
Kaliyaperumal Karthikeyan et al./ Elixir Elec. Engg. 93 (2016) 39613-39618

39613

I. Introduction

 Automatic speech recognition (ASR) on embedded

platforms has been gaining its popularity. ASR has been

widely used in human–machine interaction, such as mobile

robots, consumer electronics, and manipulators in industrial

assembly lines, automobile navigation systems, and security

systems. More sophisticated ASR applications with larger

vocabulary sizes and more complex knowledge sources are

expected in the future. As a result, the demand for high

performance, accurate, and fast embedded ASR is increasing.

This approach enables fast deployment of ASR-based

applications. However, the timing performance is constrained

by the processing power and memory bandwidth of the target

platforms. At another extreme, a speech recognizer can be

tailor-made in a pure hardware-based system for good timing

performance. However, in many human-machine interaction

applications, the search space for decoding speech varies

dynamically depending on the user’s response. Dedicated

hardware architecture with a static search space has limited

capabilities to deal with the dynamic nature of ASR. In

addition, the architecture becomes too application-specific and

targets to only ASR applications. It is unlikely that the data

path of the hardware can be reused for applications other than

ASR. As a compromise, a hardware–software code sign

approach seems to be attractive. A typical hardware–software

co processing system consists of a general purpose processor

and hardware units that accelerate time critical operations to

achieve required performance. Computationally intensive

parts of the algorithm can be handled by the hardware

accelerator(s), while sequential and control-oriented parts can

be run by the processor core. The additional advantages of the

hardware–software approach include the following:

1) Rapid prototyping of applications. Developers can build

their applications in software without knowing every detail of

the underlying hardware architecture.

2) Flexibility in design modification. The parts of the

algorithm which require future modification can be

implemented initially in software.

3) Universality in system architecture. The use of the general-

purpose processor core enables developers to integrate ASR

easily with other applications.

In this paper, we present the development and tradeoffs of

a hardware–software co processing ASR system which

primarily targets on embedded applications. The system

includes an optimized hardware accelerator that deals with the

critical part of the ASR algorithm. The final system achieves

real-time performance with a combination of software- and

hardware implemented functionality and can be easily

integrated into applications with voice (speech) control.

Fig 1. Data flow diagram of a typical ASR system. The

input of the system is an audio speech signal. The output is

a sequence of words.

II. Automatic Speech Recognition System

In a typical hidden Markov model (HMM)-based ASR

system, three main stages are involved. Fig. 1 shows the

dataflow within the ASR algorithm. The first stage is feature

extraction. Its main purpose is to convert a speech signal into

a sequence of acoustic feature vectors, o
T

1= {o1, o2, . . . ,oT},

where T is the number of feature vectors in the sequence.

Tele:

E-mail address: kirithicraj@gmail.com
 © 2016 Elixir all rights reserved

ARTICLE INFO

Article history:

Received: 17 March 2016;

Received in revised form:

12 April 2016;

Accepted: 18 April 2016;

Keywords

Automatic Speech

Recogni t ion (ASR),

Embedded sys tem,

Hardware–software code

Sign,

Real - t ime sys tem,

Soft -core -based sys tem.

ASR For Embedded Real Time Applications
Appavoo Namachivayam

1
, Kaliyaperumal Karthikeyan

2
 and Dr.M.Peer Mohamed

3

1,2
Department of Computer Science, Eritrea Institute of Technology, Asmara, Eritrea.

3
Department of Mathematics, Eritrea Institute of Technology, Asmara, Eritrea.

ABSTRACT

The system consists of a standard microprocessor and a hardware accelerator for

Gaussian mixture model (GMM) emission probability calculation implemented on a

field-programmable gate array. The GMM accelerator is optimized for timing

performance by exploiting data parallelism. In order to avoid large memory requirement,

the accelerator adopts a double buffering scheme for accessing the acoustic parameters

with no assumption made on the access pattern of these parameters. Experiments on

widely used benchmark data show that the real-time factor of the proposed system is

0.62, which is about three times faster than the pure software-based baseline system,

while the word accuracy rate is preserved at 93.33%. As a part of the recognizer, a new

adaptive beam-pruning algorithm is also proposed and implemented, which further

reduces the average real-time factor to 0.54 with the word accuracy rate of 93.16%. The

proposed speech recognizer is suitable for integration in various types of voice (speech)-

controlled applications.

 © 2016 Elixir all rights reserved.

Elixir Elec. Engg. 93 (2016) 39613-39618

Electrical Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Kaliyaperumal Karthikeyan et al./ Elixir Elec. Engg. 93 (2016) 39613-39618

39614

The entire speech signal is segmented into a sequence of

shorter speech signals known as frames. The time duration of

each frame is typically 25ms with 15ms of overlapping

between two consecutive frames. Each frame is characterized

by an acoustic feature vector consisting of D coefficients. One

of the widely used acoustic features is called Mel frequency

campestral coefficient (MFCC). Feature extraction continues

until the end of the speech signal is reached. The next stage is

the calculation of the emission probability which is the

likelihood of observing an acoustic feature vector. The

emission probability densities are often modeled by Gaussian

mixture models (GMMs). The last stage is Viterbi search

which involves searching for the most probable word

transcription based on the emission probabilities and the

search space. The use of weighted finite state transducers

(WFSTs) offers a tractable way for representing the search

space. The advantage is that the search space represented by a

WFST is compact and optimal. Fig. 2 shows an example of a

search space. Basically, a WFST is a finite state machine with

a number of states and transitions. As shown in Fig. 2, each

WFST transition has an input symbol, an output symbol, and a

weight. The input symbols are the triphone or biphone labels.

The output symbols are the word labels. In ASR, a word is

considered as a sequence of sub word units called phones.

Two or three phones are concatenated to form biphones or

triphones. Each triphone or biphone label is modeled by an

HMM. In other words, each WFST transition in Fig. 2 is

substituted by an HMM. The entire WFST is essentially a

network of HMM states. The WFST weights are the language

model probabilities which model the probabilistic relationship

among the words in a word sequence. Usually, a word is

grouped with its preceding (n − 1) words. The n-word

sequence called n-gram is considered as a probabilistic event.

The WFST weights estimate the probabilities of such events.

Typical n-grams used in ASR are unigram (one word), bigram

(two word, also known as word pair grammar), and trigram

(three word).For implementation purposes, each HMM state

has a bookkeeping entity called token which records the

probability(score) of the best HMM state sequence ended at

that state. Each token is propagated to its succeeding HMM

states according to the topology of the search space. For

example, in Fig. 2, the token in State 3 of the /k-ae+t/ HMM

will replicate itself. One will propagate to its own state with

HMM transition probability (a33 in this example) added to the

token’s score. Another replicated token will enter State 1 of

the /ae-t/ HMM and the WFST weight (ω6) will be added to

its score. When two tokens meet at an HMM state, only the

better token with a higher score survives and stays at the

HMM state. Other losing tokens are discarded. This method of

performing the Viterbi search is known as token passing. In

addition to as core, tokens also record a sequence of word

labels encountered during propagation. The pseudo code of the

ASR algorithm is shown in Fig. 3. In the beginning of the

algorithm, a token is instantiated in each of HMM states at the

start of each word (Line 2). Qword−start is a set of word-

starting HMM states. The score of each token is reset (Line 3).

After the initialization, the algorithm begins to process each

frame of speech. An acoustic feature vector, ot, is generated by

feature extraction (Line 6) for each speech frame. In practice,

it is intractable to perform a complete Viterbi search over all

the HMM states within the search space. Therefore, pruning is

essential for practical applications with the cost of introducing

search errors. One of the common pruning techniques is called

beam pruning. A pruning threshold is determined by

subtracting a certain value called pruning beam width from the

maximum token score (Lines 8–9). A token remains active if

its score is above the pruning threshold (Line 13). Otherwise,

the token is discarded. Pruning is said to be tight when the

pruning beam width is narrow, which reduces the number of

active tokens in the search space. Since there are fewer tokens,

the decoding time is shorter. However, the word accuracy rate

tends to decrease in tight pruning since the token with the

correct word transcription has a greater chance to be

discarded.

Fig 2. Search space represented by a WFST. Each WFST

transition x: y/z has three attributes. X is an input symbol

representing a triphone or biphone label. y is an output

label representing a word label.

Fig 3. Pseudo code of the speech recognition algorithm

with beam pruning.

Kaliyaperumal Karthikeyan et al./ Elixir Elec. Engg. 93 (2016) 39613-39618

39615

Fig 4. Pseudo code of the viterbi_search function

After feature extraction and setting the pruning threshold,

the algorithm iterates through all the HMM states that have a

token(Lines 12–18). If the token stays above the pruning

threshold, the emission probability of that state is calculated

(Line 14). After that, Viterbi search is performed on that

HMM state (Line 15).Token-passing takes place during this

process. It returns a set of new HMM states, V, which are

occupied by the new tokens after token passing. The new

tokens are accumulated into another set ˜Qt+1 which is

prepared for the next speech frame. Once all the speech frames

have been processed, the best token is found among all the

word-end HMM states denoted by Q (Lines 21–22). The best

token records its propagation path from which the word

transcription can be determined. Fig. 4 shows the pseudo code

of the viterbi_search () function. The for-loop iterates through

all the succeeding states of q (Lines 2–9). For each succeeding

state, new_scoreis calculated (Line 3) where the transition

weight can be either the HMM transition probability for

within-HMM transitions or the WFST transition weight for

cross-HMM transitions. If new score is greater than the score

at q_suc, the new score will update the score at q_suc(Line 5).

The path record of the original token at q_suc is replaced by

the path record at q (Line 6).The pseudo code shows that there

are three major levels of iterations in the ASR algorithm: 1)

iteration of T speech frames (Line 5 in Fig. 3); 2) iteration of

˜QtHMM states in each frame (Line 12 in Fig. 3); and 3)

iteration of qsuc states for each active HMM state (Line 2 in

Fig. 4). Since the search result of each speech frame in the

first iteration loop depends on previous frames, only the

second and the third loops are suitable for possible

parallelism. However, data contention is likely to occur

because an HMM state is often a qsuc state of multiple HMM

states. The impact of contention on timing performance needs

to be carefully studied if parallelism is adopted. The

performance of an ASR system is often evaluated by two

metrics. The first metric is word accuracy rate which is

defined as follows [23]:

 (1)

Where n is the total number of words. s is the number of

word substitutions (incorrectly recognized words). d and i are

the numbers of word deletions and word insertions,

respectively. The second metric is real-time factor which

measures the timing performance of the ASR system. It is

defined as follows:

 (2)

III.Hardware–Softwarecoprocessing System

The ASR algorithm is partitioned into three main parts:

feature extraction, GMM emission probability calculation, and

Viterbi search. The speech recognizer is first implemented in

software where the 16-b fixed-point implementation of the

recognizer is compared with the floating-point

implementation. The experimental results show that there is no

degradation in recognition accuracy in the fixed-point

implementation. Hence, the fixed-point system is chosen as

our baseline system for time profiling. It shows that about

69% of the total elapsed time is spent on GMM computation.

The proportions of time spent on feature extraction and Viterbi

search are 7% and 24%, respectively. Since GMM

computation is the most computationally intensive part, a

hardware accelerator is designed in order to speed up this part

of the ASR algorithm.

A. System Architecture

The architecture of the hardware–software co processing

system is shown in Fig. 5. The system consists of an Altera

Nios II processor core and a GMM hardware accelerator. The

Nios II processor acts as the control unit of the entire system.

Feature extraction and Viterbi search are implemented in

software. When the system needs to perform a GMM

calculation, the processor instructs the accelerator to carry out

the computation. The accelerator returns the computation

result to the Nios II core. The entire co processing system is

synthesized on an Altera Stratix II EP2S60F672C5ES field-

programmable gate array (FPGA).

Fig 5. System architecture of the hardware–software co

processing recognizer with the GMM hardware

accelerator. Inside the brackets, it shows the data size and

the ASR sub stages in which the data are accessed. The

Nios II processor performs feature extraction and Viterbi

search, while the GMM accelerator is used for GMM

computation.

B. GMM Emission Probability Hardware Accelerator

1) Data path: The GMM hardware accelerator calculates

the log emission probability of an observation vector given an

HMM state. Given an observation feature vector ot, the

emission probability function in an HMM state j is modeled

by a sum of weighted Gaussian mixtures

Kaliyaperumal Karthikeyan et al./ Elixir Elec. Engg. 93 (2016) 39613-39618

39616

 (3)

Where bjm(ot) is the probability density function of the

weighted mth Gaussian mixture. N(.) denotes a Gaussian

mixture. The mean vector and the covariance matrix of the

Gaussian mixture are denoted by μjmand Σjm, respectively.

Since the coefficients of a feature vector are assumed to be

independent, Σjmis a diagonal matrix. The total number of

Gaussian mixtures isMper HMM state. The weight of the

mthGaussian mixture is cjm. The logarithm of a weighted

Gaussian mixture, log bjm(ot),can be expressed by the

following equation:

 (4)

In the equation, o(d)t is the dth dimension of the

observation vector at time t. D is the dimension of the

observation vector. In many ASR applications, the typical

value of D is 39, which is commonly adopted by the research

community. μ(d)jmis the dth dimension of the μjm mean

vector. Cjm, v(d)jm, and gjm are constants defined as follows:

 (5)

 (6)

 (7)

Where the symbol (σ(d)jm)2 is the dth feature variance,

which is the dth diagonal element of the covariance matrix.

The log emission probability, log bj(ot), can be evaluated

recursively by the following equation:

 (8)

The ⊕symbol represents the log-add operator, which has

the following definition and approximation:

 (9)

Where z = x − y. When |z| is greater than a threshold, the

difference between exp(x) and exp(y) is large enough to just

consider only the greater number. The threshold value of 16 is

chosen because it shows no degradation in recognition

accuracy and also it is a power of two. Several different

thresholds (8, 16,and 32) are tested. The word accuracy rates

stay at 93.33% for threshold values of 16 and 32, whereas

there is a slight decrease in word accuracy (about 0.03%)

when the threshold is 8. The log(1 + exp(.)) function can be

calculated offline and stored in a lookup table. The |z| value

can be used as the look-up index of the table. It can be seen

from (4) that there is a summation of D interim values. Since

these values are independent of each other, it is possible to

compute N of them at the same time in parallel, where 1 ≤ N ≤

D. For example, if N = D, D interim values are calculated in

one go. However, if 1 < N < D, N interim values are

calculated each time and it requires _D/N_ iterations to

calculate all the values. In contrast, there is no parallelism if N

= 1. In other words, the degree of parallelism is governed by

N, and it is a design variable which needs to be optimally

chosen. In order to avoid pipeline stalls, the hardware

accelerator adopts a double-buffering scheme as shown in Fig.

6. Each buffer contains the GMM parameters of an HMM

state. Since the Avalon bus is 32-b wide and there are two

separate memories (SRAM and SDRAM), 8 B of parameters

can be loaded to the buffer in each clock cycle. GMM

calculation and Viterbi search are performed during the

retrieval of the next HMM state parameters from the off-chip

memories. The accelerator only needs to store the parameters

of two HMM states, which are about 1280 B in the internal

memory of the FPGA chip. observation vector only needs to

be loaded once for each speech frame. The size of the

observation vector buffer is 78 B.

Fig 6. Double-buffering inside the GMM hardware

accelerator. The arithmetic unit is reading from one buffer

while another buffer is retrieving GMM parameters from

off-chip memories.

The major differences between the proposed system and

the other co processing system are as follows:

a) The GMM accelerator has only one computation unit for

calculating one dimension. We argue that this architecture is

not optimized. The proposed system includes N computation

units and a parallel adder block to further employ data

parallelism.

b) The accelerator in their system computes log bjm(ot)only.

The summation of Gaussian mixtures is done by the general

purpose processor in software, while the proposed accelerator

includes a hardware log-add unit and the final output is log

bj(ot).

c) The accelerator in their system internally stores 128 kB of

HMM parameters, which is about 20% of the total amount.

Kaliyaperumal Karthikeyan et al./ Elixir Elec. Engg. 93 (2016) 39613-39618

39617

This makes the architecture infeasible for larger

vocabulary tasks. In addition, the parameters are

predetermined. The parameters of the most probable HMM

states, which are found by offline profiling on the test speech

data, are stored inside the accelerator. In contrast, our

proposed accelerator only stores two HMM states (1280

B).Furthermore, we do not make any assumptions on which

HMM states should be stored.

2) Timing Profile: After synthesis and place and route, the

proposed system is implemented on the target FPGA board.

The first experiment is to investigate the relationship between

the speedup in GMM calculation and the number of parallel

computation units (N). The aim is to find the smallest number

of computation units with maximum speed up. Fig. 9shows the

number of clock cycles for GMM calculation versus the

number of computation units. The task is the Resource

Management (RM1) task, which consists of 1200 test

utterances. The vocabulary size is 993. Triphone HMM

models with three emitting states and four Gaussian mixtures

per state are trained on 2880 utterances. Acoustic features are

39-D MFCCs with the zero
th

 coefficient plus their delta and

delta–delta coefficients. The language model is word-pair

grammar (bigram).In terms of word accuracy, the GMM

accelerator is the exact implementation of the algorithm.

Hence, the word accuracy rate is 93.33% which is the same as

that of the pure software-based system.

3) Resource Usage: Table II shows the resource usage of

the GMM hardware accelerator. Adaptive Logic Module

(ALM), which can be programmed to perform logic functions,

is the building block of a Stratix II FPGA device. M4K RAM

blocks on the FPGA provide on-chip memory storage.

Hardware multipliers are also embedded on the FPGA.

IV. Adaptive Pruning

Our goal is to reduce the decoding time of those

utterances which have a relatively greater real-time factor,

while keeping the recognition accuracy of the other utterances.

In order to fulfill this goal, an adaptive pruning scheme is

proposed, where the pruning beam width is adaptive according

to the number of active tokens.

A. Algorithm

Fig. 11 shows the pseudo code of the ASR algorithm with

adaptive pruning. In the beginning, the beam width is

initialized to a value (Line 4). Before token passing, the

algorithm modifies the pruning beam width according to the

number of active tokens, n(˜Qt). If the number of tokens is

greater than a threshold, upper, a tighter beam width is

adopted. The beam width is decreased by a certain amount

denoted by δ (Lines 11–12).However, if the number of active

tokens is smaller than another threshold, τlower, and also if the

beam width is tightened previously, the beam width will be

relaxed and its value will be increased by δ (Lines 13–16). The

rest of the algorithm is the same as the one shown in Fig.

3.The proposed pruning scheme is more flexible than the

narrow and fixed pruning scheme. The number of active

tokens is often time varying in the duration of an utterance.

The fixed pruning scheme applies a tight beam width

throughout the entire utterance regardless of the number of

active tokens. on the other hand, the adaptive scheme allows

relaxation of the beam width in parts of the utterance where

the workload is less heavy. In terms of implementation, the

proposed adaptive scheme is simpler than histogram pruning.

Implementing histogram pruning requires a sorted list of the

token scores. For each token, the recognizer needs to perform

an insertion sort which involves searching for the token’s

ranking in a sorted list of the previously iterated token scores.

Maintaining the tokens in a sorted order is computationally

intensive. In contrast, the adaptive pruning scheme only

requires to record the number of active tokens and a few

decision-making statements (if-statements) for adjusting the

beam width once for every speech frame.

B. Timing Profile

Fig. 12 shows the real-time factor of the co processing

system. Fixed beam pruning and adaptive beam pruning are

compared. The beam width is held constant at 170 for the

fixed beam-pruning scheme. In adaptive beam pruning, the

original beam width variable is also set to 170. The thresholds,

τlower and τupper, are 1900 and 2300, respectively. The beam

width adjustment value is 10 (δ = 10). These parameters are

determined empirically. In the fixed beam-pruning scheme,

about 94% of the utterances have a real-time factor below one.

When the adaptive beam-pruning scheme is used, this

percentage increases to99.75%. Only 3 out of 1200 utterances

have a real-time factor above one. Compared with the fixed

beam-pruning scheme, there is a small degradation in

recognition accuracy which decreases from 93.33% to

93.16%.We have also tried to tighten the adaptive pruning

scheme by adjusting τupper and τlower to smaller values

(τupper = 1700, τlower = 1250), so that the real-time factors of

all the utterances are below 1. The word accuracy rate reduces

to 92.62%.

Fig 7. Speech recognition algorithm with adaptive beam

pruning.

Kaliyaperumal Karthikeyan et al./ Elixir Elec. Engg. 93 (2016) 39613-39618

39618

V. Conclusion

The proposed ASR system shows much better real-time

factors than the other approaches without decreasing the word

accuracy rate. Other advantages of the proposed approach

include rapid prototyping, flexibility in design modifications,

and ease of integrating ASR with other applications. These

advantages, both quantitative and qualitative, suggest that the

proposed co processing architecture is an attractive approach

for embedded ASR. The proposed GMM accelerator shows

three major improvements in comparison with another co

processing system. First, the proposed accelerator is about

four times faster by further exploiting parallelism. Second, the

proposed accelerator uses a double-buffering scheme with a

smaller memory footprint, thus being more suitable for larger

vocabulary tasks. Third, no assumption is made on the access

pattern of the acoustic parameters, whereas the accelerator has

a predetermined set of parameters. Finally, we have presented

a novel adaptive pruning algorithm which further improves the

real-time factor. Compared with other conventional pruning

techniques, the proposed algorithm is more flexible to deal

with the time-varying number of active tokens in an utterance.

The performance of the proposed system is sufficient for a

wide range of speech-controlled applications. For more

complex applications which involve multiple tasks working

with ASR, further improvement of timing performance, for

example, by accelerating the Viterbi search algorithm, might

be required.

References

[1] A. Green and K. Eklundh, ―Designing for learn ability in

human–robot communication,‖ IEEE Trans. Ind. Electron.,

vol. 50, no. 4, pp. 644–650,Aug. 2003.

[2] M. Imai, T. Ono, and H. Ishiguro, ―Physical relation and

expression: Joint attention for human-robot interaction,‖ IEEE

Trans. Ind. Electron.,vol. 50, no. 4, pp. 636–643, Aug. 2003.

[3] B. Jensen, N. Tomatis, L. Mayor, A. Drygajlo, and R.

Siegwart, ―Robots meet humans—Interaction in public

spaces,‖ IEEE Trans. Ind. Electron.,vol. 52, no. 6, pp. 1530–

1546, Dec. 2005.

[4] H. Lam and F. Leung, ―Design and training for

combinational neurologic systems,‖ IEEE Trans. Ind.

Electron., vol. 54, no. 1, pp. 612–619,Feb. 2007.

[5] A. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi,

―A particles warm-optimized fuzzy-neural network for voice-

ontrolled robot systems,‖IEEE Trans. Ind. Electron., vol. 52,

no. 6, pp. 1478–1489,Dec. 2005.

