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1.0 Introduction 

Following the advances in immunology over the years, researchers are able to understand the dynamics of infection at the  

cellular-level and considerable attention has been paid to study the dynamics of HIV infection mode [1].This Lentivirus (slowly 

replicating retrovirus) which can lead to Acquired Immunodeficiency Syndrome (AIDS); has become a hazard infectious disease 

in both developed and developing nations. It is a fatal disease, which breaks down the body immune system. Leaving the victim 

vulnerable to a host life threatening opportunistic infections, neurological disorders or unusual malignancies, it has caused 

mortality of millions of people and expenditure of enormous amount of money in health care and disease control [2]. In literatures, 

many mathematical models have been developed in order to understand the dynamics of HIV infection with TCD 4 cells [3]. 

And the description of the virus infection process has three populations: uninfected target cells, productively infected cells, and 

free viral particles [4]. 

Follow the model proposed in [4], infected cells are assumed to produce new virions immediately after target cells are 

infected by a free virus. However, there are many biological steps between viral infections of target cell production of HIV-1 

virions. In 2007. [5] Studied an extension of the basic model of HIV-1 infection, The main feature of their model is that an eclipse 

stage for the infected cells is included and a portion of these cells are reverted to the uninfected class .This kind of model was 

early presented by [6]. [7] Performed the global stability analysis of this model. [8] put forward another model in 1997. He 

divided infected cells into two kinds: long-lived productively infected cells and latently infected cells. Latently infected cells are 

also activated into productively infected cells. In this papers the Cytotoxic T Lymphocytes (CTL) immune response was taken 

into account with the progression of infected cells from the eclipse phase to the productive and latently infected to productively 

infected cell, and a portion of this cells are reverted to the uninfected cells/class or be latent down in the body can express HIV 

immune response and with time can cause immune response by CTLs .The role of CTL is universal and necessary to eliminate or 

control the disease during viral infections. In particular, as a part of innate response, it gives antiviral defense by attacking infected 

cells. The basic HIV infection model which takes into consideration the CTL immune response has been proposed by [4] as 

follows: 
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ABSTRACT 

In this works, Human Immunodeficiency Virus (HIV) epidemic model including an 

eclipse stage of infected cells with latently infected cells was considered. The local and 

global stability of the system were established using the associated basic reproduction 

number
0R . Bifurcation analysis was used to establish conditions for the local stability of 

the endemic equilibrium using the centre manifold theorem. The result shows that the 

disease free equilibrium is locally and globally asymptotically stable, when the associated 

disease threshold parameter is less than unity, and the system exhibit backward 

bifurcation. Numerical Simulations carried out for the analytical result suggest that the 

attack to the latently infected cells cannot be ignored because some quicker cells from 

this stage will move with time to productively infected class/cells. 

                                                                                                        © 2016 Elixir all rights reserved. 

 

Elixir Appl. Math. 93 (2016) 39837-39849 

Applied Mathematics 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 



Aderele O.R and F.O. Akinpelu/ Elixir Appl. Math. 93 (2016) 39837-39849 39838 

Where zandywx ,, represent the concentration of uninfected target cells, concentration of infected cells in the eclipse 

stage at time t, productively infected cells, CTLs at time t respectively. Parameter s and d are the birth and death rate of uninfected 

cells, respectively. The uninfected cells become infected at the rate of xy . Productively infected cells are produced at the 

rate xy , infected cells in the eclipse phase revert to the uninfected class at a constant rate , and they may alternatively progress 

to the productively infected class at the rate q or die at the rate . is the death rate of productively infected cells, p is the strength 

of the lytic component, and r is the death rate of CTLs. 

 Function ),,( zyxf  describes the rate immune response activated by the infected cells. [9], [10] assumed that the 

production of CTLs depends only on the population of infected cells and gives cyzyxf ),,( and cyzzyxf ),,(  

respectively. [4] in their studied , also choose meanwhile, their model include an eclipse stage of infected cells. After the eclipse 

stage, some quicker infected cells which become productively infected cells are obviously attacked by CTLs. Other infected cells 

which will be reverted to the uninfected class or be latent down in the body do not have the ability to express HIV and will not 

cause CTL immune response. Therefore they only take the immune response to productively infected cells into account and 

ignored the attack to latently infected cells by CTLs.  

This present study therefore aims at Improving on the model stated above by [4] incorporating the latently infected class / 

cells in the model. Motivated by the work of [4].We are now concern with the progression of infected cells from the eclipse stage 

to the productively and latently to productively cells.  A portion of these cells are reverted to the uninfected class or be latent 

down in the body, do have the ability to express HIV and can cause CTL immune response. Therefore, the present study takes into 

account the immune response to productively infected cells and do not ignore the attack to latently infected cells, because with 

time some portion of this cell will progress to the productively infected class. Thus our new models are as follows: 

2.0 Model formation 
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Where 1k  represent the strength of the lytic component in the latently stages/cells.  Is death rate of the latently infected cells, 

3k  the rate at which the latently infected cells becomes productivity, and 2k  the rate at which the latently infected cells is 

reverted to the uninfected cells while b represent the concentration of the latently infected cells at time t. The uninfected cells 

become infected at the rate of xbxy 21   . Productively infected cells are produced at rate xbxy 21   and also consider the 

dynamics of HIV infection with CTL response and give bzccyzzyxf 1),,(  . 

2.1 The Existence of the Equilibrium state of equation (2)  

From equation (2)  
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2.2   The Dynamics of the System of Equation (2) 

Let )()()()()()( tztytbtwtxtN  ,where )(tN
 
is the total cell population at any time t, the total population cells 

is subdivided into sub-population namely; Susceptible )(tx  ,who are not yet infected but can be infected by HIV, Concentration 

of infection at the Eclipse stage )(tw ,Concentration of latently infected cells )(tb  ,Concentration of productively infected cell 

y(t) and the Concentration  of CTL )(tz . Thus, 

)()()()()()( tztytbtwtxtN                                                       (5)  

Differentiating (5) with respect to time (t), and simplifying by letting   d r  which represent the death rates of the 

respective classes gives, 
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2.3 Positivity of Solutions 

For the system of equations (2) to be epidemiologically well posed, it is important to prove that all solution with non-negative 

initial conditions will remain non – negative, for all 0t . 

Theorem1: Let 5
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Integrating both sides  
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For all, 0t . 

Similar reasoning can be used for other differential equations of equation (2), hence, it follows that the system is positive and 

bounded with a unique solution.   

3.0 Basic Reproduction Number 

The computation of the basic reproduction number is essential. The basic reproduction number 0R  is defined as the effective 

number of secondary infections caused by infected cells/individual during his entire period of infectiousness [11]. This definition 

is given for the model that represents the spread of infection in a population. It is obtained by taking the largest (dominant) Eigen-

value (spectral radius) of the matrix 1FV . 
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Where  is the rate of appearance of new infection in the compartment     F  
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0  , be the disease - free equilibrium. Using the next generation matrix, It can be shown that is the largest (dominant) Eigen-

value of 
1FV  is  0R  , which is the basic reproduction number  

     

 0R =                                                                                                                                                                                                  (9)  

 

 

3.1   Local Stability of the equilibrium 

Theorem 2: The disease free equilibrium of system (2) is locally asymptotically stable if the coefficient of  
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 And 10 R otherwise unstable  

Proof:  

The Jacobian matrix of equations (2) at the disease-free equilibrium point OE  is 
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3.2 Global Stability of the Disease Free Equilibrium 

Theorem: 4: The HIV free equilibrium E0 of system (2) is globally asymptotically stable if  10 R  , unstable if 10 R . 

Proof: 
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Then corresponding eigenvalues of (F-V) are all negative i.e. 
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Simplifies to give r1  
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Using Descartes rule of positive sign , 3 signs change which implies that there are 3 negatives root of  and since all eigenvalue 

are negative then it follows that equation (2) is  stable whenever , 10 R , 0A 0B . Then by [13], and [14].we have that 

the DFE ( 0E ) is Globally Asymptotically Stable (GAS), for 10 R . 

3.3 Local Stability of Endemic Equilibrium Point 

Here we study the local stability of the endemic equilibrium around the disease free equilibrium using bifurcation analysis. It 

is necessary and good to study critically what happened around the disease free equilibrium 0E because the condition for when 
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Solving, equation (15)gives  
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Where the values of A, B and C. are given in Appendix A.1.        

Thus 01  is a simple zero eigenvalue and the other eigenvalues are real and negatives. Hence, when 
 1 (or equivalently 

when 10 R ), the disease-free equilibrium 0E  is nonhyperbolic equilibrium: the assumption 1 of the theorem in appendix A is 

then verified. 

Now denote W =  Twwwww 54321 ,,,, to be the right eigenvector associated with the zero eigenvalue 01  . It follows that 
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Hence, equation (17) result to,           
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Where 03 w is a free right positive eigenvector. 

Furthermore, the left eigenvector, ),,,,,( 54321 vvvvvv   given by: 
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The solution of (19) yield    
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Where 04 v
 
is a free positive variable (eigenvector) i.e. 04 v  . 

Furthermore, let  
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Where ,,, 543,2,1 xzxyxbxwxx 
 

 

Then Computation of a and b defined in appendix A, may be computed as 
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Taking in to account of equation (2) and considering non-zero components of the left eigenvector v it follows that; 

                (25) 

               

      
 

 

 
   2

2

32323

*

23

4*

5

1,,

2312

*
2

2

2,












 




















































 



wk
d

s
kkkkq

kddk

kk
v

s

d
a

wwvE
xx

fk
wwva

jik

o

ji

jik



Aderele O.R and F.O. Akinpelu/ Elixir Appl. Math. 93 (2016) 39837-39849 39844 

Where
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 Now considering only the non-zero components of the eigenvector v at virus free equilibrium it follows that:  
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Next is the computation of the coefficient b; as follows: 

15

4

2

54

14

4

2

44

13

4

2

34

12

4

2

24

11

4

2

14

15

3

2

53

14

3

2

43

13

3

2

33

12

3

2

23

11

3

2

13

15

2

2

52

14

2

2

42

13

2

2

32

11

2

2

22

11

2

2

12


















































































x

f
wv

x

f
wv

x

f
wv

x

f
wv

x

f
wv

x

f
wv

x

f
wv

x

f
wv

x

f
wv

x

f
wv

x

f
wv

x

f
wv

x

f
wv

x

f
wv

x

f
wvb

 

 In view of (w) and (v), we the get 
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> 0, and 

d
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The coefficient b is always positive so that, according to appendix A, it is the sign of the coefficient a which will decides the local 

dynamics around the disease- free equilibrium for
 1 . And it is clearly seen above that the coefficient a is positive which 

implies that the system exhibits backward bifurcation i.e. hopf in nature. 

3.4   The Sensitivity Analysis 

In determining how best to reduce the reproduction rate of virus in the blood cells, There is need to know the relative 

importance of the different factors responsible for its transmission and prevalence [16]. Initial disease transmission is directly 

related to 0R  and disease prevalence is directly related to the endemic equilibrium point, specifically to the magnitudes of 

ybwx ,,, and z. 

Definition: The normalized forward sensitivity index of a variable, U, that depends differentiable on a parameter,  is defined as  
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, to each of the twelve below as different parameters for example. 

The sensitivity index of 0R  with respect to 1 . 
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= 0.9936407839.  

Therefore we have the sensitivity indices of 0R  to parameters of the human immunodeficiency virus (HIV) model with CTL’s 

cells (2), which was evaluated based on some assumed parameter values given in table below: 

 

Table. 3.1 

Parameter Value Parameter Value 

s 1.5   0.002 

k 0.00022   0.0004 

q 1.5   0.00005 

  0.002   0.4 

1   
0.005 d 0.0022 

 = 2  0.0024   0.0004 

Then the analysis; 

S  = 0R
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
= 1, 
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 q   = 0R
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The analysis shows that k,, 21 
 
are positive values of the sensitivity analysis, which implies that any increase in any of 

these parameters, will definitely trigger the rate of infection in both the eclipse stage and latently stage of infections. And with this 

it shows that the attack to latently infected cells cannot be ignore at any time t, and s =1 is the birth rate of the uninfected cells 

which is normal  

 4.0 Discussion of Results 

           In this study, Human Immunodeficiency Virus (HIV) epidemic model including an eclipse stage of infected cells 

incorporated with latently infected stage of infection, with CTLs immune response was presented. Numerical simulations were 

presented using a set of reasonable values and show the effect of some parameters on system of equation (2). 

        
 

 

 

 



Aderele O.R and F.O. Akinpelu/ Elixir Appl. Math. 93 (2016) 39837-39849 39846 

 

                              
 

            
 

 

             
 

           
 



Aderele O.R and F.O. Akinpelu/ Elixir Appl. Math. 93 (2016) 39837-39849 39847 

Discussion of simulation 

Figure 1 and 2: shows that as the transmission parameter 
21, increases there’s movement out of the susceptible 

cells/uninfected to the infected.  

Figure 3 and 4: shows that as 
21,  increases there’s increment in the proportion of the cells that are infected at the eclipse stage 

of infection.  

Figure.5 and 6: Shows that increase in k  and 3k
 
 will cause corresponding increase in the progression of cells from the eclipse 

stage to the latently stage of infection. 

Figure .7: Shows that any increase in 3k
 
will leads to the increase in the progression of cells from the latently stage of infection to 

productively stage. 

Figure .8 and .9: Shows that increase in the CTLs immune response, will lead to the reverse of some cells to the susceptible cells. 

Figure 10: The appearance and disappearance of disease, this established that the disease free co-exists will the endemic. And this 

also establish that the disease can only be eradicated at a particular point that is less than 1 , which shows what happens when 

1R : apart from when 10 R , 10 R .That is there exist 10  RR
 

Conclusion
 

  In this work, we have studied HIV epidemic model in a Post – Eclipse stage with CTL immune response. The local and global 

stability of the uninfected equilibrium E0 have been proved to be asymptotically stable if the basic reproduction number 

10 R and unstable if 10 R  Descartes’ rule, and comparison theorem. When the basic reproduction number 10 R  it shows 

that the disease will be controlled when compared with earlier model. 

However further analysis shows that the condition for when 10 R  is not sufficient for the diseases to be eradicated, because of 

the phenomenon called bifurcation. The bifurcation analysis reveals that 0R  must be brought below a certain critical threshold 

number 
*R , so that total disease eradication is achieved if .1*

0  RR  The bifurcation analysis reveals  latently infected cells 

should not be ignored because there are many biological steps between viral infection of target cells and the production of HIV 

virions i.e. the time interval between infection and the first detection of viral RNA in the plasma, and the time interval between 

invasion of the body by an infecting organism and the appearance of the first sign/symptom. 

Appendix: A: 

Theorem A. Bifurcation theorem: Assume: 

Consider the following general system of ordinary differential equations with parameter  such that: 

),( xf
dt

dx
 ,

nn RRRf : and ).(2 nRRcf                                                  

Without loss of generality, we assume that  0x  , is equilibrium for                            

(a)   A= )0,0(fDx  is the linearization matrix of system (B) around the equilibrium 0x  with  evaluated at 0. zero is a simple  

       Eigenvalue of A and all other eigenvalues of A have negative real parts;  

(b)   Matrix A has a (nonnegative) right eigenvector w and a left-eigenvector v corresponding to the zero eigenvalue. 

Let kf  denotes the 
thk  component of ,f and a =    .0,0,0,0
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 Then the local dynamics of system in (B) around 0x  are totally determined by a and b. Assume that b>0, then: 

(i) 0,1,0.0,0  xwithwhenba   is locally stable and there exists a positive unstable equilibrium; when 0 

< <<1, 0x  is unstable and there exists a  negative and locally asymptotically stable equilibrium; 

(ii) 0,1,0.0,0  xwithwhenba   is unstable; when 0 < <<1, 0x is locally asymptotically stable and 

there exists a positive unstable equilibrium; 

(iii) 0,1,0.0,0  xwithwhenba   is unstable stable and there exists a locally asymptotically stable negative 

equilibrium ; when 0 < <<1, 0x  is stable and appositive unstable equilibrium appears; 

(iv) .0,0  ba When   changes from negative to positive, 0x  changes its stability from stable to unstable. 

Correspondently, a negative unstable equilibrium becomes positive and locally asymptotically stable 
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Appendix: A.1 
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