Complement of the Boolean Function Graph B(K_{p}, INC, $\left.\overline{\mathrm{K}}_{\mathrm{q}}\right)$ of a graph

S. Muthammai ${ }^{1, *}$ and T.N. Janakiraman ${ }^{2}$
${ }^{1}$ Government Arts College for Women, Pudukkottai- 622 001, India.
${ }^{2}$ National Institute of Technology, Tiruchirappalli - 620015 , India.

ARTICLE INFO

Article history:

Received: 8 January 2016;
Received in revised form:
1 March 2016;
Accepted: 4 March 2016;

Keywords

Boolean Function Graph
Domination number
Neighborhood number, Eccentricity.

Abstract

For any graph G, let $V(G)$ and $E(G)$ denote the vertex set and edge set of G respectively. The Boolean function graph $B\left(K_{p}, I N C, \bar{K}_{q}\right)$ of G is a graph with vertex set $V(G) \cup E(G)$ and two vertices in $B\left(K_{p}\right.$, INC, \bar{K}_{q}) are adjacent if and only if they correspond to two adjacent vertices of G, two nonadjacent vertices of G or to a vertex and an edge incident to it in G, For brevity, this graph is denoted by $\bar{B}_{4}(G)$. In this paper, structural properties of the complement $\bar{B}_{4}(G)$ of $B_{4}(G)$ including eccentricity properties are studied. Also, domination number and neighborhood number are found.

© 2016 Elixir All rights reserved.

1. Introduction

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively. A graph with p vertices and q edges is denoted by $G(p, q)$. If v is a vertex of a connected graph G, its eccentricity $e(v)$ is defined by $e(v)=\max \left\{d_{G}(v, u): u \in V(G)\right\}$, where $d_{G}(u, v)$ is the distance between u and v in G. The minimum and maximum eccentricities are the radius and diameter of G, denoted $r(G)$ and $\operatorname{diam}(G)$ respectively. When $\operatorname{diam}(G)=r(G), G$ is called a self-centered graph with radius r , equivalently G is r -self-centered. A connected graph G is said to be geodetic, if a unique shortest path joins any two of its vertices.

A vertex and an edge are said to cover each other, if they are incident. A set of vertices, which covers all the edges of a graph G is called a point cover for G. The smallest number of vertices in any point cover for G is called its point covering number and is denoted by $\alpha_{0}(G)$ or α_{0}. A set of vertices in G is independent, if no two of them are adjacent. The largest number of vertices in such a set is called the point independence number of G and is denoted by $\beta_{0}(G)$ or β_{0}.

Sampathkumar and Neeralagi [12] introduced the concept of neighborhood sets in graphs. A subset S of $V(G)$ is a neighborhood set (n -set) of G , if $\mathrm{G}=\cup_{\mathrm{v} \in \mathrm{S}}(\langle\mathrm{N}[\mathrm{v}]\rangle$), where $\langle\mathrm{N}[\mathrm{v}]\rangle$ is the subgraph of G induced by $\mathrm{N}[\mathrm{v}]$. The neighborhood number $n_{0}(G)$ of G is the minimum cardinality of an n-set of G.

The concept of domination in graphs was introduced by Ore [2]. A set $S \subseteq V$ is said to be a dominating set in G, if every vertex in $\mathrm{V}-\mathrm{S}$ is adjacent to some vertex in S . The domination number $\gamma(\mathrm{G})$ of G is the minimum cardinality of a dominating set. A dominating set with cardinality $\gamma(\mathrm{G})$ is referred as a γ-set. A dominating set S of a graph G is called an independent dominating set of G, if the induced subgraph $\langle S\rangle$ is independent. The minimum cardinality of an independent dominating set of G is called the independent domination number of G and is denoted by γ_{i}.

Whitney[14] introduced the concept of the line graph $L(G)$ of a given graph G in 1932. The first characterization of line graphs is due to Krausz. The Middle graph $\mathrm{M}(\mathrm{G})$ of a graph G was introduced by Hamada and Yoshimura[6]. Chikkodimath and Sampathkumar [5] also studied it independently and they called it, the semi-total graph $T_{1}(G)$ of a graph G. Characterizations were presented for middle graphs of any graph, trees and complete graphs in [3]. The concept of total graphs was introduced by Behzad [4] in 1966. Sastry and Raju[13] introduced the concept of quasi-total graphs and they solved the graph equations for line graphs, middle graphs, total graphs and quasi-total graphs. Janakiraman et al., introduced the concepts of Boolean and Boolean function graphs [7-11].

The points and edges of a graph are called its elements. Two elements of a graph are neighbors, if they are either incident or adjacent. The Boolean Function graph $B\left(K_{p}, I N C, \bar{K}_{q}\right)$ of G is a graph with vertex set $V(G) \cup E(G)$ and two vertices in $B\left(K_{p}\right.$, INC, $\overline{\mathrm{K}}_{\mathrm{q}}$) are adjacent if and only if they correspond to two adjacent vertices of G, two nonadjacent vertices of G or to a vertex and an edge incident to it in G. For brevity, this graph is denoted by $B_{4}(G)$. Two vertices in $\bar{B}_{4}(G)$ are adjacent if and only if they correspond to two adjacent edges of G , two nonadjacent edges of G or to a vertex and an edge not incident to it in G . In this paper, structural properties of the complement $\bar{B}_{4}(G)$ of $B_{4}(G)$ including eccentricity properties are studied. Domination and neighborhood numbers of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ are also found. For graph theoretic terminology, Harary [1] is referred.

E-mail address: muthammai.sivakami@gmail.com

2. Previous Results

Observation 2.1. [11]

1. K_{p} is an induced subgraph of $\mathrm{B}_{4}(\mathrm{G})$ and subgraph of $\mathrm{B}_{4}(\mathrm{G})$ induced by q vertices is totally disconnected.
2. Number of vertices in $B_{4}(G)$ is $p+q$, since $B_{4}(G)$ contains vertices of both G and the line graph $L(G)$ of G.
3. Number of edges in $B_{4}(G)$ is $(p(p-1) / 2)+2 q$
4. For every vertex $v \in V(G), d_{B 4(G)}(v)=p-1+d_{G}(v)$
(a) If G is complete, then $\mathrm{d}_{\mathrm{B} 4(\mathrm{G})}(\mathrm{v})=2(\mathrm{p}-1)$.
(b) If G is totally disconnected, then $\mathrm{d}_{\mathrm{B4}(\mathrm{G})}(\mathrm{v})=\mathrm{p}-1$.
(c) If G has atleast one edge, then $2 \leq \mathrm{d}_{\mathrm{B4}(\mathrm{G})}(\mathrm{v}) \leq 2(\mathrm{p}-1)$ and $\mathrm{d}_{\mathrm{B4} 4 \mathrm{G})}(\mathrm{v})=1$ if and only if $\mathrm{G} \cong 2 \mathrm{~K}_{1}$.
5. For an edge $e \in E(G), d_{B 4(G)}(e)=2$.
6. $\mathrm{B}_{4}(\mathrm{G})$ is always connected.
7. Let G be a (p, q) graph with atleast one edge. If p is odd, then $B_{4}(G)$ is Eulerian if and only if G is Eulerian.
8. If G is r -regular ($\mathrm{r} \geq 1$ and is odd), then $\mathrm{B}_{4}(\mathrm{G})$ is Eulerian.
9. For any graph $G, B_{4}(G)$ is Hamiltonian if and only if
(i) G is a path or a cycle on atleast three vertices
(ii) Each component of $\mathrm{B}_{4}(\mathrm{G})$ is $\mathrm{K}_{1}, \mathrm{~K}_{2}$ or $\mathrm{P}_{\mathrm{m}}, \mathrm{m} \geq 3$.
$10 . B_{4}(G)$ is self-centered with radius 2 if and only if G is either C_{3} or $C_{3} \cup n K_{1}, n \geq 1$.
10. $B_{4}(G)$ is bi-eccentric with radius 1 and diameter 2 , if and only if G is either $K_{1, n}$ or $K_{1, n} \cup m K_{1}, n \geq 2, m \geq 1$.
$12 . \mathrm{B}_{4}(\mathrm{G})$ is bi-eccentric with radius 2 and diameter 3 , if and only if $\beta_{0}(\mathrm{G}) \geq 2$.

3. Main Results

In this section, the properties of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ including traversability and eccentricity properties are studied.

Observation 3.1.

1. K_{p} is an induced subgraph of $\bar{B}_{4}(G)$ and the subgraph of $\bar{B}_{4}(G)$ induced by q vertices is totally disconnected.
2. Number of edges in $\overline{\mathrm{B}}_{4}(\mathrm{G})$ is $(\mathrm{q}(\mathrm{q}-1) / 2)+\mathrm{q}(\mathrm{p}-2)$
3. For every vertex $v \in V(G)$, degree v in $\bar{B}_{4}(G)$ is $q-d_{G}(v)$.
4. For an edge $e \in E(G)$, degree of e in $\bar{B}_{4}(G)$ is $p+q-3$.
5. For any connected graph G with p vertices, $\bar{B}_{4}(G)$ is disconnected if and only if G is a star on p vertices.
6. If there exists a vertex $v \in V(G)$ such that v is not incident with exactly one edge in G, then v is a pendant vertex in $\bar{B}_{4}(G)$.
7. If v is a vertex in G such that v is incident with all the edges of G, then v is isolated in $\bar{B}_{4}(G)$.
8. If G is a graph with atleast three vertices, then each vertex of $\bar{B}_{4}(G)$ lies on a triangle and hence girth of $\bar{B}_{4}(G)$ is 2 .
9. If G is a graph with atleast four vertices and atleast one edge, then $\bar{B}_{4}(G)$ is bi-regular if and only if G is regular and is regular if and only if G is totally disconnected.
10.If G is a graph with atleast three vertices, then $\bar{B}_{4}(G)$ has no cut vertices.
11.If G has atleast one edge, then vertex connectivity of $\bar{B}_{4}(G)$ is equal to the edge connectivity of $\bar{B}_{4}(G)=2$.
12.Let G be a (p, q) graph with atleast one edge. If p is odd, then $\bar{B}_{4}(G)$ is Eulerian if and only if G is Eulerian.
10. If G is r-regular ($r \geq 1$ and is odd), then $\bar{B}_{4}(G)$ is Eulerian.
11. For any graph $G, \bar{B}_{4}(G)$ is geodetic if and only if G is either K_{2} or $n K_{1}, n \geq 2$.
12. If G is a graph with atleast four vertices, then $\bar{B}_{4}(G)$ is P_{4} - free.

In the following, a necessary and sufficient condition for $\bar{B}_{4}(G)$ to be Hamiltonian is proved.

Theorem 3.1.

Let G be any (p. q) graph which is not a star. Then $\bar{B}_{4}(G)$ is hamiltonian if and only if $q \geq p$ and $\operatorname{deg}_{G}(v) \leq 2$, for all v in G.

Proof.

Let G be any (p, q) graph such that $\mathrm{q} \geq \mathrm{p}$ and $\operatorname{deg}_{\mathrm{G}}(\mathrm{v}) \leq 2$, for all v in G .
Therefore, $\operatorname{deg}_{\overline{\mathrm{B}} 4(\mathrm{G})}(\mathrm{v})=\mathrm{q}-\operatorname{deg}_{\mathrm{G}}(\mathrm{v}) \geq 2$. That is, for every vertex v in G , there exist atleast two edges in G not incident with v. By the construction of $\bar{B}_{4}(G)$, each vertex of $L(G)$ in $\bar{B}_{4}(G)$ is adjacent to ($\mathrm{p}-2$) vertices of G in $\bar{B}_{4}(G)$. A cycle of length $2 p$ in $B_{4}(G)$ can be formed with p vertices of G and p vertices of $L(G)$, each vertex of G followed by a vertex of $L(G)$, that is, $v_{1} e_{1} v_{2} e_{2} \ldots v_{p} e_{p} v_{1}$, where $e_{i} \in E(G)$ is not incident with $v_{i}, v_{i+1}, i=1,2, \ldots,(p-1)$ and e_{p} is not incident with v_{p} and v_{1}. Since each pair of vertices in $L(G)$ is adjacent in $\bar{B}_{4}(G)$, the remaining ($q-p$) vertices of $L(G)$ in $\bar{B}_{4}(G)$ can be placed suitably in the above cycle $C_{2 p}$. Therefore, there exists a Hamiltonian cycle in $\bar{B}_{4}(G)$ and hence $\bar{B}_{4}(G)$ is Hamiltonian.

Conversely, let $\overline{\mathrm{B}}_{4}(\mathrm{G})$ be Hamiltonian. Therefore degree of each vertex in $\overline{\mathrm{B}}_{4}(\mathrm{G})$ must be atleast 2 . That is, $\operatorname{deg} \overline{\mathrm{B}} 4(\mathrm{G})(\mathrm{v}) \geq 2$, for all v in G , which implies $\mathrm{q}-\operatorname{deg}_{\mathrm{G}}(\mathrm{v}) \geq 2$.

That is, $\operatorname{deg}_{\mathrm{G}}(\mathrm{v}) \leq \mathrm{q}-2$.
Assume $\mathrm{q}<\mathrm{p}$. Since neither G nor $\overline{\mathrm{G}}$ is a subgraph of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ and each vertex of G in $\overline{\mathrm{B}}_{4}(\mathrm{G})$ is adjacent to (p-2) vertices of $L(G)$ in $\bar{B}_{4}(G)$ in the hamiltonian cycle each vertex of G is followed by a vertex of $L(G)$. This is not possible, if $q<p$. Therefore $\mathrm{q} \geq \mathrm{p}$.

Remark 3.1.

1. If G is a graph obtained by attaching pendant edges at a vertex of C_{3}, then $\bar{B}_{4}(G)$ contains a Hamiltonian path.
2. If G is a graph obtained by subdividing an edge of a star, then $\bar{B}_{4}(G)$ contains a hamiltonian path.

Theorem 3.2.
If G is a tree which is not a star, then $\bar{B}_{4}(G)$ contains a hamiltonian path.

Proof.

Let G be a tree which is not a star. Then $\mathrm{q}=\mathrm{p}-1$. Since G is not a star, $\overline{\mathrm{B}}_{4}(\mathrm{G})$ contains no isolated vertices. As in Theorem 3.1., there exists a Hamiltonian path in $\bar{B}_{4}(G), v_{1} e_{1} v_{2} e_{2} \ldots v_{p-1} e_{p-1} v_{p}$, where $e_{i} \in E(G)$ is not incident with $v_{i}, v_{i+1}, i=1,2, \ldots,(p-1)$.

Remark 3.2.

Let G be any graph such that $\bar{B}_{4}(G)$ is connected and $q=p-1$. Then $\bar{B}_{4}(G)$ contains a Hamiltonian path.
In the following, point (line) covering number, (edge) independence number, chromatic number and neighborhood number are found for $\overline{\mathrm{B}}_{4}(\mathrm{G})$.

Theorem 3.3.

Let G be any (p, q) graph with atleast three vertices and not totally disconnected.
Then $\alpha_{0}\left(\bar{B}_{4}(\mathrm{G})\right)=\mathrm{q}$.

Proof.

Since the subgraph of $\bar{B}_{4}(G)$ induced by vertices of $L(G)$ in $\bar{B}_{4}(G)$ is complete, $\alpha_{0}\left(K_{q}\right)=q-1$. Let $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{q}}$ be the q vertices of $L(G)$ in $\bar{B}_{4}(G)$. Then $D=\left\{e_{1}, e_{2}, \ldots, e_{q-1}\right\}$ is a line cover of K_{q} in $\bar{B}_{4}(G)$. The vertex $\mathrm{e}_{q} \in V\left(\bar{B}_{4}(G)\right)$ covers the edges in $\bar{B}_{4}(G)$ of the from ($\left.v, e_{q}\right)$, where $e_{q} \in E(G)$ is not incident with $v \in V(G)$. Therefore $D \cup\left\{e_{q}\right\} \subseteq V\left(\bar{B}_{4}(G)\right.$) is a minimum point cover of $\overline{\mathrm{B}}_{4}(\mathrm{G})$.

Remark 3.3.

Since $\alpha_{0}\left(\bar{B}_{4}(\mathrm{G})\right)+\beta_{0}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)=\mathrm{p}+\mathrm{q}, \beta_{0}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)=\mathrm{p}$ and hence $\alpha_{0}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)=\beta_{0}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)$ if and only if $\mathrm{p}=\mathrm{q}$.
Theorem 3.4.
Let G be a (p, q) graph which is not totally disconnected and is not a star. Then line covering number $\alpha_{1}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right.$) is given by $\alpha_{1}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)= \begin{cases}\min \{\mathrm{q},\lceil(\mathrm{p}+2 \mathrm{q}) / 2\rceil, & \text { if } \mathrm{q} \geq \mathrm{p} . \\ \mathrm{p}, & \text { if } \mathrm{q}<\mathrm{p} .\end{cases}$

Proof

Case 1: $q \geq p$

Subcase 1.a: q is even
Let $v_{1}, v_{2}, \ldots, v_{p}$ be the vertices of G in $\bar{B}_{4}(G)$ and $e_{j k}=\left(v_{j}, v_{k}\right)$ be an edge in G and $e_{j k} \in V\left(\bar{B}_{4}(G)\right)$. Since $q \geq p$, for each edge $e \in E(G)$, there exists a vertex $v_{i} \in V(G)$ not incident with e. Then $\left\{\left(v_{i}, e_{j k}\right) \in E\left(\bar{B}_{4}(G)\right): e_{j k} \in E(G)\right.$ is not incident with vi $\in V(G)$ and e_{jk} are distinct\} is a line cover for $\overline{\mathrm{B}}_{4}(\mathrm{G})$. Therefore, $\alpha_{1}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right) \leq \mathrm{q}$. Since the subgraph of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ induced by q vertices of $\mathrm{L}(\mathrm{G})$ in $\overline{\mathrm{B}}_{4}(\mathrm{G})$ is complete, $\alpha_{1}\left(\mathrm{~K}_{\mathrm{q}}\right)=\mathrm{q} / 2$ and p vertices of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ are covered by the edges $\left(v_{\mathrm{i}}, \mathrm{e}_{\mathrm{j} k}\right), \mathrm{i}=1,2, \ldots, \mathrm{p}$ in $\overline{\mathrm{B}}_{4}(\mathrm{G})$. Therefore, $\alpha_{1}\left(\bar{B}_{4}(\mathrm{G})\right) \leq \mathrm{p}+\mathrm{q} / 2$ and hence $\alpha_{1}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right) \leq \min \{\mathrm{q}, \mathrm{p}+\mathrm{q} / 2\}=\min \{\mathrm{q},(2 \mathrm{p}+\mathrm{q}) / 2\}$.
Subcase 1.b: q is odd
Let $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots$, e_{q} be the q vertices of $\mathrm{L}(\mathrm{G})$ in $\overline{\mathrm{B}}_{4}(\mathrm{G})$. Then $\left\langle\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{q}-1}\right\}\right\rangle \mathrm{K}_{\mathrm{q}-1}$ in $\overline{\mathrm{B}}_{4}(\mathrm{G})$ and $\alpha_{1}\left(\mathrm{~K}_{\mathrm{q}-1}\right)=(\mathrm{q}-1) / 2$. Let $v_{p} \in V(G)$ be not incident with $e_{q} \in E(G)$. Then the edges $\left(v_{p}, e_{q}\right),\left(v_{i}, e_{j k}\right), i=1,2, \ldots, p-1$ cover the p vertices and the vertex e_{q} in $\overline{\mathrm{B}}_{4}(\mathrm{G})$. Therefore, $\left.\alpha_{1}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)=\mathrm{p}+(\mathrm{q}-1) / 2=2 \mathrm{p}+\mathrm{q}-1\right) / 2$ and hence $\alpha_{1}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)=\min \{\mathrm{q},(2 \mathrm{p}+\mathrm{q}-1) / 2$. Combining Subcase 1.1. and 1.2.,

$$
\alpha_{1}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)=\min \{\mathrm{q},\lceil(\mathrm{p}+2 \mathrm{q}) / 2\rceil, \quad \text { if } \mathrm{q} \geq \mathrm{p} .
$$

Case 2: $\mathrm{q}<\mathrm{p}$

Then the edges $\left(v_{i}, e_{j k}\right) \in E\left(\bar{B}_{4}(G)\right), i=1,2, \ldots, p$, where $e_{j k} \in E(G)$ is not incident with $v_{i} \in E(G)$, cover the vertices of $\bar{B}_{4}(G)$. Therefore, $\alpha_{1}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)=\mathrm{p}$.

Remark 3.4.

Since $\alpha_{1}\left(\bar{B}_{4}(G)\right)+\beta_{1}\left(\bar{B}_{4}(G)\right)=\mathrm{p}+\mathrm{q}$ for a totally disconnected graph G and is not a star, $\beta_{1}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)$ is given by

$$
\beta_{1}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)= \begin{cases}\min \{\mathrm{p},\lceil(\mathrm{q}+1) / 2\rceil, & \text { if } \mathrm{q} \geq \mathrm{p} \\ \mathrm{q}, & \text { if } \mathrm{q}<\mathrm{p}\end{cases}
$$

Remark 3.5.

When $G \cong K_{1, n},(n \geq 2), \quad \bar{B}_{4}\left(K_{1, n}\right)$ contains an isolated vertex and $\beta_{1}\left(\bar{B}_{4}\left(K_{1, n}\right)\right)=n$.
In the following, chromatic number of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ is found.

Theorem 3.5.

Let G be $\mathrm{a}(\mathrm{p}, \mathrm{q})$ graph. Then
$\chi\left(\bar{B}_{4}(\mathrm{G})\right)= \begin{cases}\mathrm{q}, & \text { if } \delta(\mathrm{G}) \geq 1 \\ \mathrm{q}+1, & \text { if } \delta(\mathrm{G})=0\end{cases}$

Proof.

Case 1: $\delta(\mathrm{G}) \geq 1$
The subgraph of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ induced by all the vertices of $\mathrm{L}(\mathrm{G})$ in $\overline{\mathrm{B}}_{4}(\mathrm{G})$ is a complete graph on q vertices and $\chi\left(\mathrm{K}_{\mathrm{q}}\right)=\mathrm{q}$. That is, vertices of $L(G)$ in $\bar{B}_{4}(G)$ are coloured with q colours. Let $v_{i} \in V(G)$ and $e_{i} \in E(G)$ be an edge incident with v_{i}. Since $\delta(G) \geq 1$, such an edge exists in G. Then $v_{i}, e_{i} \in V\left(\bar{B}_{4}(G)\right)$. Now colour the vertex v_{i} in $\bar{B}_{4}(G)$ by the colour given to e_{i} in $\bar{B}_{4}(G)$, since v_{i} and e_{i} are independent vertices in $\overline{\mathrm{B}}_{4}(\mathrm{G})$. Since no two vertices of G are adjacent in $\overline{\mathrm{B}}_{4}(\mathrm{G}), \chi\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=\mathrm{q}$.
Case 2: $\delta(\mathrm{G})=0$.
Let v be an isolated vertex in G . Then $\mathrm{v} \in \mathrm{V}\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)$ is adjacent to all the vertices of $\mathrm{L}(\mathrm{G})$ in $\overline{\mathrm{B}}_{4}(\mathrm{G})$. Therefore v can be coloured with a new colour. Hence $\mathrm{V}\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right.$) is $\mathrm{q}+1$ colourable and $\mathrm{V}\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right.$) cannot be coloured with fewer than $\mathrm{q}+1$ colours. Therefore, $\chi\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=\mathrm{q}+1$.

In the following, domination number of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ is found.

Remark 3.6.

Since there is no vertex of degree $\mathrm{p}+\mathrm{q}-1$ in $\overline{\mathrm{B}}_{4}(\mathrm{G}), \gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right) \geq 2$.

Theorem 3.6.

For any graph G with atleast one edge, $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=2$ if and only if $\beta_{1}(\mathrm{G}) \geq 2$.
Proof.
Let $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=2$. Then there exists a minimum dominating set D of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ containing two vertices.
Case 1: $\mathrm{D}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\} \subseteq \mathrm{V}(\mathrm{G})$
Since no two vertices of G are adjacent in $\bar{B}_{4}(G)$ and G contains atleast one edge, D cannot be dominating set of $\bar{B}_{4}(G)$.
Case 2: $D=\{v, e\} \subseteq V\left(\bar{B}_{4}(G)\right)$, where $v \in V(G)$
and $e \in E(G)$.
Let $e=(u, w)$, where $u, w \in V(G)$. Then $u, w \in V\left(\bar{B}_{4}(G)\right)$ and are not adjacent to any of the vertices in D.
Case 3: $\mathbf{D}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\} \subseteq \mathrm{E}(\mathrm{G})$
Then $\left\{e_{1}, e_{2}\right\} \subseteq V\left(\bar{B}_{4}(G)\right)$. Since D is a dominating set of $\bar{B}_{4}(G), e_{1}$ and e_{2} are independent edges in G. Therefore $\beta_{1}(G) \geq 2$.
Conversely, assume $\beta_{1}(G) \geq 2$. Then there exist atleast two independent edges say e_{1}, e_{2} in G. Let D^{\prime} be the set of vertices
in $\overline{\mathrm{B}}_{4}(\mathrm{G})$ corresponding to the edges e_{1} and e_{2} in G . Then D^{\prime} is a dominating set of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ and $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right) \leq 2$. But $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right) \geq 2$.
Therefore $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=2$.

Theorem 3.7.

If G is a graph with atleast one edge, then $\gamma\left(\bar{B}_{4}(G)\right)=\gamma_{i}\left(\bar{B}_{4}(G)\right) \leq 3$.

Proof.

Let $\mathrm{e}=(\mathrm{u}, \mathrm{v}) \in \mathrm{E}(\mathrm{G})$, where $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G})$.
Then $D=\{u, v, e\} \subseteq V\left(\bar{B}_{4}(G)\right)$ is a dominating set of $\bar{B}_{4}(G)$ and is independent. Hence, $\gamma\left(\bar{B}_{4}(G)\right)=\gamma_{i}\left(\bar{B}_{4}(G)\right) \leq 3$.

Remark 3.7.

a. If G is a star or a cycle on three vertices, then $\gamma\left(\bar{B}_{4}(G)\right)=\gamma_{i}\left(\bar{B}_{4}(G)\right)=3$.
b. For any graph G, let D be subset of $E(G)$ with atleast two vertices and $\left\langle D>\right.$ is not a star. Then the set D^{\prime} vertices of $\bar{B}_{4}(G)$ corresponding to the edges of G is a dominating set of $\bar{B}_{4}(G)$ and D contains exactly two vertices, then D^{\prime} is a dominating set of $\bar{B}_{4}(G)$ if and only if edges of $\langle D>$ are independent.

Theorem 3.8.

Let G be a graph which is not a star. Then $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=\gamma(\mathrm{G})=2$ if and only if either there exists a dominating edge in G or G is a union of stars.

Proof.

Let there exist a dominating edge e in G . Then each vertex in G is adjacent to atleast one of the end vertices of e . Therefore, $\gamma(\mathrm{G})=2$. Since G is a not a star, there exist atleast two independent edges in \underline{G}. Let e_{1}, e_{2} be the vertices in $\bar{B}_{4}(G)$ corresponding to the two independent edges in G. Then $D=\left\{e_{1}, e_{2}\right\}$ is a dominating set of $\bar{B}_{4}(G)$. Therefore, $\gamma\left(\bar{B}_{4}(G)\right)=2$. Similarly, if G is a union of stars, then also $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=2$.

Conversely, assume $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=\gamma(\mathrm{G})=2$. Then there exists a dominating set D of G with two vertices. That is, either G contains a dominating edge or $\mathrm{G} \cong \mathrm{K}_{1, \mathrm{n}} \cup \mathrm{K}_{1, \mathrm{~m}}, \mathrm{n}, \mathrm{m} \geq 1$.

Theorem 3.9.

For any graph $\mathrm{G}, \gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=\gamma(\mathrm{L}(\mathrm{G}))=2$ if and only if there exist two independent edges in G such that each edge in G is adjacent to atleast one of those independent edges, where $L(G)$ is the line graph of G.

Proof.

Let there exist two independent edges in G such that each edge in G is adjacent to one of the independent edges. Let e_{1} and e_{2} be the corresponding vertices in $L(G)$. Then $D=\left\{e_{1}, e_{2}\right\} \subseteq V(L(G))$ is a dominating set of both $L(G)$ and $\bar{B}_{4}(G)$. Therefore $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=\gamma(\mathrm{G})=2$.

Conversely, assume $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=\gamma(\mathrm{G})=2$. Then there exists minimum dominating set D of both $\mathrm{L}(\mathrm{G})$ and $\overline{\mathrm{B}}_{4}(\mathrm{G})$ containing two vertices. Let $D=\left\{e_{1}, e_{2}\right\} \subseteq V(L(G))$, where e_{1} and e_{2} are edges in G. Since D is a dominating set of $L(G)$, each edge in G is adjacent to atleast one of e_{1} and e_{2}. Similarly, since D is also a dominating set of $\bar{B}_{4}(G), e_{1}$ and e_{2} must be independent edges in G. Therefore, there exist two independent edges e_{1} and e_{2} in G such that each edge in G is adjacent to atleast one of e_{1} and e_{2}.

Remark 3.8.

For any graph G, if $\gamma(\mathrm{L}(\mathrm{G})) \geq 3$, then $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right) \neq \gamma(\mathrm{G})$.

Theorem 3.10.

For any graph G, $4 \leq \gamma\left(\mathrm{B}_{4}(\mathrm{G})\right)+\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right) \leq \alpha_{0}(\mathrm{G})+2$.

Proof.

Let $\beta_{1}(\mathrm{G}) \geq 2$. Then $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=2$ and $\gamma\left(\mathrm{B}_{4}(\mathrm{G})\right) \leq \alpha_{0}(\mathrm{G})$.
Therefore $\gamma\left(\mathrm{B}_{4}(\mathrm{G})\right)+\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right) \leq \alpha_{0}(\mathrm{G})+2$
Let $\beta_{1}(\mathrm{G})=1$. If $\mathrm{G} \cong \mathrm{K}_{1, \mathrm{n}}, \mathrm{n} \geq 2$, then $\leq \gamma\left(\mathrm{B}_{4}(\mathrm{G})\right)+\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=1+3=4$. If $\mathrm{G} \cong \mathrm{C}_{3}$, then $\gamma\left(\mathrm{B}_{4}(\mathrm{G})\right)=\alpha_{0}(\mathrm{G})=2$ and $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=3$. Therefore $\gamma\left(\mathrm{B}_{4}(\overline{\mathrm{G}})\right)+\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right) \geq 4$.

Hence $4 \leq \gamma\left(\mathrm{B}_{4}(\mathrm{G})\right)+\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right) \leq \alpha_{0}(\mathrm{G})+2$.
The lower bound is attained, when $G \cong K_{1, n}, n \geq 2$ and the upper bound is attained for all graphs G with $\beta_{1}(G) \geq 2$ and $G \cong C_{3}$.

Theorem 3.11.

For any graph G with q edges, $\gamma\left(\bar{B}_{4}(G)\right)=\alpha_{0}\left(\bar{B}_{4}(G)\right)$ if and only if G is one of the following graphs. $2 \mathrm{~K}_{2} \cup \mathrm{mK}_{1}, \mathrm{C}_{3} \cup \mathrm{mK}_{1}$, $K_{1, n} \cup \mathrm{mK}_{1}, \mathrm{~m} \geq 0, \mathrm{n} \geq 3$.

Proof.

$\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=2$ or 3 . But $\alpha_{0}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)=\mathrm{q}$. Therefore, $\mathrm{q}=2$ or 3 . If $\beta_{1}(\mathrm{G}) \geq 2$, then $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=2$ and $\alpha_{0}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)=2$. Therefore $\mathrm{G} \cong 2 \mathrm{~K}_{2} \cup \mathrm{mK}_{1}, \mathrm{~m} \geq 0$.

If $\beta_{1}(G)=1$, then $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=\alpha_{0}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)=3$. Therefore $\mathrm{G} \cong \mathrm{C}_{3} \cup \mathrm{mK}_{1}$ or $\mathrm{K}_{1, \mathrm{n}} \cup \mathrm{mK}_{1}, \mathrm{~m} \geq 0, \mathrm{n} \geq 3$.

Theorem 3.12.

Let G be a graph with atleast three vertices and not totally disconnected.
Then $\gamma\left(\bar{B}_{4}(G)\right)=\beta_{0}\left(\bar{B}_{4}(G)\right)$ if and only if G is one of the following graphs. C_{3}, P_{3} and $K_{2} \cup K_{1}$.
Proof.
$\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)=2$ or 3 . But $\beta_{0}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)=\mathrm{p}$. Therefore $\mathrm{p}=2$ or 3 . Therefore $\mathrm{G} \cong \mathrm{C}_{3}, \mathrm{P}_{3}$ or $\mathrm{K}_{2} \cup \mathrm{~K}_{1}$. In the following neighborhood number $n_{0}\left(\bar{B}_{4}(G)\right)$ of $\bar{B}_{4}(G)$ is found.

Theorem 3.13.

Let G be any graph containing atleast one edge. Then $n_{0}\left(\bar{B}_{4}(G)\right)=2$ or 3 .
Proof.
Case1: $\beta_{1}(\mathrm{G}) \geq 2$.
Then there exist atleast two independent edges in G. Let e_{1}, e_{2} be the vertices in $\bar{B}_{4}(G)$ corresponding to independent edges in G. Then $\mathrm{D}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\} \subseteq \mathrm{V}\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right)$ is a dominating set of $\overline{\mathrm{B}}_{4}(\mathrm{G})$.

Let $e_{1}=\left(u_{1}, v_{1}\right)$, where $u_{1}, v_{1} \in V\left(\bar{B}_{4}(G)\right)$.
$N_{\bar{B} 4(G)}\left(e_{1}\right)=\left\{V\left(L(G)-\left\{e_{1}\right\}, V(G)-\left\{u_{1}, v_{1}\right\}\right\}\right.$. Therefore, each edge in $\left\langle V\left(\bar{B}_{4}(G)\right)-D\right\rangle$ belongs to $\left\langle N\left(e_{1}\right)\right\rangle$ and hence D is an n-set for $\overline{\mathrm{B}}_{4}(\mathrm{G})$ and $\mathrm{n}_{0}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right) \leq 2$.

Since $\gamma\left(\overline{\mathrm{B}}_{4}(\mathrm{G})\right) \geq 2, \quad \mathrm{n}_{0}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right) \geq 2$. Therefore, $\mathrm{n}_{0}\left(\overline{\mathrm{~B}}_{4}(\mathrm{G})\right)=2$.
Case 2: $\beta_{1}(G)=1$
Then $\mathrm{G} \cong \mathrm{C}_{3}$ or $\mathrm{K}_{1, \mathrm{n}}, \mathrm{n} \geq 1$
If $G \cong C_{3}$ or $K_{1, n}, n \geq 1$, then $n_{0}\left(\bar{B}_{4}(G)\right)=3$.
In the following, distance between any two vertices of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ are found.

Lemma 3.1.

Let G be a graph which is not a star. If v_{1} and v_{2} are any two vertices in G, then distance $d\left(v_{1}, v_{2}\right)$ between v_{1} and v_{2} in $\bar{B}_{4}(G)$ is 2 or 3 .

Proof.

Let $v_{1}, v_{2} \in G$. Then $v_{1}, v_{2} \in \bar{B}_{4}(G)$. Since no two vertices in G are adjacent in $\bar{B}_{4}(G), d\left(v_{1}, v_{2}\right) \geq 2$ in $\bar{B}_{4}(G)$.
Let e be an edge in G not incident with both v_{1} and v_{2}. Then $v_{1} e v_{2}$ is a geodesic path in $\bar{B}_{4}(G)$ and hence $d\left(v_{1}, v_{2}\right)=2$ in $\overline{\mathrm{B}}_{4}(\mathrm{G})$.

Assume each edge in G is incident with atleast one of v_{1} and v_{2}. That is, $\left\{v_{1}, v_{2}\right\}$ is a point cover of G. Let e_{1} be an edge in G incident with v_{1} but not v_{2} and e_{2} be an edge in G incident with v_{2} but not v_{1}. (This is possible, since G is not a star). Then $v_{1} e_{2} e_{1} v_{2}$ is a geodesic path in G .

Therefore, $\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=3$ in $\overline{\mathrm{B}}_{4}(\mathrm{G})$.

Lemma 3.2.

Let G be a graph which is not a star. If $v \in V(G)$ and $e \in E(G)$, then the distance between v, e in $\bar{B}_{4}(G)$ is atmost 2 and if e_{1}, $e_{2} \in E(G)$, then distance between e_{1} and e_{2} in $\bar{B}_{4}(G)$ is 1 .

Proof.

(i) Let $\mathrm{v} \in \mathrm{V}(\mathrm{G})$ and $\mathrm{e} \in \mathrm{E}(\mathrm{G})$. If e is not incident with v in G , then $\mathrm{d}(\mathrm{v}, \mathrm{e})=1$ in $\overline{\mathrm{B}}_{4}(\mathrm{G})$. Let e be incident with v in G . Since G is not a star, there exists an edge e_{1} in G not incident with v in G.

Then $v, e, e_{1} \in V\left(\bar{B}_{4}(G)\right)$ and ve e_{1} e is a geodesic path in $\bar{B}_{4}(G)$. Hence $d(v, e)=2$ in $\bar{B}_{4}(G)$.
(ii) Let $e_{1}, e_{2} \in E(G)$. Then $e_{1}, e_{2} \in V(L(G))$. Since any vertices of $L(G)$ in $\bar{B}_{4}(G)$ are adjacent, $\mathrm{d}\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)=1$ in $\overline{\mathrm{B}}_{4}(\mathrm{G})$.

Observation 3.2.

From Lemma 3.1. and Lemma 3.2., it is observed that, if G is not a star, then
a. Eccentricity of a vertex v in $V\left(\bar{B}_{4}(G)\right) \cap V(G)$ is 2 or 3 and eccentricity of a vertex e in $V\left(\bar{B}_{4}(G)\right) \cap V(L(G))$ is 2 .
b. Radius of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ is 2 and diameter of $\overline{\mathrm{B}}_{4}(\mathrm{G})$ is 2 or 3 .
c. $\overline{\mathrm{B}}_{4}(\mathrm{G})$ is self-centered with radius 2 if and only if for every pair of vertices u, v in G, there exists atleast one edge in G not incident with both $u v$ in G. That is, there exists no point cover of G containing two vertices.
d. $\bar{B}_{4}(G)$ is bieccentric with radius 2 and diameter 3 if and only if there exists a point cover of G containing two vertices.

Example 3.1.

a. $\overline{\mathrm{B}}_{4}\left(\mathrm{P}_{\mathrm{n}}\right)(\mathrm{n} \geq 6), \overline{\mathrm{B}}_{4}\left(\mathrm{C}_{\mathrm{n}}\right)(\mathrm{n} \geq 5), \overline{\mathrm{B}}_{4}\left(\mathrm{~K}_{\mathrm{n}}\right)(\mathrm{n} \geq 4)$ are self-centered with radius 2 .
b. $\overline{\mathrm{B}}_{4}\left(\mathrm{C}_{\mathrm{n}}\right)(\mathrm{n}=3,4)$ are bieccentric with radius 2 and diameter 3 .

Acknowledgement: The first author is grateful to the University Grants Commission for the financial support. (No. F. MRP5166/14(SERO/UGC), March 2014)

References

[1] F. Harary, Graph Theory, Addison- Wesley, Reading Mass, (1972).
[2] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, Providence, (1962).
[3] J. Akiyama, T. Hamada and I. Yoshimura, Miscellaneous properties of Middle graphs, Tru. Math., Vol. 10 (1974), 41-52.
[4] M. Behzad and G. Chartrand, Total graphs and Traversability, Proc. Edinburgh Math. Soc., 15 (1966), 117-120.
[5] S. B. Chikkodimath and E. Sampathkumar, Semi total graphs-II, Graph Theory Research Report, Karnatak University, No. 2, (1973), 5-8.
[6] T. Hamada and I. Yoshimura, Traversability and connectivity of the Middle graph of a graph, Discre. Math., 14 (1976), 247-256.
[7] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, On the Boolean Function Graph of a Graph and on its Complement, Mathematica Bohemica, 130(2005), No.2, pp. 113-134.
[8] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, Domination Numbers on the Complement of the Boolean Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.3, pp. 247-263.
[9] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, Global Domination and Neighborhood numbers in Boolean Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.3, pp. 231-246.
[10] T.N. Janakiraman, S. Muthammai, M. Bhanumathi, On the Complement of the Boolean function graph B(\bar{K}_{p}, NINC, L(G))of a graph, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 1, No.2, pp. 45-51, 2010.
[11]T.N. Janakiraman and S. Muthammai, On the Boolean Function Graph B($\mathrm{K}_{\mathrm{p}}, \mathrm{INC}, \overline{\mathrm{K}}_{\mathrm{q}}$) of a Graph, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 5, No. 4, pp. 98-110.
[12] E. Sampathkumar and Prabha S. Neeralagi, The neighborhood number of a graph, Indian J. Pure Appl. Math., 16(2): 126-132, February 1985.
[13] D.V.S. Sastry and B. Syam Prasad Raju,
Graph equations for Line graphs, Total graphs, Middle graphs and Quasi-total graphs, Discrete Mathematics, 48(1984), 113119.
[14]H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150-168.

