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Introduction 

 Many problems of physical interest are described by 

differential and integral equations with appropriate or boundary 

conditions. These problems are usually  formulated as initial 

value problem, boundary value problems, or initial – boundary 

value problem that seem to be mathematically more vigorous 

and physically realistic in applied and engineering sciences. 

Tarig transform method is very effective for solution of the 

response of differential and integral equations and a linear 

system of differential and integral equations. 

 The technique that we used is Tarig transform method 

which is based on Fourier transform. It introduced by tarig M. 

Elzaki (2010) see [Tarig and Salih (2011)and (2012)]. 

 In this study, Tarig transform is applied to integral and 

integrao-differential equations system which the solution of 

these equations have a major role in the fields of science and 

engineering. When a physical system is modeled under the 

differential sense, if finally gives a differential equation, an 

integral equation or an integro-differential equation systems.   

Recently .Tarig M. ELzaki introduced a new transform and 

named as Tarig transform which is defined by:  
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  Or for a function  f t  which is of exponential order, 
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Tarig transform, henceforth designated by the operator  .T , is 

defined by the integral equation. 
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 Where M is a real   finite number and 
1 2,k k  can be finite or 

infinite. 

Theorem 1: 

                         If       T f t F u   
 then,  
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Proof: 
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  Integrating by parts to find that:  
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The generalization to nth order derivatives in (iii) can be proved 

by using mathematical induction. 

Theorem 2: 

           If          .T f t F u   
 Then:  
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Taking Tarig transform of both sides, we have:    
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Theorem 3: 

          If    T f t G u   
 and    L f t F s   

 then 
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   where  F s  is Laplace transform of  .f t  

Proof:  
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    Let w ut , then we 

have: 
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Theorem 4: 

      If     ,T f t F u     then:   
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Proof:   

     The definition of Tarig transform is: 
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Theorem 5 (convolution): 

           Let  f t  and  g t  having Laplace transform  F s   

and   G s  and Tarig transform   M u  and 

 .N u respectively then:         T f g t u M u N u   
 

Proof: 

    First recall that the Laplace transforms of  f g   is given 

by,  
                                         L f g t F s G s   

 

Now, since, by the duality relation in Theorem 3.we has: 
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Tarig transform of  f g  is obtained as follows:  
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Application to System of Integro-Differential Equations 

Let us consider the general first order system of integro-

differential equation,  
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With the initial conditions, 

                                 1 20 , 0y y                         (5) 

By using Tarig transform into eq (4) we have: 
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Where 
1 2,y y  are Tarig transform of 

1 2, .y y respectively. 

Substituting eq(5) into eq(6) we get:  
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Solve these equations to find:      
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Where   

         2 6 5 6 5 8 42 2 1k u u u F u u u u G u u and h u u u            

Then:          1

1y t F w u H t    
.   Substituting  1y t  into eq 

(4) to find  2y t . 

Example 1: 

          Consider the following system,  
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With the initial conditions, 

        1 20 0 , 0 1y y                                          (8) 
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Substituting eq (8) into eq (9) we get: 
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The solution of these equations is,  

     3 10 5 15 8 5 5 2

1 1 11 2 2 2u u y u u u u y u u y t tand        

From the first equation of (7) we have:  
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Applying Tarig transform to the last equation we get: 

     2 3 7 5 2

2 2 22 2 1u y u u u y u u u t tand y        

Example 2:  

              Consider the following system, 
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With the initial conditions,  
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Solution: 

           Applying Tarig transform of eq(10) we get:  
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Substituting eq (11) into eq (12) we have:  
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Solve this equation to find:  
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Substituting  1y t  into eq(10) we get:      
 2

0
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y x dx t 
 

Take Tarig transform of two side of this equation, we have:  
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Example 3:   

          Consider the following linear Voltera type integro-

differential equation system, 
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With the initial conditions: 

                1 20 1 , 0 1y y                                 (14)  

Solution:  

By taking Tarig transform of eq (13) and making use of the 

conditions (14) we have:  
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Solve these equations to find:                            
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Where that 1F   is the inverse Tarig transform. Substituting 

 1y t  into equation (13) we get:            
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Applying Tarig transform to this equation we get:  
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Conclusion 

 In this paper, Tarig transform method for the solution of 

volterra integral and Integro-differential equation systems is 

successfully expanded. In the first example, we introduce the 

general system of the first order Integro-differential equation, 

and in the last three examples, Integro-differential equation 

systems are considered. In observed Tarig transform method is 

robust and is applicable to various types of system of Integro-

differential and system integral equation. 
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Appendix 

                   Tarig Transform of Simple Functions        
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