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1. Introduction 

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let V(G) and E(G) denote its vertex set and 

edge set respectively. A graph with p vertices and q edges is denoted by G(p, q).  If v is a vertex of a connected graph G, its 

eccentricity e(v) is defined by e(v) = max {dG(v, u): uV(G)}, where dG(u, v) is the distance between u and v in G. The minimum 

and maximum eccentricities are the radius and diameter of G, denoted r(G) and diam(G) respectively. When diam(G) = r(G), G is 

called a self-centered graph with radius r, equivalently G is r-self-centered. A connected graph G is said to be geodetic, if a unique 

shortest path joins any two of its vertices. 

A vertex and an edge are said to cover each other, if they are incident. A set of vertices, which covers all the edges of a graph 

G is called a point cover for G. The smallest number of vertices in any point cover for G is called its point covering number and is 

denoted by 0(G) or 0. A set of vertices in G is independent, if no two of them are adjacent. The largest number of vertices in 

such a set is called the point independence number of G and is denoted by 0(G) or 0.  

Sampathkumar and Neeralagi [12] introduced the concept of neighborhood sets in graphs. A  subset  S  of  V(G)  is  a  

neighborhood  set  (n-set)  of  G, if G = vS(<N[v]>), where <N[v]> is the subgraph of G induced by N[v]. The neighborhood 

number n0(G) of G is the minimum cardinality of an n-set of G. 

The concept of domination in graphs was introduced by Ore [2]. A set S  V is said to be a dominating set in G, if every 

vertex in V S is adjacent to some vertex in S. The domination number (G) of G is the minimum cardinality of a dominating set. 

A dominating set with cardinality (G) is referred as a -set. A  dominating set S of a graph G is called an independent dominating 

set of G, if the induced subgraph <S> is independent.The minimum cardinality of an independent dominating set of G is called the 

independent domination number of G and is denoted by i. 

Whitney[14] introduced the concept of the line graph L(G) of a given graph G in 1932. The first characterization of line 

graphs is due to Krausz. The Middle graph M(G) of a graph G was introduced by Hamada and Yoshimura[6]. Chikkodimath and 

Sampathkumar [5] also studied it independently and they called it, the semi-total graph T1(G) of a graph G. Characterizations were 

presented for middle graphs of any graph, trees and complete graphs in [3]. The concept of total graphs was introduced by Behzad 

[4] in 1966. Sastry and Raju[13] introduced the concept of quasi-total graphs and they solved the graph equations for line graphs, 

middle graphs, total graphs and quasi-total graphs.  Janakiraman et al., introduced the concepts of Boolean and Boolean function 

graphs [7-11]. 

The points and edges of a graph are called its elements. Two elements of a graph are neighbors, if they are either incident or 

adjacent. The Boolean Function graph B(Kp, INC,Kq)  of G is a graph with vertex set V(G)E(G) and two vertices in B(Kp, 

INC,Kq)  are adjacent if and only if they correspond to two adjacent vertices of G, two nonadjacent vertices of G or to a vertex 

and an edge incident to it in G. For brevity, this graph is denoted by B4(G). Two vertices inB4(G) are adjacent if and only if they 

correspond to two adjacent edges of G, two nonadjacent edges of G or to a vertex and an edge not incident to it in G. In this paper, 

structural properties of the complementB4(G) of B4(G) including  eccentricity properties are studied. Domination and 

neighborhood numbers of B4(G) are also found.  For graph theoretic terminology, Harary [1] is referred. 
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2. Previous Results 

Observation 2.1. [11] 
1. Kp is an induced subgraph of B4(G) and  subgraph of B4(G) induced by q  vertices is totally disconnected. 

2. Number of vertices in B4(G) is p + q, since B4(G) contains vertices of both G and the line graph L(G) of G. 

3. Number of edges in B4(G) is (p(p-1)/2) + 2q 

4. For every vertex vV(G),  dB4(G)(v) = p – 1 + dG(v) 

(a) If G is complete, then dB4(G)(v) =2( p – 1). 

(b) If G is totally disconnected, then dB4(G)(v) = p – 1. 

(c) If G has atleast one edge, then 2 dB4(G)(v)  2(p - 1) and  dB4(G)(v) = 1 if and only if G ≅  2K1. 

5. For an edge eE(G), dB4(G)(e) = 2.  

6. B4(G) is always connected. 

7. Let G be a (p, q) graph with atleast one edge. If p is odd, then B4(G)  is Eulerian if and only if G is Eulerian. 

8. If G is r-regular ( r ≥ 1 and is odd), then B4(G) is Eulerian. 

9. For   any  graph G, B4(G) is Hamiltonian if and only if 

(i) G is  a path or a cycle on atleast three vertices 

(ii) Each component of B4(G)  is K1, K2 or Pm, m ≥ 3.    

10.B4(G) is self-centered with radius 2 if and only if G is either C3 or C3nK1, n ≥1. 

11. B4(G) is bi-eccentric with radius 1 and diameter 2, if and only if G is either K1,n or K1,nmK1, n ≥ 2, m ≥ 1. 

12. B4(G) is bi-eccentric with radius 2 and diameter 3, if and only if 0(G) ≥ 2. 

3. Main Results 

In this section, the properties ofB4(G) including traversability and eccentricity properties are studied.  

Observation  3.1. 

1. Kp is an induced subgraph ofB4(G) and the subgraph ofB4(G) induced by q vertices is totally disconnected. 

2. Number of edges inB4(G) is (q(q1)/2) + q(p 2) 

3. For every vertex vV(G), degree v inB4(G) is q – dG(v).  

4. For an edge eE(G), degree of e in B4(G) is  p + q  3.
  

5. For any connected graph G with p vertices, B4(G) is disconnected if and only if G is a star on p vertices. 

6. If there exists a vertex vV(G) such that v is not incident with exactly one edge in G, then v is a pendant vertex inB4(G).
  

7. If v is a vertex in G such that v is incident with all the edges of G, then v is isolated inB4(G). 

8. If G is a graph with atleast three vertices, then each vertex ofB4(G) lies on a triangle and hence girth ofB4(G) is 2. 

9. If G is a graph with atleast four vertices and atleast one edge, thenB4(G) is bi-regular if and only if G is regular and is regular if 

and only if G is totally disconnected. 

10.If G is a graph with atleast three vertices, thenB4(G) has no cut vertices. 

11.If G has atleast one edge, then vertex connectivity ofB4(G) is equal to the edge connectivity ofB4(G) = 2. 

12.Let G be a (p, q) graph with atleast one edge. If p is odd, thenB4(G) is Eulerian if and only if G is Eulerian. 

13. If G is r-regular ( r  1 and is odd), thenB4(G) is Eulerian. 

14. For any graph G, B4(G) is geodetic if and only if G is either K2 or nK1, n  2. 

15. If G is a graph with atleast four vertices,  thenB4(G) is P4- free. 

In the following, a necessary and sufficient condition forB4(G) to be Hamiltonian is proved. 

Theorem 3.1. 

Let G be any (p. q) graph which is not a star. ThenB4(G) is hamiltonian if and only if q  p and degG(v)  2, for all v in G. 

Proof. 

Let G be any (p, q) graph such that q  p and degG(v)  2, for all v in G.  

Therefore, degB4(G)(v) =  q  degG(v)  2. That is, for every vertex v in G, there exist atleast two edges in G not incident with 

v.  By the construction ofB4(G), each vertex of L(G) inB4(G) is adjacent to (p2) vertices of G inB4(G). A cycle of length 2p 

in B4(G) can be formed with p vertices of G and p vertices of L(G), each vertex of G followed by a vertex of L(G), that is, 

v1e1v2e2…vpepv1, where eiE(G) is not incident with vi, vi+1, i = 1, 2, …, (p1) and ep is not incident with vp and v1.  Since each 

pair of vertices in L(G) is adjacent inB4(G), the remaining (qp) vertices of L(G) inB4(G) can be placed suitably in the above 

cycle C2p. Therefore, there exists a Hamiltonian cycle inB4(G) and henceB4(G) is Hamiltonian. 

Conversely, letB4(G) be Hamiltonian. Therefore degree of each vertex inB4(G) must be atleast 2. That is, degB4(G)(v)  2, 

for all v in G, which implies q  degG(v)  2.  

That is, degG(v)  q 2.  

Assume q < p. Since neither G norG is a subgraph of B4(G) and each vertex of G in B4(G) is adjacent to (p2) vertices of 

L(G) inB4(G) in the hamiltonian cycle each vertex of G is followed by a vertex of L(G). This is not possible, if q < p. Therefore  

q   p. 

Remark 3.1. 

1. If G is a graph obtained by attaching pendant edges at a vertex of C3, thenB4(G) contains a Hamiltonian path. 

2. If G is a graph obtained by subdividing an edge of a star, thenB4(G) contains a hamiltonian path. 

Theorem 3.2. 

If G is a tree which is not a star, thenB4(G) contains a hamiltonian path. 
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Proof. 

Let G be a tree which is not a star. Then q = p1. Since G is not a star, B4(G) contains no isolated vertices. As in Theorem 

3.1., there exists a Hamiltonian path inB4(G), v1e1v2e2…vp-1ep-1vp, where eiE(G) is not incident with vi, vi+1, i = 1, 2, …, (p1). 

Remark 3.2. 

Let G be any graph such thatB4(G) is connected and q = p  1. ThenB4(G) contains a Hamiltonian path. 

 

 In the following, point (line) covering number, (edge) independence number, chromatic number and neighborhood number 

are found forB4(G). 

Theorem 3.3. 

Let G be any (p, q) graph with atleast three vertices and not totally disconnected.  

Then 0(B4(G)) = q. 

Proof. 

Since the subgraph ofB4(G) induced by vertices of L(G) inB4(G) is complete, 0(Kq) = q 1. Let e1, e2, …, eq be the q 

vertices of L(G) inB4(G). Then D = {e1, e2, …, eq-1} is a line cover of Kq inB4(G). The vertex eqV(B4(G)) covers the edges 

inB4(G) of the from (v, eq), where eqE(G) is not incident with vV(G). Therefore D{eq}V(B4(G)) is a minimum point 

cover ofB4(G).  

Remark 3.3. 

Since 0(B4(G)) + 0(B4(G)) = p + q, 0(B4(G)) = p and hence 0(B4(G)) = 0(B4(G)) if and only if p = q. 

Theorem 3.4. 

Let G be a (p, q) graph which is not totally disconnected and is not a star. Then line covering number 1(B4(G)) is given by  

1(B4(G))= min{ q, (p + 2q)/2,  if q  p. 

  p,    if q < p. 

Proof 

Case 1: q  p 

Subcase 1.a: q is even  

Let v1, v2, …, vp be the vertices of G inB4(G) and ejk = (vj, vk) be an edge in G and ejkV(B4(G)). Since q  p, for each edge 

eE(G), there exists a vertex viV(G) not incident with e. Then {(vi, ejk)  E(B4(G)) : ejkE(G) is not incident with viV(G) 

and ejk are distinct} is a line cover forB4(G). Therefore, 1(B4(G))  q. Since the subgraph ofB4(G) induced by q vertices of 

L(G) inB4(G) is complete, 1(Kq) = q/2 and p vertices of B4(G) are covered by the edges (vi, ejk), i = 1, 2, …, p in B4(G). 

Therefore, 1(B4(G))  p + q/2 and hence  1(B4(G))  min {q, p+ q/2} = min {q, (2p+q)/2}. 

Subcase 1.b: q is odd  

Let e1, e2, …, eq be the q vertices of  L(G) inB4(G). Then <{ e1, e2, …, eq-1}>   Kq-1 inB4(G) and 1(Kq-1) = (q1)/2. Let 

vpV(G) be not incident with eqE(G). Then the edges (vp, eq), (vi, ejk), i = 1, 2, …, p1 cover the p vertices and the vertex eq 

inB4(G). Therefore, 1(B4(G)) = p + (q1)/2 = 2p + q – 1)/2 and hence 1(B4(G)) = min { q, (2p + q 1)/2. Combining 

Subcase 1.1. and 1.2.,  

1(B4(G))= min{ q, (p + 2q)/2,  if q  p. 

Case 2: q < p 

Then the edges (vi, ejk)E(B4(G)), i = 1, 2, …, p, where ejkE(G) is not incident with viE(G), cover the vertices ofB4(G). 

Therefore, 1(B4(G)) =  p.  

Remark 3.4. 

Since 1(B4(G)) + 1(B4(G)) = p + q for a totally disconnected graph G and is not a star, 1(B4(G))   is given by 

1(B4(G))= min { p, (q + 1)/2,  if q  p 

  q,   if q < p 

Remark 3.5. 

When G  K1,n, (n  2), B4(K1,n) contains an isolated vertex and 1(B4(K1,n)) = n.   

In the following, chromatic number ofB4(G) is found. 

Theorem  3.5. 

Let G be a (p, q) graph. Then  

(B4(G))= q,   if (G)  1 

  q + 1,                if (G) = 0 

Proof. 

Case 1: (G)  1 

The subgraph ofB4(G) induced by all the vertices of L(G) inB4(G) is a complete graph on q vertices and (Kq) = q. That is, 

vertices of L(G) inB4(G) are coloured with q colours. Let viV(G) and eiE(G) be an edge incident with vi. Since (G)  1, such 

an edge exists in G. Then vi, ei V(B4(G)). Now colour the vertex vi inB4(G) by the colour given to ei inB4(G), since vi and ei 

are independent vertices inB4(G).Since no two vertices of G are adjacent inB4(G), (B4(G)) = q. 

Case 2: (G) = 0. 

Let v be an isolated vertex in G. Then vV(B4(G)) is adjacent to all the vertices of L(G) inB4(G). Therefore v can be 

coloured with a new colour. Hence V(B4(G)) is q + 1 colourable and V(B4(G)) cannot be coloured with fewer than q + 1 

colours. Therefore,  (B4(G)) = q + 1. 
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In the following, domination number of B4(G) is found. 

Remark 3.6. 

Since there is no vertex of degree p + q  1 inB4(G), (B4(G))  2. 

Theorem 3.6. 

For any graph G with atleast one edge, (B4(G)) = 2 if and only if 1(G)  2. 

Proof. 

 Let (B4(G)) = 2. Then there exists a minimum dominating set D ofB4(G) containing two vertices. 

Case 1: D = {v1, v2}  V(G) 

Since no two vertices of G are adjacent inB4(G) and G contains atleast one edge, D cannot be dominating set ofB4(G). 

Case 2:  D = {v, e}  V(B4(G)), where vV(G) 

and e E(G). 

Let e = (u, w), where u, w  V(G). Then u, w  V(B4(G)) and are not adjacent to any of the vertices in D. 

Case 3: D = {e1, e2}  E(G) 

Then {e1, e2}  V(B4(G)). Since D is a dominating set ofB4(G), e1 and e2 are independent edges in G. Therefore 1(G)  2. 

Conversely, assume 1(G)  2. Then there exist atleast two independent edges say e1, e2 in G. Let D be the set of vertices 

inB4(G) corresponding to the edges e1 and e2 in G. Then D is a dominating set ofB4(G) and (B4(G))  2. But (B4(G))  2. 

Therefore (B4(G)) = 2. 

Theorem 3.7. 

If G is a graph with atleast one edge, then (B4(G)) = i(B4(G))  3. 

Proof. 

Let e = (u, v) E(G), where u, v V(G).  

Then D = { u, v, e} V(B4(G)) is a dominating set  ofB4(G) and is independent. Hence, (B4(G)) = i(B4(G))  3. 

Remark 3.7. 

a. If G is a star or a cycle on three vertices, then (B4(G)) = i(B4(G)) = 3. 

b. For any graph G, let D be subset of E(G) with atleast two vertices and <D> is not a star. Then the set D vertices ofB4(G) 

corresponding to the edges of G is a dominating set ofB4(G) and D contains exactly two vertices, then D is a dominating set 

ofB4(G) if and only if edges of <D> are independent. 

Theorem 3.8. 

Let G be a graph which is not a star. Then  (B4(G)) = (G) = 2 if and only if either there exists a dominating edge in G or G 

is a union of stars. 

Proof. 

Let there exist a dominating edge e in G. Then each vertex in G is adjacent to atleast one of the end vertices of e. Therefore, 

(G) = 2. Since G is a not  a star, there exist atleast two independent edges in G. Let e1, e2 be the vertices in B4(G) corresponding 

to the two independent edges in G. Then D = {e1, e2} is a dominating set ofB4(G). Therefore, (B4(G)) = 2. Similarly, if G is a 

union of stars, then also (B4(G)) = 2. 

Conversely, assume (B4(G)) = (G) = 2. Then there exists a dominating set D of G with two vertices. That is, either G 

contains a dominating edge or G  K1,nK1,m, n, m  1. 

Theorem 3.9. 

For any graph G, (B4(G)) = (L(G)) = 2 if and only if there exist two independent edges in G such that each edge in G is 

adjacent to atleast one of those independent edges, where L(G) is the line graph of G.  

Proof. 

Let there exist two independent edges in G such that each edge in G is adjacent to one of the independent edges. Let e1 and e2 

be the corresponding vertices in L(G). Then D ={ e1, e2}  V(L(G)) is a dominating set of both L(G) and B4(G). Therefore  

(B4(G)) = (G) = 2. 

Conversely, assume (B4(G)) = (G) = 2. Then there exists minimum dominating set D of both L(G) andB4(G) containing 

two vertices. Let D = {e1, e2}  V(L(G)), where e1 and e2 are edges in G. Since D is a dominating set of L(G), each edge in G is 

adjacent to atleast one of e1 and e2. Similarly, since D is also a dominating set ofB4(G), e1 and e2 must be independent edges in G. 

Therefore, there exist two independent edges e1 and e2 in G such that each edge in G is adjacent to atleast one of e1 and e2. 

Remark 3.8. 

For any graph G, if (L(G))  3, then (B4(G))  (G). 

Theorem 3.10. 

For any graph G, 4  (B4(G)) + (B4(G))  0(G) + 2. 

Proof. 

Let 1(G)  2. Then (B4(G)) = 2 and (B4(G))  0(G). 

Therefore  (B4(G)) + (B4(G))  0(G) + 2 

Let 1(G) = 1. If G  K1,n, n  2, then   (B4(G)) + (B4(G))= 1 + 3 = 4. If G  C3, then  (B4(G)) = 0(G) = 2 and  

(B4(G)) = 3. Therefore (B4(G)) + (B4(G))  4.  

Hence 4  (B4(G)) + (B4(G))  0(G) + 2. 

The lower bound is attained, when G  K1,n, n  2 and the upper bound is attained for all graphs G with 1(G)  2 and G  C3. 
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Theorem 3.11. 

For any graph G with q edges, (B4(G)) = 0(B4(G)) if and only if G is one of the following graphs. 2K2mK1, C3mK1, 

K1,nmK1, m  0, n  3. 

Proof. 

(B4(G)) = 2 or 3. But 0(B4(G)) = q. Therefore, q = 2 or 3. If 1(G)  2, then (B4(G)) = 2 and 0(B4(G)) = 2. Therefore 

G  2K2mK1, m  0. 

If 1(G) = 1, then (B4(G)) = 0(B4(G)) = 3. Therefore G  C3mK1  or K1,nmK1, m  0, n  3.  

Theorem 3.12. 

Let G be a graph with atleast three vertices and not totally disconnected.  

Then (B4(G)) = 0(B4(G)) if and only if G is one of the following graphs. C3, P3 and K2K1. 

Proof. 

(B4(G)) = 2 or 3. But 0(B4(G)) = p. Therefore  p = 2 or 3. Therefore  G  C3, P3 or K2K1. 

In the following neighborhood number n0(B4(G)) of B4(G) is found. 

Theorem 3.13. 

Let G be any graph containing atleast one edge. Then n0(B4(G)) = 2 or 3. 

Proof. 

Case1: 1(G)  2. 

Then there exist atleast two independent edges in G. Let e1, e2 be the vertices inB4(G) corresponding to independent edges in 

G. Then D = { e1, e2}  V(B4(G)) is a dominating set ofB4(G).   

Let e1= (u1, v1), where u1, v1 V(B4(G)).   

NB4(G)(e1) = {V(L(G) – {e1}, V(G) – {u1, v1}}. Therefore, each edge in <V(B4(G)) – D> belongs to <N(e1)> and hence D is 

an n-set forB4(G) and n0(B4(G))  2.  

Since (B4(G))  2,    n0(B4(G))  2. Therefore, n0(B4(G)) = 2. 

Case 2: 1(G) = 1  

Then G  C3 or K1,n, n  1 

If G  C3 or K1,n, n  1, then n0(B4(G)) = 3. 

In the following, distance between any two vertices ofB4(G) are found. 

Lemma 3.1. 

Let G be a graph which is not a star. If v1 and v2 are any two vertices in G, then distance d(v1, v2) between v1 and v2 in B4(G) 

is  2 or 3. 

Proof. 

Let v1, v2  G. Then v1, v2 B4(G). Since no two vertices in G are adjacent inB4(G), d(v1, v2)  2 inB4(G). 

Let e be an edge in G not incident with both v1 and v2. Then v1ev2 is a geodesic path inB4(G) and hence d(v1, v2) = 2 

inB4(G). 

Assume each edge in G is incident with atleast one of v1 and v2. That is, {v1, v2} is a point cover of G. Let e1 be an edge in G 

incident with v1 but not v2 and e2 be an edge in G incident with v2 but not v1. (This is possible, since G is not a star). Then v1e2e1v2 

is a geodesic path in G. 

Therefore, d(v1, v2 ) = 3 inB4(G).   

Lemma 3.2. 

Let G be a graph which is not a star. If vV(G) and eE(G), then the distance between v, e inB4(G) is atmost 2 and if e1, 

e2E(G), then distance between e1 and e2 inB4(G) is 1. 

Proof. 

(i) Let vV(G) and eE(G). If e is not incident with v in G, then d(v, e) = 1 inB4(G). Let e be incident with v in G. Since G is 

not a star, there exists an edge e1 in G not incident with v in G.  

Then v, e, e1V(B4(G)) and ve1e is a geodesic path inB4(G). Hence d(v, e) = 2 inB4(G). 

(ii) Let e1, e2E(G). Then e1, e2V(L(G)). Since any vertices of L(G) inB4(G) are adjacent,  

d(e1, e2) = 1 inB4(G). 

Observation 3.2. 

From Lemma 3.1. and Lemma 3.2., it is observed that, if G is not a star, then 

a. Eccentricity of a vertex v in V(B4(G))V(G) is 2 or 3 and eccentricity of a vertex e in V(B4(G))V(L(G)) is 2.  

b. Radius of B4(G) is 2 and diameter ofB4(G) is 2 or 3. 

c. B4(G) is self-centered with radius 2 if and only if for every pair of vertices u, v in G, there exists atleast one edge in G not 

incident with both u v in G. That is, there exists no point cover of G containing two vertices. 

d. B4(G) is bieccentric with radius 2 and diameter 3 if and only if there exists a point cover of G containing two vertices. 

Example 3.1. 

a. B4(Pn) (n  6),B4(Cn) (n  5),B4(Kn) (n  4) are self-centered with radius 2.  

b.B4(Cn) ( n = 3, 4 ) are bieccentric with radius 2 and diameter 3.  
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