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1. Introduction

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let V(G) and E(G) denote its vertex set and
edge set respectively. A graph with p vertices and ¢ edges is denoted by G(p, q). If v is a vertex of a connected graph G, its
eccentricity e(v) is defined by e(v) = max {dg(v, u): ueV(G)}, where dg(u, v) is the distance between u and v in G. The minimum
and maximum eccentricities are the radius and diameter of G, denoted r(G) and diam(G) respectively. When diam(G) = r(G), G is
called a self-centered graph with radius r, equivalently G is r-self-centered. A connected graph G is said to be geodetic, if a unique
shortest path joins any two of its vertices.

A vertex and an edge are said to cover each other, if they are incident. A set of vertices, which covers all the edges of a graph
G is called a point cover for G. The smallest number of vertices in any point cover for G is called its point covering number and is
denoted by oo(G) or ao. A set of vertices in G is independent, if no two of them are adjacent. The largest number of vertices in
such a set is called the point independence number of G and is denoted by Bo(G) or o.

Sampathkumar and Neeralagi [12] introduced the concept of neighborhood sets in graphs. A subset S of V(G) is a
neighborhood set (n-set) of G, if G = uys(<N[V]>), where <N[v]> is the subgraph of G induced by N[v]. The neighborhood
number no(G) of G is the minimum cardinality of an n-set of G.

The concept of domination in graphs was introduced by Ore [2]. A set S < V is said to be a dominating set in G, if every
vertex in V— S is adjacent to some vertex in S. The domination number y(G) of G is the minimum cardinality of a dominating set.
A dominating set with cardinality y(G) is referred as a y-set. A dominating set S of a graph G is called an independent dominating
set of G, if the induced subgraph <S> is independent. The minimum cardinality of an independent dominating set of G is called the
independent domination number of G and is denoted by v;.

Whitney[14] introduced the concept of the line graph L(G) of a given graph G in 1932. The first characterization of line
graphs is due to Krausz. The Middle graph M(G) of a graph G was introduced by Hamada and Yoshimura[6]. Chikkodimath and
Sampathkumar [5] also studied it independently and they called it, the semi-total graph T,(G) of a graph G. Characterizations were
presented for middle graphs of any graph, trees and complete graphs in [3]. The concept of total graphs was introduced by Behzad
[4] in 1966. Sastry and Raju[13] introduced the concept of quasi-total graphs and they solved the graph equations for line graphs,
middle graphs, total graphs and quasi-total graphs. Janakiraman et al., introduced the concepts of Boolean and Boolean function
graphs [7-11].

The points and edges of a graph are called its elements. Two elements of a graph are neighbors, if they are either incident or
adjacent. The Boolean Function graph B(K,, INC, K;) of G is a graph with vertex set V(G)UE(G) and two vertices in B(K,,
INC, Kg) are adjacent if and only if they correspond to two adjacent vertices of G, two nonadjacent vertices of G or to a vertex
and an edge incident to it in G. For brevity, this graph is denoted by B,(G). Two vertices in B4(G) are adjacent if and only if they
correspond to two adjacent edges of G, two nonadjacent edges of G or to a vertex and an edge not incident to it in G. In this paper,
structural properties of the complement B4(G) of B4(G) including eccentricity properties are studied. Domination and
neighborhood numbers of B,4(G) are also found. For graph theoretic terminology, Harary [1] is referred.

Tele:
E-mail address: muthammai.sivakami@gmail.com

© 2016 Elixir All rights reserved



mailto:sivakami@gmail.com

38759 S. Muthammai and T.N. Janakiraman/ Elixir Dis. Math. 92 (2016) 38758-38763

2. Previous Results

Observation 2.1. [11]

1. K, is an induced subgraph of B4(G) and subgraph of B,(G) induced by q vertices is totally disconnected.
2. Number of vertices in B4(G) is p + q, since B4(G) contains vertices of both G and the line graph L(G) of G.
3. Number of edges in B4(G) is (p(p-1)/2) + 2q

4.For every vertex veV(G), dgag)(V) =p—1+dg(Vv)

(a) If G iscomplete, then dga)(Vv) =2( p—1).

(b) If G is totally disconnected, then dgag)(v) = p — 1.

(c) If G has atleast one edge, then 2 < dga)(v) < 2(p - 1) and dgy)(v) = Lifand only if G = 2K,.

5.For an edge ecE(G), dgag)(€) = 2.

6. B4(G) is always connected.

7.Let G be a (p, q) graph with atleast one edge. If p is odd, then B4(G) is Eulerian if and only if G is Eulerian.
8.If G is r-regular (r> 1 and is odd), then B,(G) is Eulerian.

9.For any graph G, B,4(G) is Hamiltonian if and only if

(i) G s apath ora cycle on atleast three vertices

(if) Each component of B4(G) is Ky, K; or Py, m > 3.
10.B4(G) is self-centered with radius 2 if and only if G is either C; or CsunKy, n>1.
11.B4(G) is bi-eccentric with radius 1 and diameter 2, if and only if G is either K, , or Ky jumK;, n>2, m> 1.
12.B4(G) is bi-eccentric with radius 2 and diameter 3, if and only if Bo(G) > 2.

3. Main Results

In this section, the properties of B,(G) including traversability and eccentricity properties are studied.

Observation 3.1.

1. K, is an induced subgraph of B.4(G) and the subgraph of B.4(G) induced by q vertices is totally disconnected.

2. Number of edges in B4(G) is (q(q—1)/2) + q(p —2)

3. For every vertex veV/(G), degree v in B4(G) is q — dg(V).

4.For an edge ecE(G), degree of e in B4(G) is p +q— 3.

5. For any connected graph G with p vertices, B,(G) is disconnected if and only if G is a star on p vertices.

6. If there exists a vertex veV/(G) such that v is not incident with exactly one edge in G, then v is a pendant vertex in B,(G).

7.1f vis a vertex in G such that v is incident with all the edges of G, then v is isolated in B4(G).

8.1f G is a graph with atleast three vertices, then each vertex of B,(G) lies on a triangle and hence girth of B,(G) is 2.

9.1f G is a graph with atleast four vertices and atleast one edge, then B4(G) is bi-regular if and only if G is regular and is regular if
and only if G is totally disconnected.

10.1f G is a graph with atleast three vertices, then B4(G) has no cut vertices.

11.1f G has atleast one edge, then vertex connectivity of B,(G) is equal to the edge connectivity of B,(G) = 2.

12.Let G be a (p, q) graph with atleast one edge. If p is odd, then B,(G) is Eulerian if and only if G is Eulerian.

13. If G is r-regular (r > 1 and is odd), then B,(G) is Eulerian.

14. For any graph G, B.(G) is geodetic if and only if G is either K, or nKy, n> 2.

15. If G is a graph with atleast four vertices, then _B4(G) is P4- free.
In the following, a necessary and sufficient condition for B,(G) to be Hamiltonian is proved.

Theorem 3.1.

Let G be any (p. q) graph which is not a star. Then B,(G) is hamiltonian if and only if q > p and degg(v) < 2, for all v in G.
Proof.

Let G be any (p, q) graph such that g > p and degg(v) < 2, for all vin G.

Therefore, deg gac)(V) = q —degs(v) = 2. That is, for every vertex v in G, there exist atleast two edges in G not incident with
v. By the construction of B,(G), each vertex of L(G) in B,(G) is adjacent to (p—2) vertices of G in B4(G). A cycle of length 2p
in B4(G) can be formed with p vertices of G and p vertices of L(G), each vertex of G followed by a vertex of L(G), that is,
V1€1V2€;...Vp€pVy, Where e, E(G) is not incident with v;, viiy, i=1, 2, ..., (p—1) and g, is not incident with vyand v;. Since each
pair of vertices in L(G) is adjacent in B4(G), the remaining (q—p) vertices of L(G) in B,(G) can be placed suitably in the above
cycle C,,. Therefore, there exists a Hamiltonian cycle in B4(G) and hence B,4(G) is Hamiltonian.

Conversely, let B4(G) be Hamiltonian. Therefore degree of each vertex in B,(G) must be atleast 2. That is, deg Bae)(V) = 2,
for all vin G, which implies q — degg(v) > 2.

That is, degg(v) < q-2.

Assume q < p. Since neither G nor G is a subgraph of B,(G) and each vertex of G in  B,(G) is adjacent to (p—2) vertices of
L(G) in B4(G) in the hamiltonian cycle each vertex of G is followed by a vertex of L(G). This is not possible, if q < p. Therefore
q> p.

Remark 3.1.
1. 1f G is a graph obtained by attaching pendant edges at a vertex of C;, then B,(G) contains a Hamiltonian path.
2.1f G is a graph obtained by subdividing an edge of a star, then B,(G) contains a hamiltonian path.
Theorem 3.2.
If G is a tree which is not a star, then B,(G) contains a hamiltonian path.
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Proof.

Let G be a tree which is not a star. Then g = p—1. Since G is not a star, B,(G) contains no isolated vertices As in Theorem
3.1., there exists a Hamiltonian path in _B4(G), V1€1V7€;. .. Vp1€p1Vp, Where eje E(G) is not incident with v;, v, i=1, 2, ..., (p-1).
Remark 3.2.

Let G be any graph such that B,(G) is connected and q = p — 1. Then B4(G) contains a Hamiltonian path.

In the following, point (line) covering number, (edge) independence number, chromatic number and neighborhood number

are found for B,(G).
Theorem 3.3.

Let G be any (p, q) graph with atleast three vertices and not totally disconnected.

Then ae( B4(G)) = q.
Proof.

Since the subgraph of B4(G) induced by vertices of L(G) in B,(G) is complete, op(Kg) = q —1. Letey, e, ..., eq be the g
vertices of L(G) in B4(G). Then D = {ey, €, ..., eq.1} is a line cover of Ky in B4(G). The vertex e;eV( B4(G)) covers the edges
in B4(G) of the from (v, eq), Where e, E(G) is not incident with VEV(G) Therefore Du{e}<=V( B4(G)) is @ minimum point
cover of By(G).

Remark 3.3. B B B B
Since a( B4(G)) + Bo( Ba(G))=p +d, Bo( B4(G)) = p and hence oo B4(G)) = Po( B4(G)) if and only if p =g.
Theorem 3.4.
Let G be a (p, q) graph which is not totally disconnected and is not a star. Then line covering number oy ( B4(G)) is given by

au( Ba(G))7min{ q,[ (p + 29)/2], if g > p.
P, ifg<p.
Proof
Casel: g=p

Subcase 1.a: g is even

Let vy, vy, ..., vy be the vertices of G in B4(G) and ejk = (vj, Vi) be an edge in G and eje V( B4(G)). Since q > p, for each edge
ecE(G), there eX|sts a vertex v;eV(G) not incident with e. Then {(v;, ej) € E( B4(G)) : eeE(G) is not incident with vieV(G)
and ey are distinct} is a line cover for B4(G). Therefore, a( B4(G)) < ¢. Since the subgraph of B,(G) induced by q vertices of
L(G) in B4(G) is complete, a1(Kq) = /2 and p vertices of B,4(G) are covered by the edges (vi, &), i=1,2, ..., p in B4(G).
Therefore, oy( B4(G)) < p + /2 and hence az( B4(G)) < min {q, p+ a/2} = min {q, (2p+q)/2}.
Subcase 1.b: q is odd

Let ey, €, ..., eq be the g vertices of L(G) in B4(G). Then <{ e, ey, .. . €1 = Kga in B4(G) and o1 (Kg1) = (g-1)/2. Let
v,eV(G) be not |nC|dent with eqeE(G). Then the edges (vp, eg), (Vi, €j), i = 1 2, ..., p—1 cover the p vertices and the vertex e,
in B4(G). Therefore, a;( B4«(G)) = p + (q-1)/2 = 2p + q — 1)/2 and hence ocl( B4(G)) =min { g, (2p + g- 1)/2. Combining
Subcase 1.1. and 1.2.,

ay( B4(G))=min{ q,[ (p + 2)/2], if > p.
Case2:g<p

Then the edges (v;, ej) E( B«G)),i=1,2, ..., p, where ejkeE(G) is not incident with v;eE(G), cover the vertices of B4(G).
Therefore, ou( B4(G)) = p.

Remark 3.4.
Since o( B4(G)) + B1( B4(G)) = p + q for a totally disconnected graph G and is not a star, B1( B4(G)) is given by
Bi( Ba(G))ygmin {p,[(q +1)/2], ifq>p
g, ifg<p
Remark 3.5.

When G =Ky, (n>2), Bu(Kyp) contains an isolated vertex and 31( B4(Ky,) =n.
In the following, chromatic number of B4(G) is found.

Theorem 3.5.
Let G be a (p, q) graph. Then
x( Ba(G))=[a, if 5(G) > 1
q+1, if3(G)=0
Proof.

Case 1: 5(G)>1

The subgraph of B4(G) induced by all the vertices of L(G) in B4(G) is a complete graph on q vertices and 1(Kg) = @. That is,
vertices of L(G) in B4(G) are coloured with q colours. Let v;eV(G) and e; i€E(G) be an edge incident with v;. Since 8(G) > 1, such
an edge exists in G. Then v;, &; €V/( B.(G)). Now colour the vertex v; in B4(G) by the colour given to g; in B4(G), since v; and
are independent vertices in B,(G).Since no two vertices of G are adjacent in B4(G), x( B4(G)) = q.
Case 2: 8(G) =0.

Let v be an isolated vertex in G. Then veV/( B4(G)) is adjacent to all the vertices of L(G) in B4(G). Therefore v can be
coloured with a new colour. Hence V( B4(G)) is q + 1 colourable and V( B,(G)) cannot be coloured with fewer than q + 1
colours. Therefore, x( B4(G))=q+ 1.
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In the following, domination number of B,(G) is found.

Remark 3.6. B -

Since there is no vertex of degree p + g — 1in By(G), y( B4(G)) > 2.
Theorem 3.6. B

For any graph G with atleast one edge, y( B4(G)) = 2 if and only if 3,(G) > 2.
Proof.

Let y( B4(G)) = 2. Then there exists a minimum dominating set D of B,(G) containing two vertices.
Case 1: D = {v;, o} c V(G)

Since no two vertices of G are adjacent in B4(G) and G contains atleast one edge, D cannot be dominating set of B4(G).
Case 2: D ={v, e} = V( B4(G)), where veV(G)

and ee E(G).

Let e = (u, w), where u, w € V/(G). Then u, w € V( B4(G)) and are not adjacent to any of the vertices in D.

Case 3: D = {es, e,} c E(G)

Then {ey, e,} = V( B4(G)). Since D is a dominating set of B,(G), e, and e, are independent edges in G. Therefore p,(G) > 2.

Conversely, assume B,(G) > 2. Then there exist atleast two independent edges say ej, €, in G. Let D’ be the set of vertices
in B4(G) corresponding to the edges e; and e, in G. Then D’ is a dominating set of B4(G) and y( B(G)) < 2. But y( B4(G)) > 2.
Therefore y( B4(G)) = 2.

Theorem 3.7.

If G is a graph with atleast one edge, then y( B4(G)) = yi( B4(G)) <3.
Proof.

Lete = (u, v) €eE(G), where u, v eV(G).

Then D = { u, v, e}c V( B4(G)) is a dominating set of B4(G) and is independent. Hence, y( B4(G)) = yi( B4(G)) < 3.
Remark 3.7.

a. If G is a star or a cycle on three vertices, then y( B4(G)) = vi( B4(G)) = 3.

b.For any graph G, let D be subset of E(G) with atleast two vertices and <D> is not a star. Then the set D’ vertices of B4(G)
corresponding to the edges of G is a dominating set of B,(G) and D contains exactly two vertices, then D' is a dominating set
of B,(G) if and only if edges of <D> are independent.

Theorem 3.8.

Let G be a graph which is not a star. Then y( B4(G)) = v(G) = 2 if and only if either there exists a dominating edge in G or G
is a union of stars.
Proof.

Let there exist a dominating edge e in G. Then each vertex in G is adjacent to atleast one of the end vertices of e. Therefore,
v(G) = 2. Since G is a not a star, there exist atleast two independent edges in G. Let e, e, be the vertices in B4(G) corresponding
to the two independent edges in G. Then D = {e,, e,} is a dominating set of B,(G). Therefore, y( B4(G)) = 2. Similarly, if G is a
union of stars, then also y( B4(G)) = 2.

Conversely, assume y( B4(G)) = y(G) = 2. Then there exists a dominating set D of G with two vertices. That is, either G
contains a dominating edge or G = K; Ky m, N, m2> 1.

Theorem 3.9.

For any graph G, y( B4(G)) = y(L(G)) = 2 if and only if there exist two independent edges in G such that each edge in G is
adjacent to atleast one of those independent edges, where L(G) is the line graph of G.

Proof.

Let there exist two independent edges in G such that each edge in G is adjacent to one of the independent edges. Let e; and e,
be the corresponding vertices in L(G). Then D ={ ey, e;} < V(L(G)) is a dominating set of both L(G) and B,(G). Therefore
W B(G)=v(G)=2. )

Conversely, assume y( B4(G)) = y(G) = 2. Then there exists minimum dominating set D of both L(G) and B4(G) containing
two vertices. Let D = {e,, e,} < V(L(G)), where e; and e, are edges in G. Since D is a dominating set of L(G), each edge in G is
adjacent to atleast one of e; and e,. Similarly, since D is also a dominating set of B4(G), e; and e, must be independent edges in G.
Therefore, there exist two independent edges e; and e, in G such that each edge in G is adjacent to atleast one of e; and e;.
Remark 3.8.

For any graph G, if y(L(G)) > 3, then y( B4(G)) # v(G).

Theorem 3.10.

For any graph G, 4 < y(B4(G)) + v( B4(G)) < ao(G) + 2.
Proof.

Let B1(G) > 2. Then y( B4(G)) = 2 and y(B4(G)) < ao(G).

Therefore y(B4(G)) + v( B4(G)) < 0o(G) + 2

Let B1(G) = 1. If G = Ky, n > 2, then < y(B4(G)) + y( B4(G))=1 + 3 = 4. If G = Cs, then y(B4(G)) = a(G) = 2 and
v( B4(G)) = 3. Therefore y(B4(G)) + y( B4(G)) > 4.

Hence 4 < y(B4(G)) + v( Bu(G)) < 0e(G) + 2.

The lower bound is attained, when G = K; ,, n > 2 and the upper bound is attained for all graphs G with $,(G) > 2 and G = Cs.
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Theorem 3.11.

For any graph G with q edges, y( B4(G)) = ao( B4(G)) if and only if G is one of the following graphs. 2K,umKj, CsumKj,
KipumKy, m>0,n2> 3.

Proof.

v( B4(G)) = 2 or 3. But o( B4(G)) = q. Therefore, q = 2 or 3. If B1(G) > 2, then y( B4(G)) = 2 and oi( B4(G)) = 2. Therefore
Gz 2K2UmK1, m > 0.

If B1(G) = 1, then y( B4(G)) = aw( B4(G)) = 3. Therefore G = CzumK; or Ky ,umK;, m>0,n> 3.

Theorem 3.12.

Let G be a graph with atleast three vertices and not totally disconnected.

Then y( B4(G)) = Bo( B4(G)) if and only if G is one of the following graphs. Cs, P3 and KoUK ;.
Proof.

v( B4(G)) = 2 or 3. But Bo( B4(G)) = p. Therefore p = 2 or 3. Therefore G = Cs, P; or K;UK;.

In the following neighborhood number no( B4(G)) of B,(G) is found.
Theorem 3.13.

Let G be any graph containing atleast one edge. Then no( B4(G)) =2 or 3.
Proof.
Casel: B4(G) = 2.

Then there exist atleast two independent edges in G. Let ey, e, be the vertices in B4(G) corresponding to independent edges in
G. Then D = { ey, &,} = V( B4(G)) is a dominating set of B4(G).

Let e;= (uy, V1), where u;, v; €V( By(G)).

N ga)(€1) = {V(L(G) — {e.}, V(G) — {uy, vi}}. Therefore, each edge in <V/( B4(G)) — D> belongs to <N(e;)> and hence D is
an n-set for B,(G) and no( B4(G)) <2.

Since y( B4«(G)) =2, no( Bu(G)) > 2. Therefore, no( B4(G)) = 2.

Case 2: B1(G) =1

ThenG=CsorK;,,n>1

If G = C;0r Ky, N1, then ng( B4(G)) = 3.

In the following, distance between any two vertices of B4(G) are found.

Lemma 3.1.

Let G be a graph which is not a star. If v, and v, are any two vertices in G, then distance d(v4, v,) between v; and v, in E4(G)
is 2 or3.
Proof.

Let vq, Vo € G. Then vy, v, € By(G). Since no two vertices in G are adjacent in B4(G), d(v1, V) = 2 in B4(G).

Let e be an edge in G not incident with both v, and v,. Then viev, is a geodesic path in E4(G) and hence d(vy, v,) = 2
in B4(G).

Assume each edge in G is incident with atleast one of v; and v,. That is, {vi, v,} is a point cover of G. Let e; be an edge in G
incident with v, but not v, and e, be an edge in G incident with v, but not v;. (This is possible, since G is not a star). Then vie,e;Vv,
is a geodesic path in G.

Therefore, d(vi, v, ) = 3 in By(G).

Lemma 3.2.
Let G be a graph which is not a star. If veV/(G) and ecE(G), then the distance between v, e in B,(G) is atmost 2 and if e,
e,cE(G), then distance between e; and e, in B4(G) is 1.
Proof.
(i) Let veV(G) and ecE(G). If e is not incident with v in G, then d(v, €) = 1 in B4(G). Let e be incident with v in G. Since G is
not a star, there exists an edge e; in G not incident with v in G.
Then v, e, e;eV( B4(G)) and ve,e is a geodesic path in B4(G). Hence d(v, €) = 2 in B4(G).
(ii) Let e;, e,eE(G). Then ey, e, V(L(G)). Since any vertices of L(G) in B,(G) are adjacent,
d(er, &) = 1 in By(G).
Observation 3.2.

From Lemma 3.1. and Lemma 3.2., it is observed that, if G is not a star, then
a. Eccentricity of a vertex v in V( B4(G))NV(G) is 2 or 3 and eccentricity of a vertex e in V( B4(G))NV(L(G)) is 2.
b.Radius of By(G) is 2 and diameter of B,(G) is 2 or 3.

c. B4(G) is self-centered with radius 2 if and only if for every pair of vertices u, v in G, there exists atleast one edge in G not
incident with both u v in G. That is, there exists no point cover of G containing two vertices.

d. B4(G) is bieccentric with radius 2 and diameter 3 if and only if there exists a point cover of G containing two vertices.
Example 3.1.

a. By(P,) (n>6), B4(C,) (n>5), By(K,) (n>4) are self-centered with radius 2.

b. B4(C,) (n =3, 4) are bieccentric with radius 2 and diameter 3.
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