Available online at www.elixirpublishers.com (Elixir International Journal)



**Civil Engineering** 



Elixir Civil Engg. 93 (2016) 39819-39824

# Experimental Results Showing Discharge Variation in Gate Valve

N. J. Sathe<sup>1</sup>, G. A. Hinge<sup>2</sup> and Vrinda. S. Suryawanshi<sup>3</sup>

<sup>1</sup>Associate Professor, Department of Civil Engineering, Trinity Academy of Engineering, Pune. <sup>2</sup>Professor, Department of Civil Engineering, Bhivrabai Sawant college of Engineering, Pune.

<sup>3</sup> PG Research Student, Department of Civil Engineering Sinhgad College of Engineering, Pune.

# **ARTICLE INFO**

Article history: Received: 15 March 2016; Received in revised form: 15 April 2016; Accepted: 21 April 2016;

# Keywords

Gate valve, Separation zone, Flexible membrane pipe, flow measuring device.

# ABSTRACT

Gate valve are traditionally used for controlling the discharge in pipes. The valve is operated by rotating the wheel provided on the top a rod which is also connected to circular disc on other side of it. Every single rotation of wheel produces specific linear movement of disc which in turn tends to change the area of flow. It is expected that for same disc position, the discharge should be same, but the analysis showed that the discharge varied considerably. Further analysis repeated that it is happening on account of the fluctuating separation zones formed on either side of the disc. To address this issue, it is proposed to use a flexible membrane pipe inside the gate valve. This membrane will not allow the separation zone to form, as its shape will automatically change depending upon the disc position and intensity of discharge. It is similar to that of venturimeter with dynamically changing convergent and divergent cones. With this new adaption an experimental setup is fabricated with 1 inch pipe. Thus results have shown excellent improvement in the relationship between disc position and discharge. Further it is calibrated with respect to rotation angle of wheel. The experimental study has shown that the new gate valve can also be used as flow measuring device. The paper describes the journey of gate valve from flow control device to flow measuring device.

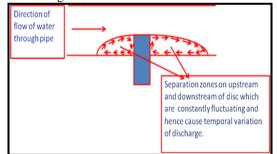
© 2016 Elixir All rights reserved.

# I. Introduction

Gate valve is that which either allows or prohibit the flow of hydraulic fluid. Many industrial applications demand accurate flow control for various processes. In fact Gate Valve itself is a flow control device. But on account of its inability to precisely control the flow, it needs to be supplemented with separate flow measuring device. Traditionally 'Gate Valves' along with some flow measuring device like 'Venturimeter' or 'Orificemeter' is used for flow control.



# Fig 1. Gate valve.


# Mechanism of gate valve

Handwheel of gate valve is connected to vertical disc by the stem, as handwheel is rotated horizontally stem moves vertical disc in downward and upward direction depends on the clockwise and anticlockwise movement of handwheel.

Partially open gate valve forms non uniform flow which is responsible for reduction in the head and so it affects the coefficient of discharge. Due to partially open disc of gate

| Tele: +91-7588046971                         |
|----------------------------------------------|
| E-mail address: drnanasahebsathe10@gmail.com |
| © 2016 Elixir All rights reserved            |

valve wake formation takes place and leads to zone separation on either side of disc. Discharge variation takes place for same disc position of gate valve.



# Fig 2. Zone separation on either side of disc of gate valve. II.Literature Survey

As mentioned above, while use of gate valve foremost problem faced is discharge variation. For the same disc position discharge varies each time. Due to separation of zones discharge varies. Wake nothing but low pressure zones formed and so impinge on discharge head. To address this issue literature is reviewed.

G. A. Hinge (Hydro, 2004) has modified an experimental setup of flow through orifice by designing a novel inlet float valve. With the help of this valve the rate of inflow can be automatically controlled. The gadget works without any fluctuation over a wide range of pressure on upstream.

For setting the certain head on orifice the inlet valve as well as valve on the overflow pipe is needed to be operated simultaneously. If not, due passages of time the head will no longer remain constant. Fluctuations of inflow are the disturbances in flow of water created due to sudden transition at the inlet valve and the leakage through the ball valve. And hence to overcome this problem he inserted a flexible pipe in the float valve and the outlet of which was dropped in the main tank. This causes the perfectly steady uniform inflow. So for eliminating the same lacuna of gate valve use of flexible pipe will be beneficial.

#### **III.** Methodology

Project tactics includes study of mechanism of gate valve and its basics. What are the lacunas of use of gate valve for flow control and how to tackle with the problems by using innovative approach? Then it is followed by conventional model making, which consists of gate valve fixed along the pipe and the second model keeping all parameters same as in first one (like pipe and valve material, pressure of water) is made which consists of flexible pipe. For both the model various trials are taken to measure discharge for same disc position of valve. Testing of both models and the analysis is evidence for the innovative approach. By using analyzed results of model with flexible pipe mathematical equation for discharge is formulated. For the later confirmation of the innovation multiple models and their testing can be carried out. By varying parameters like diameter, material of pipe and valve these models can be framed.

#### **IV. Experimentation and Observations**

Experimentation comprises of making model and their testing. First model is consists of gate valve fixed along the pipe. On both sides of the valve providing pipe length equal to flow development length to avoid boundary layer to increase beyond the radius of the pipe. Flow development length is equal to fifty times diameter of the pipe.



#### Fig 3. Experimental setup of conventional model.

For the conventional model 25mm metallic gate valve is selected. Complete closing of this valve requires 8 complete and  $1/3^{rd}$  of one rotation of handwheel. Mathematically it is  $3000^{0}$ . Before fixing the valve  $60^{0}$  interval points are marked along the periphery of bonnet of the valve. On both the sides of valve acrylic pipe of flow development length equal to 1250mm is provided. Transparency of acrylic pipe helps to observe the flow pattern.



Fig 4. Zone formation in partially opened gate valve.

By keeping inlet pressure constant water is passed through the system. Measure discharge through complete open valve by directly taking volume per unit time. Complete opened valve is closed by rotating clockwise at an angle of  $360^{\circ}$  nothing but one rotation of handwheel record the discharge repeat the procedure until valve closes completely. Rotating the handwheel in anticlockwise direction  $(360^{\circ})$ . For each rotation record the discharge. Repeating this procedure again and again will give set of readings. Complete closing of gate valve from complete opened valve gives first set of readings. Following table includes various columns. First column is of angle of rotation of handwheel in degree, second column is of volume collected in ml, forth column gives the time in second for which volume collected and last column is of discharge which is calculated as volume collected per second of time.

Opening of valve gives set of readings in clockwise direction.

Table1. Readings-set 1 (clockwise rotation)

| Serial<br>No. | Volume<br>(ml) | Angle of rotation (degree) | Time<br>(second) | Discharge<br>(mlps) |
|---------------|----------------|----------------------------|------------------|---------------------|
| 1             | 500            | 0                          | -                | -                   |
| 2             | 500            | 360                        | 105.2            | 4.75                |
| 3             | 500            | 720                        | 4.1              | 121.95              |
| 4             | 500            | 1080                       | 3.2              | 156.25              |
| 5             | 2000           | 1440                       | 10.2             | 196.078             |
| 6             | 2000           | 1800                       | 8.5              | 235.29              |
| 7             | 2000           | 2160                       | 7.1              | 281.69              |
| 8             | 2000           | 2520                       | 6.3              | 317.46              |
| 9             | 2000           | 2880                       | 5.5              | 363.63              |
| 10            | 2000           | 3000                       | 5.1              | 392.156             |

Closing of valve gives set of readings in anticlockwise direction.

 Table2. Readings-set 1 (anticlockwise rotation)

| Serial | Volume        | Angle of rotation | Time     | Discharge |
|--------|---------------|-------------------|----------|-----------|
| No.    | ( <b>ml</b> ) | (degree)          | (second) | (mlps)    |
| 1      | 2000          | 3000              | 5.2      | 384.62    |
| 2      | 2000          | 2880              | 5.9      | 338.98    |
| 3      | 2000          | 2520              | 6.7      | 298.507   |
| 4      | 2000          | 2160              | 7.2      | 277.78    |
| 5      | 2000          | 1800              | 8.7      | 229.88    |
| 6      | 2000          | 1440              | 10.3     | 194.174   |
| 7      | 500           | 1080              | 3.1      | 161.29    |
| 8      | 500           | 720               | 4.3      | 116.28    |
| 9      | 500           | 360               | 92.3     | 5.417     |
| 10     | 500           | 0                 | -        | -         |

Similarly as in first set of readings next two set of pilot readings are taken in both directions.

 Table3. Readings-set 2(clockwise rotation)

| Serial<br>No. | Volume<br>(ml) | Angle of rotation (degree) | Time<br>(second) | Discharge<br>(mlps) |
|---------------|----------------|----------------------------|------------------|---------------------|
| 1             | 500            | (degree)                   | -                | - (mps)             |
| 2             | 500            | 360                        | 53.4             | 9.36                |
| 3             | 500            | 720                        | 4.5              | 111.11              |
| 4             | 500            | 1080                       | 3.1              | 161.29              |
| 5             | 2000           | 1440                       | 10.3             | 194.174             |
| 6             | 2000           | 1800                       | 8.7              | 229.88              |
| 7             | 2000           | 2160                       | 7.4              | 270.27              |
| 8             | 2000           | 2520                       | 6.5              | 207.69              |
| 9             | 2000           | 2880                       | 6.1              | 327.86              |
| 10            | 2000           | 3000                       | 5.7              | 350.87              |

| Serial | Volume        | Angle of rotation | Time     | Discharge |
|--------|---------------|-------------------|----------|-----------|
| No.    | ( <b>ml</b> ) | (degree)          | (second) | (mlps)    |
| 1      | 2000          | 3000              | 5.5      | 363.63    |
| 2      | 2000          | 2880              | 5.8      | 3440827   |
| 3      | 2000          | 2520              | 6.6      | 303.03    |
| 4      | 2000          | 2160              | 7.5      | 266.67    |
| 5      | 2000          | 1800              | 8.6      | 232.56    |
| 6      | 2000          | 1440              | 10.0     | 200       |
| 7      | 500           | 1080              | 2.9      | 172.41    |
| 8      | 500           | 720               | 4.6      | 108.69    |
| 9      | 500           | 360               | 69.9     | 7.15      |
| 10     | 500           | 0                 | -        | -         |

 Table4. Readings-set 2 (anticlockwise rotation)

| 10                                           | 500            | 0                          | -                | -                   |  |
|----------------------------------------------|----------------|----------------------------|------------------|---------------------|--|
| Table5. Readings-set 3 (clockwise rotation). |                |                            |                  |                     |  |
| Serial<br>No.                                | Volume<br>(ml) | Angle of rotation (degree) | Time<br>(second) | Discharge<br>(mlps) |  |
| 1                                            | 500            | (degree)                   | (second)         | (mps)               |  |
| 2                                            | 500            | 360                        | 94.3             | 5.30                |  |
| 3                                            | 500            | 720                        | 4.4              | 113.63              |  |
| 4                                            | 500            | 1080                       | 2.9              | 172.41              |  |
| 5                                            | 2000           | 1440                       | 9.8              | 204.08              |  |
| 6                                            | 2000           | 1800                       | 8.7              | 229.88              |  |
| 7                                            | 2000           | 2160                       | 8.3              | 240.96              |  |
| 8                                            | 2000           | 2520                       | 8.0              | 250                 |  |
| 9                                            | 2000           | 2880                       | 7.4              | 270.27              |  |
| 10                                           | 2000           | 3000                       | 7.2              | 277.77              |  |

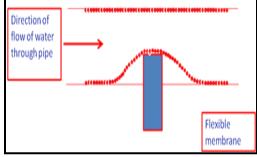
| Table6.  | Readings-set 3 | (anticlockwise | rotation).   |
|----------|----------------|----------------|--------------|
| I abicu. | Neaum25-set J  | anuciouswise   | I Utation /. |

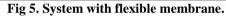
| 1 41   | Tableo, Readings-set 5 (anticiockwise rotation). |                   |          |           |  |  |
|--------|--------------------------------------------------|-------------------|----------|-----------|--|--|
| Serial | Volume                                           | Angle of rotation | Time     | Discharge |  |  |
| No.    | ( <b>ml</b> )                                    | (degree)          | (second) | (mlps)    |  |  |
| 1      | 2000                                             | 3000              | 7.2      | 277.77    |  |  |
| 2      | 2000                                             | 2880              | 7.5      | 266.67    |  |  |
| 3      | 2000                                             | 2520              | 8.1      | 246.91    |  |  |
| 4      | 2000                                             | 2160              | 8.5      | 235.29    |  |  |
| 5      | 2000                                             | 1800              | 8.9      | 224.71    |  |  |
| 6      | 2000                                             | 1440              | 9.7      | 206.18    |  |  |
| 7      | 500                                              | 1080              | 2.9      | 172.41    |  |  |
| 8      | 500                                              | 720               | 4.7      | 106.38    |  |  |
| 9      | 500                                              | 360               | 100.5    | 4.97      |  |  |
| 10     | 500                                              | 0                 | -        | -         |  |  |

After the 3 sets of pilot readings in clockwise and anticlockwise direction we have observed the variation of discharge for the same position of disc of gate valve. In simple words for same angle of rotation discharge is different. By keeping  $60^{\circ}$  as interval one more set of clockwise and anticlockwise readings is recorded as follows:

Table 7. Opening of the gate valve at an interval of  $60^{\circ}$  (clockwise direction).

| (clockwise direction). |               |                   |       |           |
|------------------------|---------------|-------------------|-------|-----------|
| Sr.                    | Volume        | Angle of rotation | Time  | Discharge |
| No.                    | ( <b>ml</b> ) | (degree)          | (sec) | (mlps)    |
| 1                      | 500           | 0                 | 0     | 0         |
| 2                      | 500           | 60                | 510.3 | 0.97      |
| 3                      | 500           | 120               | 278.7 | 1.79      |
| 4                      | 500           | 180               | 193.1 | 2.59      |
| 5                      | 500           | 240               | 112.8 | 4.43      |
| 6                      | 500           | 300               | 73.4  | 6.81      |
| 7                      | 500           | 360               | 46.3  | 8.94      |
| 8                      | 500           | 420               | 30.4  | 16.42     |
| 9                      | 500           | 480               | 13.7  | 36.52     |
| 10                     | 500           | 540               | 9.8   | 50.76     |
| 11                     | 500           | 600               | 5.8   | 86.2      |
| 12                     | 500           | 660               | 4.8   | 104.17    |
| 13                     | 500           | 720               | 4.4   | 113.63    |
| 14                     | 500           | 780               | 3.9   | 128.20    |
| 15                     | 500           | 840               | 3.8   | 131.57    |
| 16                     | 500           | 900               | 3.7   | 135.135   |
| 17                     | 500           | 960               | 3.7   | 135.135   |
| 18                     | 500           | 1020              | 3.6   | 138.88    |


| 19  | 500    | 1080              | 3.5   | 142.85    |
|-----|--------|-------------------|-------|-----------|
| 20  | 500    | 1140              | 3.4   | 147.06    |
| 21  | 2000   | 1200              | 12.9  | 155.04    |
| 22  | 2000   | 1260              | 12.8  | 156.25    |
| 23  | 2000   | 1320              | 12.6  | 158.73    |
| 24  | 2000   | 1380              | 12.5  | 160       |
| Sr. | Volume | Angle of rotation | Time  | Discharge |
| No. | (ml)   | (degree)          | (sec) | (mlps)    |
| 25  | 2000   | 1440              | 12.4  | 131.29    |
| 26  | 2000   | 1500              | 11.0  | 181.81    |
| 27  | 2000   | 1560              | 10.7  | 186.91    |
| 28  | 2000   | 1620              | 10.3  | 194.174   |
| 29  | 2000   | 1680              | 9.8   | 204.08    |
| 30  | 2000   | 1740              | 9.5   | 210.52    |
| 31  | 2000   | 1800              | 9.3   | 215.03    |
| 32  | 2000   | 1860              | 9.2   | 217.39    |
| 33  | 2000   | 1920              | 9.1   | 219.78    |
| 34  | 2000   | 1980              | 9.1   | 219.78    |
| 35  | 2000   | 2040              | 8.3   | 240.96    |
| 36  | 2000   | 2100              | 8.9   | 224.71    |
| 37  | 2000   | 2160              | 8.8   | 227.27    |
| 38  | 2000   | 2220              | 8.7   | 229.88    |
| 39  | 2000   | 2280              | 8.5   | 235.29    |
| 40  | 2000   | 2340              | 8.4   | 238.05    |
| 41  | 2000   | 2400              | 8.4   | 238.09    |
| 42  | 2000   | 2460              | 8.3   | 240.96    |
| 43  | 2000   | 2520              | 8.1   | 246.91    |
| 44  | 2000   | 2580              | 7.9   | 253.16    |
| 45  | 2000   | 2640              | 7.7   | 259.74    |
| 46  | 2000   | 2700              | 7.5   | 266.67    |
| 47  | 2000   | 2760              | 7.3   | 273.97    |
| 48  | 2000   | 2820              | 7.1   | 281.69    |
| 49  | 2000   | 2880              | 6.6   | 303.03    |
| 50  | 2000   | 2940              | 6.3   | 317.46    |
| 51  | 2000   | 3000              | 6.1   | 327.86    |


# Table 8. closing of the gate valve at an interval of $60^{\circ}$ (anticlockwise direction).

|     | (anticiockwise direction). |                   |       |           |  |  |
|-----|----------------------------|-------------------|-------|-----------|--|--|
| Sr. | Volume                     | Angle of rotation | Time  | Discharge |  |  |
| No. | (ml)                       | (degree)          | (sec) | (mlps)    |  |  |
| 1   | 2000                       | 3000              | 5.1   | 392.1     |  |  |
| 2   | 2000                       | 2940              | 5.2   | 390.6     |  |  |
| 3   | 2000                       | 2880              | 5.3   | 377.58    |  |  |
| 4   | 2000                       | 2820              | 5.5   | 363.6     |  |  |
| 5   | 2000                       | 2760              | 5.7   | 350.87    |  |  |
| 6   | 2000                       | 2700              | 5.8   | 344.8     |  |  |
| 7   | 2000                       | 2640              | 5.9   | 338.9     |  |  |
| 8   | 2000                       | 2580              | 5.9   | 338.9     |  |  |
| 9   | 2000                       | 2520              | 6.1   | 327.86    |  |  |
| 10  | 2000                       | 2460              | 6.1   | 327.86    |  |  |
| 11  | 2000                       | 2400              | 6.3   | 317.46    |  |  |
| 12  | 2000                       | 2340              | 6.5   | 307.69    |  |  |
| 13  | 2000                       | 2280              | 6.8   | 294.11    |  |  |
| 14  | 2000                       | 2220              | 7.1   | 281.69    |  |  |
| 15  | 2000                       | 2160              | 7.0   | 285.71    |  |  |
| 16  | 2000                       | 2100              | 7.7   | 259.74    |  |  |
| 17  | 2000                       | 2040              | 7.9   | 253.16    |  |  |
| 18  | 2000                       | 1980              | 7.9   | 253.16    |  |  |
| 19  | 2000                       | 1920              | 8.1   | 246.91    |  |  |
| 20  | 2000                       | 1860              | 8.4   | 238.09    |  |  |
| 21  | 2000                       | 1800              | 8.5   | 235.29    |  |  |
| 22  | 2000                       | 1740              | 8.6   | 232.55    |  |  |
| 23  | 2000                       | 1680              | 8.9   | 224.71    |  |  |
| 24  | 2000                       | 1620              | 9.1   | 219.78    |  |  |
| 25  | 2000                       | 1560              | 9.4   | 212.76    |  |  |
| 26  | 2000                       | 1500              | 9.5   | 210.52    |  |  |
| 27  | 2000                       | 1440              | 9.9   | 202.52    |  |  |
| 28  | 2000                       | 1380              | 10.1  | 198.01    |  |  |
| 29  | 2000                       | 1320              | 10.1  | 198.01    |  |  |
|     |                            |                   |       |           |  |  |

| 30 | 2000 | 1260 | 10.3   | 194.174 |
|----|------|------|--------|---------|
| 31 | 2000 | 1200 | 11.1   | 180.18  |
| 32 | 500  | 1140 | 2.8    | 178.57  |
| 33 | 500  | 1080 | 3.1    | 161.29  |
| 34 | 500  | 1020 | 3.2    | 156.25  |
| 35 | 500  | 960  | 3.4    | 147.05  |
| 36 | 500  | 900  | 3.7    | 135.135 |
| 37 | 500  | 840  | 3.9    | 128.2   |
| 38 | 500  | 780  | 4.1    | 121.95  |
| 39 | 500  | 720  | 4.7    | 106.38  |
| 40 | 500  | 660  | 5.9    | 84.74   |
| 41 | 500  | 600  | 7.8    | 64.1025 |
| 42 | 500  | 540  | 9.3    | 53.76   |
| 43 | 500  | 480  | 16.3   | 30.67   |
| 44 | 500  | 420  | 44.5   | 11.23   |
| 45 | 500  | 360  | 100.10 | 4.995   |
| 46 | 500  | 300  | 157.2  | 3.180   |
| 47 | 500  | 240  | 261.9  | 1.909   |
| 48 | 500  | 180  | 325.7  | 1.535   |
| 49 | 500  | 120  | 498.2  | 1.0036  |
| 50 | 500  | 60   | 540.8  | 0.924   |
| 51 | 500  | 0    | 0      | 0       |

Another model is having same parameters as that of first. . But this one is assembled with the flexible pipe. Purpose of using flexible pipe is to avoid zone separation.





This system consists of 25mm metallic valve fixed along the acrylic pipe on either sides having flow development length of 1250mm with the same pressure at inlet. This flexible pipe is made up of nylon material which used in canopy of umbrella. Length of the flexible pipe depends on the distance of zone formation on either side of the valve which is measured from conventional model. For the present case it is 128mm on either sides of valve.

Length of flexible pipe

= length of wake on either sides + width of valve

=(128+128)+150

=406mm

To be on safer side 450 mm length is to taken for flexible pipe.



Fig 6. Experimental setup with flexible membrane.

Same procedure is followed for the recording of reading. First of all 3 set of pilot readings are taken which are having interval of one complete rotation  $(360^{\circ})$  in clockwise and anticlockwise direction.

# Table 9. Readings-set 1 (Clockwise rotation).

| Serial | Volume        | Angle of rotation | Time     | Discharge |
|--------|---------------|-------------------|----------|-----------|
| No.    | ( <b>ml</b> ) | (degree)          | (second) | (mlps)    |
| 1      | 500           | 0                 | 0        | 0         |
| 2      | 500           | 360               | 51.7     | 19.34     |
| 3      | 500           | 720               | 18.8     | 53.19     |
| 4      | 500           | 1080              | 12.9     | 77.51     |
| 5      | 2000          | 1440              | 12.2     | 81.96     |
| 6      | 2000          | 1800              | 10.1     | 99.00     |
| 7      | 2000          | 2160              | 9.9      | 101.01    |
| 8      | 2000          | 2520              | 9.5      | 105.26    |
| 9      | 2000          | 2880              | 9.1      | 109.89    |
| 10     | 2000          | 3000              | 8.9      | 112.36    |

Table10. Readings-set 1 (anticlockwise rotation)

| Sr. | Volume        | Angle of rotation | Time     | Discharge |
|-----|---------------|-------------------|----------|-----------|
| No. | ( <b>ml</b> ) | (degree)          | (second) | (mlps)    |
| 1   | 2000          | 3000              | 8.6      | 116.27    |
| 2   | 2000          | 2880              | 9.2      | 108.69    |
| 3   | 2000          | 2520              | 9.4      | 106.38    |
| 4   | 2000          | 2160              | 9.8      | 102.04    |
| 5   | 2000          | 1800              | 10.0     | 100       |
| 6   | 2000          | 1440              | 11.9     | 84.03     |
| 7   | 500           | 1080              | 12.8     | 78.125    |
| 8   | 500           | 720               | 18.6     | 53.76     |
| 9   | 500           | 360               | 49.9     | 20.04     |
| 10  | 500           | 0                 | 0        | 0         |

Table11. Readings-set 2 (clockwise rotation).

| Sr.<br>No. | Volume<br>(ml) | Angle of rotation (degree) | Time<br>(second) | Discharge<br>(mlps) |
|------------|----------------|----------------------------|------------------|---------------------|
| 1          | 500            | 0                          | 0                | 0                   |
| 2          | 500            | 360                        | 59.2             | 16.80               |
| 3          | 500            | 720                        | 17.2             | 58.14               |
| 4          | 500            | 1080                       | 13.2             | 75.75               |
| 5          | 2000           | 1440                       | 12.8             | 78.12               |
| 6          | 2000           | 1800                       | 10.5             | 95.23               |
| 7          | 2000           | 2160                       | 10.0             | 100                 |
| 8          | 2000           | 2520                       | 9.7              | 103.09              |
| 9          | 2000           | 2880                       | 9.6              | 104.16              |
| 10         | 2000           | 3000                       | 9.2              | 108.69              |

#### Table12. Readings-set 2 (anticlockwise rotation).

| Sr.<br>No. | Volume<br>(ml) | Angle of rotation (degree) | Time<br>(second) | Discharge<br>(mlps) |
|------------|----------------|----------------------------|------------------|---------------------|
| 1          | 1000           | 3000                       | 9.2              | 108.69              |
| 2          | 1000           | 2880                       | 9.5              | 105.26              |
| 3          | 1000           | 2520                       | 9.7              | 103.09              |
| 4          | 1000           | 2160                       | 10.1             | 99                  |
| 5          | 1000           | 1800                       | 10.4             | 96.15               |
| 6          | 1000           | 1440                       | 12.5             | 80                  |
| 7          | 1000           | 1080                       | 12.9             | 77.51               |
| 8          | 1000           | 720                        | 17.9             | 55.86               |
| 9          | 1000           | 360                        | 53.8             | 18.58               |
| 10         | 1000           | 0                          | 0                | 0                   |

#### Table13. Readings-set 3(clockwise rotation)

| Sr.<br>No. | Volume<br>(ml) | Angle of rotation<br>(degree) | Time<br>(second) | Discharge<br>(mlps) |
|------------|----------------|-------------------------------|------------------|---------------------|
| 1          | 1000           | 0                             | 0                | 0                   |
| 2          | 1000           | 360                           | 61.2             | 16.33               |
| 3          | 1000           | 720                           | 17.4             | 57.47               |
| 4          | 1000           | 1080                          | 13.6             | 73.53               |
| 5          | 1000           | 1440                          | 12.5             | 80                  |
| 6          | 1000           | 1800                          | 10.8             | 92.59               |
| 7          | 1000           | 2160                          | 10.2             | 98.04               |
| 8          | 1000           | 2520                          | 9.4              | 106.38              |
| 9          | 1000           | 2880                          | 9.1              | 109.89              |
| 10         | 1000           | 3000                          | 8.5              | 117.64              |

| Sr. | Volume        | Angle of rotation | Time     | Discharge |
|-----|---------------|-------------------|----------|-----------|
| No. | ( <b>ml</b> ) | (degree)          | (second) | (mlps)    |
| 1   | 2000          | 3000              | 8.8      | 113.63    |
| 2   | 2000          | 2880              | 9.2      | 108.69    |
| 3   | 2000          | 2520              | 9.5      | 105.26    |
| 4   | 2000          | 2160              | 10.3     | 97.08     |
| 5   | 2000          | 1800              | 10.5     | 95.23     |
| 6   | 2000          | 1440              | 12.3     | 81.30     |
| 7   | 500           | 1080              | 13.3     | 75.18     |
| 8   | 500           | 720               | 17.7     | 56.49     |
| 9   | 500           | 360               | 58.3     | 17.15     |
| 10  | 500           | 0                 | 0        | 0         |

Table14. Readings-set 3 (anticlockwise rotation).

After the 3 sets of pilot readings in clockwise and anticlockwise direction we have observed the discharge is almost same for the same position of disc of gate valve. In simple words for same angle of rotation discharge is almost same. By keeping  $60^{\circ}$  as interval one more set of clockwise and anticlockwise readings is recorded as follows:

| Table 15. | Opening | of the | gate valve | (clockwise). |
|-----------|---------|--------|------------|--------------|
|-----------|---------|--------|------------|--------------|

|       |        | pennig of the gate |          |           |
|-------|--------|--------------------|----------|-----------|
| Sr.   | Volume | Angle of rotation  | Time     | Discharge |
| no.   | (ml)   | (degree)           | (second) | (mlps)    |
| 1     | 1000   | 0                  | 0        | 0         |
| 2     | 1000   | 60                 | 0        | 0         |
| 3     | 1000   | 120                | 0        | 0         |
| 4     | 1000   | 180                | 370.1    | 2.70      |
| 5     | 1000   | 240                | 141.5    | 7.08      |
| 6     | 1000   | 300                | 88.2     | 11.33     |
| 7     | 1000   | 360                | 55.3     | 18.08     |
| 8     | 1000   | 420                | 49.1     | 20.36     |
| 9     | 1000   | 480                | 35.2     | 28.40     |
| 10    | 1000   | 540                | 27.8     | 35.97     |
| 11    | 1000   | 600                | 25.2     | 39.68     |
| 12    | 1000   | 660                | 22.2     | 45.04     |
|       | 1000   | 720                | 17.5     | 57.14     |
| 13    |        | 720                |          |           |
| 14    | 1000   |                    | 16.9     | 59.17     |
| 15    | 1000   | 840                | 14.9     | 67.11     |
| 16    | 1000   | 900                | 14.8     | 67.56     |
| 17    | 1000   | 960                | 14.5     | 68.96     |
| 18    | 1000   | 1020               | 13.5     | 74.07     |
| 19    | 1000   | 1080               | 13.3     | 75.19     |
| 20    | 1000   | 1140               | 12.9     | 77.51     |
| 21    | 1000   | 1200               | 12.9     | 77.51     |
| 22    | 1000   | 1260               | 12.8     | 78.12     |
| 23    | 1000   | 1320               | 12.8     | 78.12     |
| 24    | 1000   | 1380               | 12.7     | 78.74     |
| 25    | 1000   | 1440               | 12.2     | 81.96     |
| 26    | 1000   | 1500               | 12.3     | 81.30     |
| 27    | 1000   | 1560               | 12.1     | 82.64     |
| 28    | 1000   | 1620               | 11.8     | 84.74     |
| 29    | 1000   | 1680               | 11.6     | 86.20     |
| 30    | 1000   | 1740               | 11.3     | 88.49     |
| 31    | 1000   | 1800               | 10.8     | 92.59     |
| 32    | 1000   | 1860               | 10.8     | 92.59     |
| 33    | 1000   | 1920               | 10.7     | 93.46     |
| 34    | 1000   | 1980               | 10.7     | 93.46     |
| 35    | 1000   | 2040               | 10.6     | 94.34     |
| 36    | 1000   | 2100               | 10.0     | 98.64     |
| 77    | 1000   | 2160               | 10.2     | 99.00     |
| 38    | 1000   | 2220               | 10.1     | 95.24     |
| 39    | 1000   | 2220               | 10.3     | 97.08     |
| 40    | 1000   | 2340               | 10.3     | 99.00     |
| 40    | 1000   | 2400               | 9.9      | 101.01    |
| 41 42 |        |                    |          |           |
| -     | 1000   | 2460               | 9.8      | 102.04    |
| 43    | 1000   | 2520               | 9.7      | 103.09    |
| 44    | 1000   | 2580               | 9.6      | 104.17    |
| 45    | 1000   | 2640               | 9.6      | 104.17    |

| 1000 | 2700                         | 9.5                                                                                                   | 105.26                                                                                                                                                |
|------|------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1000 | 2760                         | 9.3                                                                                                   | 107.53                                                                                                                                                |
| 1000 | 2820                         | 9.3                                                                                                   | 107.53                                                                                                                                                |
| 1000 | 2880                         | 9.3                                                                                                   | 107.53                                                                                                                                                |
| 1000 | 2940                         | 9.2                                                                                                   | 108.69                                                                                                                                                |
| 1000 | 3000                         | 9.2                                                                                                   | 108.69                                                                                                                                                |
|      | 1000<br>1000<br>1000<br>1000 | 1000         2760           1000         2820           1000         2880           1000         2940 | 1000         2760         9.3           1000         2820         9.3           1000         2880         9.3           1000         2940         9.2 |

| Tab      | Table 16. Closing of the gate valve (Anticlockwise). |                   |          |                |  |
|----------|------------------------------------------------------|-------------------|----------|----------------|--|
| Sr.      | Volume                                               | Angle of rotation | Time     | Discharge      |  |
| no.      | ( <b>ml</b> )                                        | (degree)          | (second) | (mlps)         |  |
| 1        | 1000                                                 | 0                 | 0        | 0              |  |
| 2        | 1000                                                 | 60                | 0        | 0              |  |
| 3        | 1000                                                 | 120               | 0        | 0              |  |
| 4        | 1000                                                 | 180               | 378.2    | 2.64           |  |
| 5        | 1000                                                 | 240               | 140.4    | 7.12           |  |
| 6        | 1000                                                 | 300               | 88.5     | 11.3           |  |
| 7        | 1000                                                 | 360               | 56.5     | 17.7           |  |
| 8        | 1000                                                 | 420               | 50.2     | 19.92          |  |
| 9        | 1000                                                 | 480               | 36.8     | 27.17          |  |
| 10       | 1000                                                 | 540               | 28.9     | 34.60          |  |
| 11       | 1000                                                 | 600               | 26.5     | 37.73          |  |
| 12       | 1000                                                 | 660               | 21.6     | 46.3           |  |
| 13       | 1000                                                 | 720               | 18.1     | 55.24          |  |
| 14       | 1000                                                 | 780               | 16.1     | 62.11          |  |
| 15       | 1000                                                 | 840               | 15.5     | 64.51          |  |
| 16       | 1000                                                 | 900               | 14.4     | 69.44          |  |
| 17       | 1000                                                 | 960               | 13.9     | 71.94          |  |
| 18       | 1000                                                 | 1020              | 13.7     | 72.99          |  |
| 19       | 1000                                                 | 1020              | 13.5     | 74.07          |  |
| 20       | 1000                                                 | 1140              | 13.5     | 74.07          |  |
| 21       | 1000                                                 | 1200              | 13.3     | 75.19          |  |
| 22       | 1000                                                 | 1260              | 13.3     | 75.19          |  |
| 23       | 1000                                                 | 1320              | 13.1     | 76.34          |  |
| 23       | 1000                                                 | 1320              | 12.9     | 77.51          |  |
| 25       | 1000                                                 | 1440              | 12.6     | 79.36          |  |
| 26       | 1000                                                 | 1500              | 12.0     | 82.64          |  |
| 27       | 1000                                                 | 1560              | 11.9     | 84.03          |  |
| 28       | 1000                                                 | 1620              | 11.7     | 85.47          |  |
| 29       | 1000                                                 | 1620              | 11.5     | 86.95          |  |
| 30       | 1000                                                 | 1740              | 11.3     | 88.5           |  |
| 31       | 1000                                                 | 1800              | 10.9     | 91.74          |  |
| 32       | 1000                                                 | 1860              | 11.0     | 90.90          |  |
| 33       | 1000                                                 | 1920              | 10.9     | 91.74          |  |
| 34       | 1000                                                 | 1920              | 10.9     | 92.6           |  |
| 35       | 1000                                                 | 2040              | 10.5     | 95.24          |  |
| 36       | 1000                                                 | 2100              | 10.3     | 97.08          |  |
| 77       | 1000                                                 | 2160              | 10.3     | 97.08          |  |
| 38       | 1000                                                 | 2220              | 10.3     | 97.08          |  |
|          | 1000                                                 |                   | 10 -     | 00.44          |  |
| 39<br>40 | 1000                                                 | 2280<br>2340      | 10.7     | 93.46<br>95.24 |  |
| 40       | 1000                                                 | 2400              | 10.3     | 93.24          |  |
| 41       | 1000                                                 | 2460              | 10.3     |                |  |
| 42       |                                                      | 2460              | 10.3     | 97.08<br>95.24 |  |
|          | 1000                                                 |                   |          |                |  |
| 44       | 1000                                                 | 2580              | 9.9      | 101.0          |  |
| 45       | 1000                                                 | 2640              | 10.1     | 99.0           |  |
| 46       | 1000                                                 | 2700              | 10.0     | 100            |  |
| 47       | 1000                                                 | 2760              | 9.9      | 101.01         |  |
| 48       | 1000                                                 | 2820              | 9.6      | 104.67         |  |
| 49       | 1000                                                 | 2880              | 9.6      | 104.67         |  |
| 50       | 1000                                                 | 2940              | 9.5      | 105.26         |  |
| 51       | 1000                                                 | 3000              | 9.4      | 106.38         |  |

# V. Result and Discussion

Graphical presentation of pilot readings of conventional system shows scattered pattern as discharge varies each time due to zone separation. While in case of graph of pilot readings with flexible pipe pattern observed is in close proximity. This shows the negligible change of discharge.

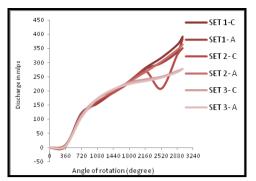



Fig 7. Graphical representation of pilot readings of conventional system.

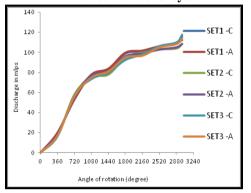



Fig 8. Graphical representation of pilot readings of system with flexible pipe.

Similarly, for the readings taken at an interval of  $60^{\circ}$  the graphical line with flexible pipe shows closer pattern while conventional system is scattered one.

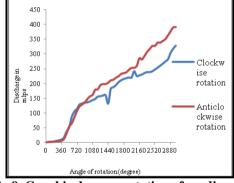



Fig 9. Graphical representation of readings of conventional system.

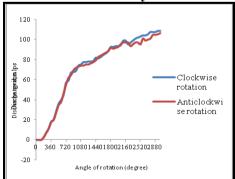



Fig 10. Graphical representation of readings of system with flexible pipe.

After complete analysis of results use of flexible pipe removes the lacuna of use of gate valve and keeps the discharge constant. So gate valve can be used as a flow measuring device.

# VI. Acknowledgment

The authors of this paper are thankful to the Management and Administrative Officers of Sinhgad College of Engineering, Pune for their co-operation during experimentation in the laboratories.

# VII. References

1. Dr. G. A. Hinge "Novel Automation of Experimental Setup of Flow through Orifice" From Hydro2004.

2. P. N. Modi, Fluid Mechanics And Hydropower, Standard Publications.

3. R. K. Bansal, a Textbook of Fluid Mechanics And Hydraulic Machines, Laxmi Publications.



Dr. N. J. Sathe, working as Associate Professor in Trinity Academy of Engineering, Pune. He has a wide experience of more than 15 years in teaching and research. Dr. Sathe has completed his Ph.D. from Shivaji University, Kolhapur and was working for more than 10 years in Sinhgad College of Engineering. He

is approved Ph.D. guide of Savitribai Phule Pune University, Pune. He has guided more than 15 ME Projects of which 50% are sponsored projects.



Dr. G. A. Hinge, working as Professor and Head of Department of Civil Engineering, Bhivrabai Sawant College of Engineering, Pune. He has a wide range of experience in teaching and research. Dr. Hinge has a National patent to his credit. He completed his Ph.D. from Savitribai Phule Pune University in 2013. Dr.

Hinge is an approved Ph.D. Guide from Savitribai Phule Pune University. He has guided more than 25 ME dissertation. Presently 3 Ph.D. students are pursuing their research under his guidance.



Ms. Vrinda Suryawanshi completed her Bachelors degree from Sinhgad College of Engineering, Pune in 2013. Later she joined for PG Course in Hydraulics and completed her ME Hydraulics in 2015. Since last 1.5 year she is working as Assitant Engineer Grade I, in Water Resource Department, Government of Maharashtra.