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I Introduction  

One of the earliest examples of a resolvable balanced incomplete block design is due to Kirkman [1] as school girl problem 

formulated in 1850 and pursued further in another paper (Kirkman, [2]). Kirkman himself gave partial solutions of the same. 

Many other mathematicians worked on this problem in the late 19
th

 and early 20
th

 century. Ray-Chaudhuri and Wilson [3] 

completely solved the problem. Yates [4], [5] has pointed out some statistical advantages of resolvable designs. The concept of 

resolvable balanced incomplete block designs was greatly enhanced by a combinatorial paper by Bose [6] and Shirkhande and 

Raghavarao [7]. 

A block design is said to be resolvable if the b  blocks each of size k  can be grouped into r resolution sets of b/r blocks each 

such that in each resolution set every treatment is replicated exactly once. Bose [6] proved that necessary condition for the 

resolvability of a balanced incomplete block design is b ≥ v+r–1. A resolvable block design is said to be affine resolvable if and 

only if b = v+r–1 and any two blocks belonging to different resolution sets intersect in the same number, say, q2 = k
2
/v of 

treatments.  

The concept of resolvability and affine resolvability was generalized by Shirkhande and Raghavarao [7] to  - resolvability 

and affine - resolvability. An incomplete block design with parameters v, b = βt, r = t, k is said to be -resolvable if the b 

blocks can be divided into t sets of β blocks each, such that each treatment occurs  times in each resolution set. Further, -

resolvable incomplete block design is said to be affine -resolvable if every two distinct blocks from the same  - resolution set 

intersect in the same number, say, q1, of treatments, whereas every two blocks belonging to different -resolution sets intersect in 

the same number, say, q2, of treatments. The necessary and sufficient condition for the  - resolvable balanced incomplete block 

design to be affine  - resolvable with the block intersection numbers q1 and q2 is q1 = k(-1)/(β-1) and q2 = k/β = k
2
/v. There has 

been a very rapid development in this area of experimental designs. Some of the prominent work has been seen in Bailey et al. [8], 

Banerjee et al. [9], Caliński et al.[10], Kageyama [11]-[15],  Kageyama et al.[16], [17], Rai et al. [18], Rudra et al. [19], Mukerjee 

et al. [20]. 

Let us consider v treatments arranged in b blocks, such that the j
th

 block contains kj experimental units and i
th

 treatment 

appears ri times in the entire design, i = 1, 2, ...,ν; j = 1, 2, …, b. For any block design there exist a incidence matrix N = [nij] of 

order ν×b, where nij denotes the number of experimental units in the j
th

 block getting the i
th

 treatment. When nij  = 1 or 0   i and j, 

the design is said to be binary. Otherwise it is said to be nonbinary. In this paper we consider binary block designs only. The 

following additional notations are used   '
21 ,....., bkkkk  is the column vector of block sizes,   '

21 ,.....,, vrrrr 
 
 is the column 

vector of treatment replication, bbK diag  bkkk ,....., 21 , vvR diag  vrrr ,.....,, 21 ,  ir  jk ,n  the total number of 

experimental units, with this rN b 1 and kN v 1' , where a1 is the 1a  vector of ones. 

A balanced incomplete block design is an arrangement of v symbols (treatment) into b sets (blocks) such that (i) each block 

contains k (< v) distinct treatments; (ii) each treatment appears in r (> λ) different blocks and (iii) every pair of distinct  
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treatments appears together in exactly λ  blocks. Here, the parameters of balanced incomplete block design (v, b, r, k, λ) are related 

by the following relations 

   vr = bk, r(k –1) = λ(v –1) and b ≥ v (Fisher’s inequality). 

A balanced incomplete block design is said to be symmetric if b = v and r = k. In this case incidence matrix N is a square 

matrix i.e. N
’
=N.  In case of symmetric balanced incomplete block design any two blocks have λ treatments in common. 

A partially balanced incomplete block design based on an m-association scheme, with parameters v, b, r, k, λi (i=1,2,…,m), is 

a block design with v treatments and b blocks of size k each such that every treatment occurs in r blocks and two distinct 

treatments being i
th 

 associate occur together in exactly λi (i=1,2,…,m) blocks.  

A group divisible (GD) design is a 2-associates partially balanced incomplete block design based on group divisible 

association scheme, i.e. an arrangement of v = mn treatments in b blocks such that each block contains k(< v) treatments, each 

replicated r times, and the mn treatments can be divided into m groups of n treatments each, such that any two treatments occur 

together in λ1 blocks if they belong to the same group and in λ2 blocks if they belong to different groups. Furthermore, a group 

divisible (GD) design is said to be Singular (S) if r – λ1 = 0; Semi regular (SR) if r – λ1 > 0 and rk – vλ2 = 0; Regular (R) if r – λ1 > 

0 and rk – vλ2 > 0. For the definitions of partially balanced incomplete block design and group divisible design along with their 

combinatorial properties, refer, Raghavarao [21]. Group divisible designs and partially balanced incomplete block designs have 

been studied by Banerjee et al.[22]-[24], Bhagwandas, Banerjee and Kageyama [25], Kageyama et al. [26], Ghosh et al.[27], 

Mohan et al.[28], Vartak [29].  

In this paper we have proposed construction methods of 3-resolvable regular group divisible type partially balanced 

incomplete block designs by using incidence matrix of known affine resolvable balanced incomplete block design. We have also 

proposed construction methods of 3-resolvble group divisible type partially balanced incomplete block designs with unequal block 

sizes within each resolution set by using incidence matrix of known symmetric balanced incomplete block design. 

II Construction of design matrix: Method I 
Let N be the v×b incidence matrix of an affine resolvable balanced incomplete block design D with parameters v = 2k, b = 2r, 

r = 2k–1, k, λ = k–1  Then the following incidence matrix N
*
 yields 3- resolvable regular group divisible type partially balanced 

incomplete block design. 

  
















 

11

10

01

11* NJNN bv                        (1) 

In incidence matrix N
*
, Jv×b denotes a v×b matrix whose all elements are one and BA denotes the Kronecker product. 

The group divisible association scheme of the resultant design can be given by v = mn treatments, divided into m groups of n 

treatments each (in the present construction method m = 2 and n = 2k). In the resultant design any of the treatment are replicating 

3 times in each resolution set and b ≥ v+r–1. So the resultant design is also 3-resolvable. 

Theorem 2.1 
 The existence of an affine resolvable balanced incomplete block design with parameters v = 2k, b = 2r, r = 2k–1, k, λ = k–1 

implies the existence of 3-resolvable regular group divisible design with parameters ,4* kv  ,4* rb  ,3* rr  ,3* kk 

,35*
1  k ,24*

2  k and2m kn 2 . 

Proof 

 Let N be the bv  incidence matrix of an affine resolvable balanced incomplete block design D with parameters v = 2k, b = 

2r, r = 2k–1, k, λ = k–1. Under the present method of construction, the design D
*
 yields the parameters v

*
 = 4k, b

*
 = 4r, r

*
 = 3r, k

*
 

= 3k, are obvious by construction. Here v
*
 = 4k treatments are divided into m = 2 groups of n =2k treatments each, such that any 

two treatments in the same group are first associates and any two treatments from different groups are second associates. Further, 

the parameters *
1 and *

2  can be determined as: In the present construction method any (θ, Ø) pair occurs as given below 
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                      (2) 

From the structure given in (2), corresponding to given in (1), we can see that the inner product of first row with 
thk )14,...,5,3(   row will give us value of *

1 . So the value of *
1  can be calculated as 35)1()1(2*

1  kkkkk .The 

inner product of first row with thk)4,...4,2(  row will give us value of *
2 . So the value of *

2  can be calculated as 

)1()1(*
2  kkkk .24  k   

Here 4k treatments in N
* 

can be partitioned into two groups of size 2k each and these two groups containing even and odd 

numbered treatments, respectively, which form a GD association scheme of the resultant design and 0*
2

***  vkr . Hence the 

resultant design is regular group divisible design. In the present construction method the resolution sets can be formed by pairing  
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with  
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From structure given in (3), we have (k-1) resolution sets from (i) and k resolution sets from (ii). Thus 4r blocks are 

partitioned into (k–1)+k = 2k–1 = r resolution sets of 4 blocks each such that in each resolution set any of the v
*
 treatments is 

replicating 3 times and 1**  rvb . Hence the resultant structure also preserves the properties of 3-resolvability. This 

completes the proof. 

Corollary 2.2 

The complementary design of D
*
 is the disconnected design of group divisible type with parameters kv 4*  , rb 4*  , rr * , 

kk * , 3251*  rk , 02*  . 

Example 2.3 

Let us consider an affine resolvable balanced incomplete block design with parameters 1,2,3,6,4  krbv  with 

incidence matrix N given through the blocks [(1,2), (3,4)], [(1,3), (2,4)], [(1,4), (2,3)]. Then theorem 2.1 yields 3-resolvable 

regular group divisible (RGD) design with parameters ,8* v  ,12* b  ,9* r  ,6* k  7*
1  and 6*

2  . The incidence matrix 

of the resultant design is given as follows: 
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
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*N
  

The GD association scheme of the above design can be written as 

     
8642:

7531:

2

1

G

G
 

In the above design 1**  rvb  and every treatment is replicated 3 times in each resolution set. Hence the design 

constructed above is 3-resolvable regular group divisible design. The complementary design of the design constructed above is the 

disconnected design of group divisible type with parameters 8* v , 12* b , 3* r , 2* k , 11*  and 02*  . 

Example 2.4 

Let us consider an affine resolvable balanced incomplete block design with parameters 3,4,7,14,8  krbv  with 

incidence matrix N given through the blocks [(1,2,4,7), (0,3,5,6)], [(2,3,5,7), (1,4,6,0)], [(3,4,6,7), (2,5,0,1)], [(4,5,0,7), (3,6,1,2)], 

[(5,6,1,7), (4,0,2,3)], [(6,0,2,7), (5,1,3,4)], [(0,1,3,7), (6,2,4,5)]. Then theorem 2.1 yields 3-resolvable regular group divisible 

(RGD) design with parameters ,16* v  ,28* b  ,21* r  ,12* k  17*
1  and 14*

2  . The incidence matrix of the resultant 

design is given as follows: 
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The GD association scheme of the above design can be written as 

     
161412108642:

15131197531:

2

1

G

G
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In the above design 1**  rvb  and every treatment is replicated 3 times in each resolution set. Hence the design 

constructed above is 3-resolvable regular group divisible design. The complementary design of the design constructed above is the 

disconnected design of group divisible type with parameters 16* v , 28* b , 7* r , 4* k , 31*  and 02*  . 

III. Construction of design matrix: Method II 

If N be the bv incidence matrix of a symmetric balanced incomplete block design D with parameters v = b, r = k, λ. Then 

the following incidence matrix N’ yields a 3-resolvable group divisible type partially balanced incomplete block design with 

unequal block sizes within each resolution set. 

   
    
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bv NJNNJNN
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                                   (4)

   

In incidence matrix
'N , bvJ  denotes a v×b matrix whose all elements are one and BA denotes the Kronecker product. 

Theorem 3.1 
The existence of symmetric balanced incomplete block design D with parameters v = b, r = k, λ implies the existence of 3-

resolvable group divisible type partially balanced incomplete block design D
’ 
with unequal block sizes within each resolution set 

and parameters v
’
= 2v, b

’
= 4b, r

’
=3b, kvk '

1 , ,2'
2 kvk  ),(23'

1 rb   ,2
'

2 b  m = 2 and n = v. 

Proof 

Let N be the bv incidence matrix of a symmetric balanced incomplete block design D with parameters v = b, r = k, λ. In the 

present method of construction, the design D
’
 yields the parameters v

’
= 2v, b

’
= 4b, r

’
=3b, kvk '

1 , ,2'
2 kvk  which are 

obvious. Here v
’
= 2v treatments are divided into m = 2 groups of n = v treatments each, such that any two treatments in the same 

group are first associates and any two treatments from different groups are second associates. Further, the parameters
'

1 and 
'

2  

can be determined as: In the present construction method any (θ, Ø) pair occurs as given below 
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From the structure given in (5), corresponding to (1), we can see that  

(a) The inner product of first row with thv )12,...,5,3(   row in first part of above structure is 2(λ) + (r–λ) + (r–λ) + b–2r+λ = 

b+λ and in second part of above structure is λ + (r–λ) +(r–λ) + 2(b–2r+λ) = 2b–2r+λ. So the value of 
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Here 2v treatments in N
’
 can be divided into two groups of size ν each and these two groups containing even and odd 

numbered treatments, respectively, which form a GD association scheme of the resultant design. In the present construction 

method the resolution sets can be formed by pairing 
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












rb

with

 )2(

01

11

01

11





















rb

                              

(6) 

From the structure given in (6), we have λ resolution sets from (i), (r–λ) resolution sets from (ii) and (iii) and from (iv) we 

have (b–2r+λ) resolution sets. Thus the blocks are grouped into λ + 2(r–λ) + (b–2r+λ) = b resolution sets of 4 blocks each such 

that in each resolution set any of the v
’ 

treatments is replicating 3 times and 1''  bvb . Hence the resultant design is 3-

resolvable group divisible type partially balanced incomplete block design with unequal block sizes in each resolution set. This 

completes the proof. 

Corollary 3.2 
 If ν (=4t–1) is a prime or prime power then the symmetric balanced incomplete block design with parameters v = 4t–1 = b, r 

= 2t–1 = k, λ = t–1 and it’s complementary design with parameters v = 4t–1 = b, r = 2t = k, λ = t always exists and  both of these 

symmetric balanced incomplete block designs implies the existence of a 3-resolvable group divisible type partially balanced 

incomplete block design with parameters v
’
 = 8t–2, b

’
=16t–4, r

’
=12t–3, ,16'

1  tk ,26'
2  tk ,310'

1  t ,28
'

2  t m = 2 and n 

= 4t–1. 
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Corollary 3.3 
When 4t+3 is a prime or prime power, then the symmetric balanced incomplete block design with parameters v = 4t+3 = b, r 

= 2t+1 = k, λ = t always exists and this implies the existence of a 3-resolvable group divisible type partially balanced incomplete 

block design with parameters v
’
 = 8t+6, b

’
=16t+12, r

’
=12t+9 ,46'

1  tk ,56'
2  tk ,710'

1  t ,68
'

2  t  m = 2 and n = 4t+3. 

Corollary 3.4 
The existence of a symmetric balanced incomplete block design with parameters v = 8t–1 = b, r = 4t–1 = k, λ = 2t–1 implies 

the existence of a 3-resolvable group divisible type partially balanced incomplete block design with parameters v
’
 = 16t – 2, 

b
’
=4(8t–1), r

’
=3(8t–1) ,212'

1  tk ,112'
2  tk ,320'

1  t ,216
'

2  t
 
m = 2 and n = 8t-1. 

Example 3.5 
Let us consider a symmetric balanced incomplete block design with parameters v = b = 3, r = k =2, λ = 1; whose blocks are 

given by (1,2), (1,3), (2,3). Then Theorem 3.1 yields a 3-resolvable group divisible type partially balanced incomplete block  

design with unequal block sizes and parameters v
’
 = 6, b

’
= 12, r

’
=9, ,4,5 '

2
'
1  kk 7'

1   and 6'
2  . The incidence matrix 

of the design is given as 

                   





























111101010111

101011111110

110111011101

101110111011

011111110101

111010101111

'N  

On pairing the blocks of above design as given in (6), to form the resolution sets, we will get 3 resolution sets. The incidence 

matrix of the resultant design is given as 





























110111010111

101110111110

110101111101

101111101011

011111011101

111010111011

'N  

The GD association scheme of the above design can be written as 

                   
642:

531:

2

1

G

G
 

Here, 1''  bvb  and every treatment is replicated 3 times in each resolution set. Hence the design constructed above is 3-

resolvable group divisible type partially balanced incomplete block design with unequal block sizes. 

Example 3.6 
Let us consider a symmetric balanced incomplete block design with parameters v = b = 7, r = k =4, λ = 2; whose blocks are 

given by (3,5,6,7), (1,4,6,7), (1,2,5,7). (1,2,3,6), (2,3,4,7), (1,3,4,5), (2,4,5,6). Then Theorem 3.1 yields a 3-resolvable group 

divisible type partially balanced incomplete block design with unequal block sizes and parameters v
’
 = 14, b

’
= 28, r

’
=21, 

,10,11 '
2

'
1  kk 17'

1   and 14'
2  . The incidence matrix of the design is given as 

                                    





















































0101110111111111110111010101

1111101110101010101110111111

1101011101111101111101110101

1011111011101011101011101111

1111010111011101011111011101

1010111110111011111010111011

1111110101110101010111110111

1010101111101111111110101110

0111111101011111010101111101

1110101011111010111111101011

1101111111010101110101011111

1011101010111111101111111010

0111011111110111011101010111

1110111010101110111011111110

'N

 

On pairing the blocks of above design as given in (6), to form the resolution sets, we will get 7 resolution sets. The incidence 

matrix of the resultant design is given as 



 
 
39812      Bharti Agrawal and Shakti Banerjee/ Elixir Statistics 93C (2016) 39807-39813 
 

                              





















































0111011111010111110111011101

1110111010111110101110111011

1101011101111101011111011101

1011111011101011111010111011

1101110101110111110101111101

1011101111101110101111101011

1101110111010111011111010111

1011101110111110111010111110

0111110111011101011101111101

1110101110111011111011101011

1101011111011101110101110111

1011111010111011101111101110

0111110101111101110111010111

1110101111101011101110111110

'N

 

                 

The GD association scheme of the above design can be written as 

 
1412108642:

131197531:

2

1

G

G
 

Here, 1''  bvb  and every treatment is replicated 3 times in each resolution set. Hence the design constructed above is 3-

resolvable group divisible type partially balanced incomplete block design with unequal block sizes. 

References

 

[1] T. P. Kirkman, Query, Ladies and Gentleman’s Diary, 1850a, 48. 

[2] T. P. Kirkman, “ Note on an unanswered prize question,” Cambridge Dublin Math. J. 5, 1850b, pp.191-204. 

[3] D. K. Ray-Choudhari and R. M. Wilson, “Solution of Kirkman’s School girl problem,” Proc. Symp. In pure Mathematics 

19 (Am. Math. Soc., Providence, R. I.), 1971, pp.187- 203.  

[4] F. Yates, “The recovery of inter-block information in variety trials arranged in three dimensional lattices,” Ann. Eugen. 9, 

1939, pp. 136-156. 

[5]  F. Yates,” The recovery of inter-block information in balanced incomplete block designs,” Ann. Eugen. 10, 1940, pp. 317-

325. 

[6]       R. C. Bose, “A note on the resolvability of balanced incomplete block designs,” Sankhyā A 6, 1942, pp. 105–110. 

[7] S. S. Shrikhande and D. Raghavarao, “Affine -resolvable incomplete block designs,” Contributions to Statistics, Volume 

presented to Professor P. C. Mahalanobis on his 75
th

 birthday, Pergamon Press, Oxford and Statistical Publishing Society, 

Calcutta, 1964, pp. 471–480. 

[8] R. A. Bailey, H.Monod and J. P. Morgan, “Construction and optimality of affine-resolvable designs,” Biometrika 82, 1995, 

pp. 187–200. 

[9] S. Banerjee and S.Kageyama, “Existence of -resolvable nested incomplete block designs,” Utilitas Math. 38, 1990, pp. 

237–243. 

[10] T. Caliński  and S. Kageyama, “On the analysis of experiments in affine resolvable designs,” J. Statist. Plann. Inference 

138, 2008, pp. 3350–3356. 

[11] S. Kageyama, “On µ-resolvable and affine µ-resolvable balanced incomplete block designs,” Annals of Statistics, 1, 1973, 

pp. 195–203. 

 [12] S. Kageyama, “Resolvability of block designs,” Ann. Statist. 4, 1976, pp. 655–661. 

[13] S. Kageyama, “Conditions for -resolvability and affine -resolvability of incomplete block designs,” J. Japan Statist. Soc., 

7, 1977, pp. 19–25. 

[14] S. Kageyama, “Two method of construction of affine resolvable balanced designs with unequal block sizes,” Sankhyā, 

Ser.B, 50, 1988, pp. 195-199.  

[15]    S. Kageyama. “A survey of resolvable solutions of Balanced Incomplete Block Designs,” International statistical review, 

Vol. 40, No. 3, 1972, pp. 269-273. 

[16] S. Kadowaki and S.Kageyama, “New construction methods of affine resolvable SRGD designs,” Journal of Statistical 

Theory and practice, 6, 2012, pp. 129-138. 

[17] S. Kageyama and R. N. Mohan, “On µ- resolvable BIB designs,” Discrete Mathematics, 45, 1983, pp. 113-121, North – 

Holland Publishing Company. 

[18] S. Rai, S. Banerjee and S. Kageyama, “A construction of resolvable nested 3-designs,” Journal of Combinatorial Designs, 

Vol.12 (6), 2004, pp. 466-470. 

[19] S. Rudra, S.Banerjee and S.Kageyama, “Construction of 3- resolvable nested 3-wise designs and 3-wise balanced designs,” 

Australasian journal of combinatroics, Vol. 33, 2005, pp. 77-86. 

[20] R. Mukerjee and S. Kageyama, “On resolvable and affine resolvable variance-balanced designs,” Biometrika, 72, 1, 1985,  

pp. 165-72. 

[21] D. Raghavarao, “Construction and Combinatorial Problems in Design of Experiments.” John Wiely, New York, 1971. 

[22] S. Banerjee,  Bhagwandas and S. Kageyama, “Some constructions of PBIB designs,” Ann. Inst. Statist. Math., 37, 1985, pp. 

145-150. 



 
 
39813      Bharti Agrawal and Shakti Banerjee/ Elixir Statistics 93C (2016) 39807-39813 
 
[23] S. Banerjee and S. Kageyama, “Some constructions of two and three - associate PBIB designs,” J. Japan Statst. Soc., Vol 

18 (2), 1988, pp. 141-147. 

[24]   S. Banerjee and S. Kageyama, “ A Method of Constructing Regular Block Designs,” J. Statst. Plann. Inf. Vol. 13, 1986, pp. 

399-401. 

[25] Bhagwandas, S. Banerjee and S. Kageyama, “Patterned constructions of PBIB designs,” Commun. Statist. -Theor. Meth., 

14, 1985,  pp. 1259-1267. 

[26] S. Kageyama, S. Banerjee and A. Verma, “A construction of self complementary semi-regular group divisible designs,” 

Sankhya: Series B, Vol. 51,1989,  PP. 335-338. 

[27]  D. K. Ghosh, G. C. Bhimani and S. Kageyama, “Resolvable semi-regular group divisible designs,” J. Japan Statst. Soc. 

Vol. 19, No. 2, 1989,  pp. 163-165. 

[28]  R. N. Mohan and S. Kageyama, “ A method of construction of GD designs,”  Utilitas Math. 24,1986, pp. 311-318. 

[29] M. N. Vartak, “On an application of  kronecker  product of matrices to statistical designs,” Ann. Math. Stat., 26, 1955, pp. 

420-438.  

 [30] S. M. Shah, “On α – resolvability and affine α – resolvability of incomplete block designs,” Annals of Statistics, Vol. 1, No. 

2, 1978, pp. 468-471. 

[31] M. Hall Jr., “Combinatorial Theory,” John Wiely, New York, 1986. 

 


