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1. Introduction 

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let V(G) and E(G) denote its vertex set and 

edge set respectively. A graph with p vertices and q edges is denoted by G(p, q).  If v is a vertex of a connected graph G, its 

eccentricity e(v) is defined by e(v) = max {dG(v, u): uV(G)}, where dG(u, v) is the distance between u and v in G. The minimum 

and maximum eccentricities are the radius and diameter of G, denoted r(G) and diam(G) respectively. When diam(G) = r(G), G is 

called a self-centered graph with radius r, equivalently G is r-self-centered. A connected graph G is said to be geodetic, if a unique 

shortest path joins any two of its vertices. 

A vertex and an edge are said to cover each other, if they are incident. A set of vertices, which covers all the edges of a graph 

G is called a point cover for G. The smallest number of vertices in any point cover for G is called its point covering number and is 

denoted by 0(G) or 0. A set of vertices in G is independent, if no two of them are adjacent. The largest number of vertices in 

such a set is called the point independence number of G and is denoted by 0(G) or 0.  

Sampathkumar and Neeralagi [12] introduced the concept of neighborhood sets in graphs. A  subset  S  of  V(G)  is  a  

neighborhood  set  (n-set)  of  G, if G = vS(<N[v]>), where <N[v]> is the subgraph of G induced by N[v]. The neighborhood 

number n0(G) of G is the minimum cardinality of an n-set of G. 

The concept of domination in graphs was introduced by Ore [2]. A set S  V is said to be a dominating set in G, if every 

vertex in V S is adjacent to some vertex in S. The domination number (G) of G is the minimum cardinality of a dominating set. 

A dominating set with cardinality (G) is referred as a -set. A  dominating set S of a graph G is called an independent dominating 

set of G, if the induced subgraph <S> is independent.The minimum cardinality of an independent dominating set of G is called the 

independent domination number of G and is denoted by i. 

Whitney[14] introduced the concept of the line graph L(G) of a given graph G in 1932. The first characterization of line 

graphs is due to Krausz. The Middle graph M(G) of a graph G was introduced by Hamada and Yoshimura[6]. Chikkodimath and 

Sampathkumar [5] also studied it independently and they called it, the semi-total graph T1(G) of a graph G. Characterizations were 

presented for middle graphs of any graph, trees and complete graphs in [3]. The concept of total graphs was introduced by Behzad 

[4] in 1966. Sastry and Raju[13] introduced the concept of quasi-total graphs and they solved the graph equations for line graphs, 

middle graphs, total graphs and quasi-total graphs.  Janakiraman et al., introduced the concepts of Boolean and Boolean function 

graphs [7-11]. 

The points and edges of a graph are called its elements. Two elements of a graph are neighbors, if they are either incident or 

adjacent. The Boolean Function graph B(Kp, INC,Kq)  of G is a graph with vertex set V(G)E(G) and two vertices in B(Kp, 

INC,Kq)  are adjacent if and only if they correspond to two adjacent vertices of G, two nonadjacent vertices of G or to a vertex 

and an edge incident to it in G. For brevity, this graph is denoted by B4(G). Two vertices inB4(G) are adjacent if and only if they 

correspond to two adjacent edges of G, two nonadjacent edges of G or to a vertex and an edge not incident to it in G. In this paper, 

structural properties of the complementB4(G) of B4(G) including  eccentricity properties are studied. Domination and 

neighborhood numbers of B4(G) are also found.  For graph theoretic terminology, Harary [1] is referred. 
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2. Previous Results 

Observation 2.1. [11] 
1. Kp is an induced subgraph of B4(G) and  subgraph of B4(G) induced by q  vertices is totally disconnected. 

2. Number of vertices in B4(G) is p + q, since B4(G) contains vertices of both G and the line graph L(G) of G. 

3. Number of edges in B4(G) is (p(p-1)/2) + 2q 

4. For every vertex vV(G),  dB4(G)(v) = p – 1 + dG(v) 

(a) If G is complete, then dB4(G)(v) =2( p – 1). 

(b) If G is totally disconnected, then dB4(G)(v) = p – 1. 

(c) If G has atleast one edge, then 2 dB4(G)(v)  2(p - 1) and  dB4(G)(v) = 1 if and only if G ≅  2K1. 

5. For an edge eE(G), dB4(G)(e) = 2.  

6. B4(G) is always connected. 

7. Let G be a (p, q) graph with atleast one edge. If p is odd, then B4(G)  is Eulerian if and only if G is Eulerian. 

8. If G is r-regular ( r ≥ 1 and is odd), then B4(G) is Eulerian. 

9. For   any  graph G, B4(G) is Hamiltonian if and only if 

(i) G is  a path or a cycle on atleast three vertices 

(ii) Each component of B4(G)  is K1, K2 or Pm, m ≥ 3.    

10.B4(G) is self-centered with radius 2 if and only if G is either C3 or C3nK1, n ≥1. 

11. B4(G) is bi-eccentric with radius 1 and diameter 2, if and only if G is either K1,n or K1,nmK1, n ≥ 2, m ≥ 1. 

12. B4(G) is bi-eccentric with radius 2 and diameter 3, if and only if 0(G) ≥ 2. 

3. Main Results 

In this section, the properties ofB4(G) including traversability and eccentricity properties are studied.  

Observation  3.1. 

1. Kp is an induced subgraph ofB4(G) and the subgraph ofB4(G) induced by q vertices is totally disconnected. 

2. Number of edges inB4(G) is (q(q1)/2) + q(p 2) 

3. For every vertex vV(G), degree v inB4(G) is q – dG(v).  

4. For an edge eE(G), degree of e in B4(G) is  p + q  3.
  

5. For any connected graph G with p vertices, B4(G) is disconnected if and only if G is a star on p vertices. 

6. If there exists a vertex vV(G) such that v is not incident with exactly one edge in G, then v is a pendant vertex inB4(G).
  

7. If v is a vertex in G such that v is incident with all the edges of G, then v is isolated inB4(G). 

8. If G is a graph with atleast three vertices, then each vertex ofB4(G) lies on a triangle and hence girth ofB4(G) is 2. 

9. If G is a graph with atleast four vertices and atleast one edge, thenB4(G) is bi-regular if and only if G is regular and is regular if 

and only if G is totally disconnected. 

10.If G is a graph with atleast three vertices, thenB4(G) has no cut vertices. 

11.If G has atleast one edge, then vertex connectivity ofB4(G) is equal to the edge connectivity ofB4(G) = 2. 

12.Let G be a (p, q) graph with atleast one edge. If p is odd, thenB4(G) is Eulerian if and only if G is Eulerian. 

13. If G is r-regular ( r  1 and is odd), thenB4(G) is Eulerian. 

14. For any graph G, B4(G) is geodetic if and only if G is either K2 or nK1, n  2. 

15. If G is a graph with atleast four vertices,  thenB4(G) is P4- free. 

In the following, a necessary and sufficient condition forB4(G) to be Hamiltonian is proved. 

Theorem 3.1. 

Let G be any (p. q) graph which is not a star. ThenB4(G) is hamiltonian if and only if q  p and degG(v)  2, for all v in G. 

Proof. 

Let G be any (p, q) graph such that q  p and degG(v)  2, for all v in G.  

Therefore, degB4(G)(v) =  q  degG(v)  2. That is, for every vertex v in G, there exist atleast two edges in G not incident with 

v.  By the construction ofB4(G), each vertex of L(G) inB4(G) is adjacent to (p2) vertices of G inB4(G). A cycle of length 2p 

in B4(G) can be formed with p vertices of G and p vertices of L(G), each vertex of G followed by a vertex of L(G), that is, 

v1e1v2e2…vpepv1, where eiE(G) is not incident with vi, vi+1, i = 1, 2, …, (p1) and ep is not incident with vp and v1.  Since each 

pair of vertices in L(G) is adjacent inB4(G), the remaining (qp) vertices of L(G) inB4(G) can be placed suitably in the above 

cycle C2p. Therefore, there exists a Hamiltonian cycle inB4(G) and henceB4(G) is Hamiltonian. 

Conversely, letB4(G) be Hamiltonian. Therefore degree of each vertex inB4(G) must be atleast 2. That is, degB4(G)(v)  2, 

for all v in G, which implies q  degG(v)  2.  

That is, degG(v)  q 2.  

Assume q < p. Since neither G norG is a subgraph of B4(G) and each vertex of G in B4(G) is adjacent to (p2) vertices of 

L(G) inB4(G) in the hamiltonian cycle each vertex of G is followed by a vertex of L(G). This is not possible, if q < p. Therefore  

q   p. 

Remark 3.1. 

1. If G is a graph obtained by attaching pendant edges at a vertex of C3, thenB4(G) contains a Hamiltonian path. 

2. If G is a graph obtained by subdividing an edge of a star, thenB4(G) contains a hamiltonian path. 

Theorem 3.2. 

If G is a tree which is not a star, thenB4(G) contains a hamiltonian path. 
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Proof. 

Let G be a tree which is not a star. Then q = p1. Since G is not a star, B4(G) contains no isolated vertices. As in Theorem 

3.1., there exists a Hamiltonian path inB4(G), v1e1v2e2…vp-1ep-1vp, where eiE(G) is not incident with vi, vi+1, i = 1, 2, …, (p1). 

Remark 3.2. 

Let G be any graph such thatB4(G) is connected and q = p  1. ThenB4(G) contains a Hamiltonian path. 

 

 In the following, point (line) covering number, (edge) independence number, chromatic number and neighborhood number 

are found forB4(G). 

Theorem 3.3. 

Let G be any (p, q) graph with atleast three vertices and not totally disconnected.  

Then 0(B4(G)) = q. 

Proof. 

Since the subgraph ofB4(G) induced by vertices of L(G) inB4(G) is complete, 0(Kq) = q 1. Let e1, e2, …, eq be the q 

vertices of L(G) inB4(G). Then D = {e1, e2, …, eq-1} is a line cover of Kq inB4(G). The vertex eqV(B4(G)) covers the edges 

inB4(G) of the from (v, eq), where eqE(G) is not incident with vV(G). Therefore D{eq}V(B4(G)) is a minimum point 

cover ofB4(G).  

Remark 3.3. 

Since 0(B4(G)) + 0(B4(G)) = p + q, 0(B4(G)) = p and hence 0(B4(G)) = 0(B4(G)) if and only if p = q. 

Theorem 3.4. 

Let G be a (p, q) graph which is not totally disconnected and is not a star. Then line covering number 1(B4(G)) is given by  

1(B4(G))= min{ q, (p + 2q)/2,  if q  p. 

  p,    if q < p. 

Proof 

Case 1: q  p 

Subcase 1.a: q is even  

Let v1, v2, …, vp be the vertices of G inB4(G) and ejk = (vj, vk) be an edge in G and ejkV(B4(G)). Since q  p, for each edge 

eE(G), there exists a vertex viV(G) not incident with e. Then {(vi, ejk)  E(B4(G)) : ejkE(G) is not incident with viV(G) 

and ejk are distinct} is a line cover forB4(G). Therefore, 1(B4(G))  q. Since the subgraph ofB4(G) induced by q vertices of 

L(G) inB4(G) is complete, 1(Kq) = q/2 and p vertices of B4(G) are covered by the edges (vi, ejk), i = 1, 2, …, p in B4(G). 

Therefore, 1(B4(G))  p + q/2 and hence  1(B4(G))  min {q, p+ q/2} = min {q, (2p+q)/2}. 

Subcase 1.b: q is odd  

Let e1, e2, …, eq be the q vertices of  L(G) inB4(G). Then <{ e1, e2, …, eq-1}>   Kq-1 inB4(G) and 1(Kq-1) = (q1)/2. Let 

vpV(G) be not incident with eqE(G). Then the edges (vp, eq), (vi, ejk), i = 1, 2, …, p1 cover the p vertices and the vertex eq 

inB4(G). Therefore, 1(B4(G)) = p + (q1)/2 = 2p + q – 1)/2 and hence 1(B4(G)) = min { q, (2p + q 1)/2. Combining 

Subcase 1.1. and 1.2.,  

1(B4(G))= min{ q, (p + 2q)/2,  if q  p. 

Case 2: q < p 

Then the edges (vi, ejk)E(B4(G)), i = 1, 2, …, p, where ejkE(G) is not incident with viE(G), cover the vertices ofB4(G). 

Therefore, 1(B4(G)) =  p.  

Remark 3.4. 

Since 1(B4(G)) + 1(B4(G)) = p + q for a totally disconnected graph G and is not a star, 1(B4(G))   is given by 

1(B4(G))= min { p, (q + 1)/2,  if q  p 

  q,   if q < p 

Remark 3.5. 

When G  K1,n, (n  2), B4(K1,n) contains an isolated vertex and 1(B4(K1,n)) = n.   

In the following, chromatic number ofB4(G) is found. 

Theorem  3.5. 

Let G be a (p, q) graph. Then  

(B4(G))= q,   if (G)  1 

  q + 1,                if (G) = 0 

Proof. 

Case 1: (G)  1 

The subgraph ofB4(G) induced by all the vertices of L(G) inB4(G) is a complete graph on q vertices and (Kq) = q. That is, 

vertices of L(G) inB4(G) are coloured with q colours. Let viV(G) and eiE(G) be an edge incident with vi. Since (G)  1, such 

an edge exists in G. Then vi, ei V(B4(G)). Now colour the vertex vi inB4(G) by the colour given to ei inB4(G), since vi and ei 

are independent vertices inB4(G).Since no two vertices of G are adjacent inB4(G), (B4(G)) = q. 

Case 2: (G) = 0. 

Let v be an isolated vertex in G. Then vV(B4(G)) is adjacent to all the vertices of L(G) inB4(G). Therefore v can be 

coloured with a new colour. Hence V(B4(G)) is q + 1 colourable and V(B4(G)) cannot be coloured with fewer than q + 1 

colours. Therefore,  (B4(G)) = q + 1. 
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In the following, domination number of B4(G) is found. 

Remark 3.6. 

Since there is no vertex of degree p + q  1 inB4(G), (B4(G))  2. 

Theorem 3.6. 

For any graph G with atleast one edge, (B4(G)) = 2 if and only if 1(G)  2. 

Proof. 

 Let (B4(G)) = 2. Then there exists a minimum dominating set D ofB4(G) containing two vertices. 

Case 1: D = {v1, v2}  V(G) 

Since no two vertices of G are adjacent inB4(G) and G contains atleast one edge, D cannot be dominating set ofB4(G). 

Case 2:  D = {v, e}  V(B4(G)), where vV(G) 

and e E(G). 

Let e = (u, w), where u, w  V(G). Then u, w  V(B4(G)) and are not adjacent to any of the vertices in D. 

Case 3: D = {e1, e2}  E(G) 

Then {e1, e2}  V(B4(G)). Since D is a dominating set ofB4(G), e1 and e2 are independent edges in G. Therefore 1(G)  2. 

Conversely, assume 1(G)  2. Then there exist atleast two independent edges say e1, e2 in G. Let D be the set of vertices 

inB4(G) corresponding to the edges e1 and e2 in G. Then D is a dominating set ofB4(G) and (B4(G))  2. But (B4(G))  2. 

Therefore (B4(G)) = 2. 

Theorem 3.7. 

If G is a graph with atleast one edge, then (B4(G)) = i(B4(G))  3. 

Proof. 

Let e = (u, v) E(G), where u, v V(G).  

Then D = { u, v, e} V(B4(G)) is a dominating set  ofB4(G) and is independent. Hence, (B4(G)) = i(B4(G))  3. 

Remark 3.7. 

a. If G is a star or a cycle on three vertices, then (B4(G)) = i(B4(G)) = 3. 

b. For any graph G, let D be subset of E(G) with atleast two vertices and <D> is not a star. Then the set D vertices ofB4(G) 

corresponding to the edges of G is a dominating set ofB4(G) and D contains exactly two vertices, then D is a dominating set 

ofB4(G) if and only if edges of <D> are independent. 

Theorem 3.8. 

Let G be a graph which is not a star. Then  (B4(G)) = (G) = 2 if and only if either there exists a dominating edge in G or G 

is a union of stars. 

Proof. 

Let there exist a dominating edge e in G. Then each vertex in G is adjacent to atleast one of the end vertices of e. Therefore, 

(G) = 2. Since G is a not  a star, there exist atleast two independent edges in G. Let e1, e2 be the vertices in B4(G) corresponding 

to the two independent edges in G. Then D = {e1, e2} is a dominating set ofB4(G). Therefore, (B4(G)) = 2. Similarly, if G is a 

union of stars, then also (B4(G)) = 2. 

Conversely, assume (B4(G)) = (G) = 2. Then there exists a dominating set D of G with two vertices. That is, either G 

contains a dominating edge or G  K1,nK1,m, n, m  1. 

Theorem 3.9. 

For any graph G, (B4(G)) = (L(G)) = 2 if and only if there exist two independent edges in G such that each edge in G is 

adjacent to atleast one of those independent edges, where L(G) is the line graph of G.  

Proof. 

Let there exist two independent edges in G such that each edge in G is adjacent to one of the independent edges. Let e1 and e2 

be the corresponding vertices in L(G). Then D ={ e1, e2}  V(L(G)) is a dominating set of both L(G) and B4(G). Therefore  

(B4(G)) = (G) = 2. 

Conversely, assume (B4(G)) = (G) = 2. Then there exists minimum dominating set D of both L(G) andB4(G) containing 

two vertices. Let D = {e1, e2}  V(L(G)), where e1 and e2 are edges in G. Since D is a dominating set of L(G), each edge in G is 

adjacent to atleast one of e1 and e2. Similarly, since D is also a dominating set ofB4(G), e1 and e2 must be independent edges in G. 

Therefore, there exist two independent edges e1 and e2 in G such that each edge in G is adjacent to atleast one of e1 and e2. 

Remark 3.8. 

For any graph G, if (L(G))  3, then (B4(G))  (G). 

Theorem 3.10. 

For any graph G, 4  (B4(G)) + (B4(G))  0(G) + 2. 

Proof. 

Let 1(G)  2. Then (B4(G)) = 2 and (B4(G))  0(G). 

Therefore  (B4(G)) + (B4(G))  0(G) + 2 

Let 1(G) = 1. If G  K1,n, n  2, then   (B4(G)) + (B4(G))= 1 + 3 = 4. If G  C3, then  (B4(G)) = 0(G) = 2 and  

(B4(G)) = 3. Therefore (B4(G)) + (B4(G))  4.  

Hence 4  (B4(G)) + (B4(G))  0(G) + 2. 

The lower bound is attained, when G  K1,n, n  2 and the upper bound is attained for all graphs G with 1(G)  2 and G  C3. 
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Theorem 3.11. 

For any graph G with q edges, (B4(G)) = 0(B4(G)) if and only if G is one of the following graphs. 2K2mK1, C3mK1, 

K1,nmK1, m  0, n  3. 

Proof. 

(B4(G)) = 2 or 3. But 0(B4(G)) = q. Therefore, q = 2 or 3. If 1(G)  2, then (B4(G)) = 2 and 0(B4(G)) = 2. Therefore 

G  2K2mK1, m  0. 

If 1(G) = 1, then (B4(G)) = 0(B4(G)) = 3. Therefore G  C3mK1  or K1,nmK1, m  0, n  3.  

Theorem 3.12. 

Let G be a graph with atleast three vertices and not totally disconnected.  

Then (B4(G)) = 0(B4(G)) if and only if G is one of the following graphs. C3, P3 and K2K1. 

Proof. 

(B4(G)) = 2 or 3. But 0(B4(G)) = p. Therefore  p = 2 or 3. Therefore  G  C3, P3 or K2K1. 

In the following neighborhood number n0(B4(G)) of B4(G) is found. 

Theorem 3.13. 

Let G be any graph containing atleast one edge. Then n0(B4(G)) = 2 or 3. 

Proof. 

Case1: 1(G)  2. 

Then there exist atleast two independent edges in G. Let e1, e2 be the vertices inB4(G) corresponding to independent edges in 

G. Then D = { e1, e2}  V(B4(G)) is a dominating set ofB4(G).   

Let e1= (u1, v1), where u1, v1 V(B4(G)).   

NB4(G)(e1) = {V(L(G) – {e1}, V(G) – {u1, v1}}. Therefore, each edge in <V(B4(G)) – D> belongs to <N(e1)> and hence D is 

an n-set forB4(G) and n0(B4(G))  2.  

Since (B4(G))  2,    n0(B4(G))  2. Therefore, n0(B4(G)) = 2. 

Case 2: 1(G) = 1  

Then G  C3 or K1,n, n  1 

If G  C3 or K1,n, n  1, then n0(B4(G)) = 3. 

In the following, distance between any two vertices ofB4(G) are found. 

Lemma 3.1. 

Let G be a graph which is not a star. If v1 and v2 are any two vertices in G, then distance d(v1, v2) between v1 and v2 in B4(G) 

is  2 or 3. 

Proof. 

Let v1, v2  G. Then v1, v2 B4(G). Since no two vertices in G are adjacent inB4(G), d(v1, v2)  2 inB4(G). 

Let e be an edge in G not incident with both v1 and v2. Then v1ev2 is a geodesic path inB4(G) and hence d(v1, v2) = 2 

inB4(G). 

Assume each edge in G is incident with atleast one of v1 and v2. That is, {v1, v2} is a point cover of G. Let e1 be an edge in G 

incident with v1 but not v2 and e2 be an edge in G incident with v2 but not v1. (This is possible, since G is not a star). Then v1e2e1v2 

is a geodesic path in G. 

Therefore, d(v1, v2 ) = 3 inB4(G).   

Lemma 3.2. 

Let G be a graph which is not a star. If vV(G) and eE(G), then the distance between v, e inB4(G) is atmost 2 and if e1, 

e2E(G), then distance between e1 and e2 inB4(G) is 1. 

Proof. 

(i) Let vV(G) and eE(G). If e is not incident with v in G, then d(v, e) = 1 inB4(G). Let e be incident with v in G. Since G is 

not a star, there exists an edge e1 in G not incident with v in G.  

Then v, e, e1V(B4(G)) and ve1e is a geodesic path inB4(G). Hence d(v, e) = 2 inB4(G). 

(ii) Let e1, e2E(G). Then e1, e2V(L(G)). Since any vertices of L(G) inB4(G) are adjacent,  

d(e1, e2) = 1 inB4(G). 

Observation 3.2. 

From Lemma 3.1. and Lemma 3.2., it is observed that, if G is not a star, then 

a. Eccentricity of a vertex v in V(B4(G))V(G) is 2 or 3 and eccentricity of a vertex e in V(B4(G))V(L(G)) is 2.  

b. Radius of B4(G) is 2 and diameter ofB4(G) is 2 or 3. 

c. B4(G) is self-centered with radius 2 if and only if for every pair of vertices u, v in G, there exists atleast one edge in G not 

incident with both u v in G. That is, there exists no point cover of G containing two vertices. 

d. B4(G) is bieccentric with radius 2 and diameter 3 if and only if there exists a point cover of G containing two vertices. 

Example 3.1. 

a. B4(Pn) (n  6),B4(Cn) (n  5),B4(Kn) (n  4) are self-centered with radius 2.  

b.B4(Cn) ( n = 3, 4 ) are bieccentric with radius 2 and diameter 3.  
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