)/(∂x₄))](∂/(∂x₂)) 
+[cosθ((∂H)/(∂x₁))+sinθ((∂H)/(∂x₂))](∂/(∂x₃)) 
+[sinθ((∂H)/(∂x₁))-cosθ((∂H)/(∂x₂))](∂/(∂x₄)) 
+[-cosθ((∂H)/(∂x₃))-sinθ((∂H)/(∂x₄))](∂/(∂x₁)) 
+[-sinθ((∂H)/(∂x₃))+cosθ((∂H)/(∂x₄))](∂/(∂x₂)) 
+[cosθ((∂H)/(∂x₁))+sinθ((∂H)/(∂x₂))](∂/(∂x₃)) 
+[sinθ((∂H)/(∂x₁))-cosθ((∂H)/(∂x₂))](∂/(∂x₄)) 
=((dx₁)/(dt))(∂/(∂x₁))+((dx₂)/(dt))(∂/(∂x₂)) 
+((dx₃)/(dt))(∂/(∂x₃))+((dx₄)/(dt))(∂/(∂x₄)). 

(27) 

Then, if the same term in this equation together equalized on 

both sides, we find the following equations; 

(dif1)  ((dx₁)/(dt))=-cosθ((∂H)/(∂x₃))-sinθ((∂H)/(∂x₄)), 
(dif2)  ((dx₂)/(dt))=-sinθ((∂H)/(∂x₃))+cosθ((∂H)/(∂x₄)), 
(dif3)  ((dx₃)/(dt))=cosθ((∂H)/(∂x₁))+sinθ((∂H)/(∂x₂)), 
(dif4)  ((dx₄)/(dt))=sinθ((∂H)/(∂x₁))-cosθ((∂H)/(∂x₂)). 

(28) 

Hence, the equations introduced in (28) are named 

Hamilton equations on a contact 5-manifold (T*M,J*,ω) and 

then the triple (T*M,Φ,XH) is said to be a Hamiltonian 

mechanical system on a contact 5-manifold. 

Equations Solving with Computer 

The solution of Hamilton's equations of motion will yield 

a trajectory in terms of positions and momenta as functions of 

time. Hamilton's equations can be used to determine the 

equations of motion of a system in any set of coordinates for a 

dynamical system. There are two classes of definitions for a 

dynamical system: one is motivated by differential equations 

and the other is motivated by measure theoretical in flavor. If 

the system can be solved, given an initial point it is possible to 

determine all its future positions, a collection of points known 

as a trajectory or orbit. Before the advent of computers, 

finding an orbit required sophisticated mathematical 

techniques and could be accomplished only for a small class 

of dynamical systems. 

Nowadays, modeling and solving of difficult mechanical 



         Zeki KASAP/ Elixir Adv. Math. 92 (2016) 38743-38748 38747 

problem has become easier by computer programs. 

It is well-known that an electromagnetic field is a physical 

field produced by electrically charged objects. How the 

movement of objects in electrical, magnetically and 

gravitational fields force is very important. For instance, on a 

weather map, the surface wind velocity is defined by assigning 

a vector to each point on a map. So, each vector represents the 

speed and direction of the movement of air at that point. The 

location of each object in space represented by three 

dimensions in physical space. These three dimensions can be 

labeled by a combination of three chosen from the terms 

length, width, height, depth, mass, density and breadth. These 

found (28) are partial differential equations system on a 

contact 5-manifolds and it dissolved with Maple computation 

program. The First, implicit function at (28) will be selected as 

a special. After, the graph of the equation (28) has been drawn 

for the route of the movement of objects in the 

electromagnetic field. 

Example 2 

Here, we'll make implicit with the Maple program 

solution of the above equations (28). 

For x₁(t)=sin(t), x₂(t)=cos(t), x₃(t)=sin(t), x₃(t)=cos(t) and 

θ=0; 

H(x₁,x₂,x₃,x₄,t)=(x₂-x₄+F₁(t))∗sin(t)+cos(t)∗(x₁-x₃).         (29) 

It found that (29) will be plotted with a special selection of 

closed function of graph (29): 
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Discussion and Conclusions 
A classical field theory explains the study of how one or 

more physical fields interact with matter which is used 

quantum and classical mechanics of physics branches. Also, it 

explains the study of how one or more physical fields interact 

with matter which is used quantum and classical mechanics of 

physics branches. A classical field theory is just a mechanical 

system with a continuous set of degrees of freedom that of 

electromagnetism deals with electric and magnetic fields and 

their interaction with each other and with charges and 

currents. An electromagnetic field is a physical field produced 

by electrically charged objects. How the movement of objects 

in electrical, magnetically and gravitational fields force is very 

important. For example, on a weather map, the surface wind 

velocity is defined by assigning a vector to each point on a 

map. So, we said that each vector represents the speed and 

direction of the movement of air at this point.    In this study, 

Hamilton equations (28) raised on a contact 5-manifold for 

mechanical systems such that they could be used in modelling 

the problems in various physical, relativistic and mechanical 

areas. In addition, in the equations implicit solutions (29) were 

found using Maple computation program for changing angles. 

It shows us how to act on time. The Hamilton mechanical 

equations (28) derived on a contact 5-manifold may be 

suggested to deal with problems in electrical, magnetically and 

gravitational fields for the path of movement (30) of defined 

space moving objects [26,28,29]. 
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