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I. Introduction 

  Automatic speech recognition (ASR) on embedded 

platforms has been gaining its popularity. ASR has been 

widely used in human–machine interaction, such as mobile 

robots, consumer electronics, and manipulators in industrial 

assembly lines, automobile navigation systems, and security 

systems. More sophisticated ASR applications with larger 

vocabulary sizes and more complex knowledge sources are 

expected in the future. As a result, the demand for high 

performance, accurate, and fast embedded ASR is increasing. 

This approach enables fast deployment of ASR-based 

applications. However, the timing performance is constrained 

by the processing power and memory bandwidth of the target 

platforms. At another extreme, a speech recognizer can be 

tailor-made in a pure hardware-based system for good timing 

performance. However, in many human-machine interaction 

applications, the search space for decoding speech varies 

dynamically depending on the user’s response. Dedicated 

hardware architecture with a static search space has limited 

capabilities to deal with the dynamic nature of ASR. In 

addition, the architecture becomes too application-specific and 

targets to only ASR applications. It is unlikely that the data 

path of the hardware can be reused for applications other than 

ASR. As a compromise, a hardware–software code sign 

approach seems to be attractive. A typical hardware–software 

co processing system consists of a general purpose processor 

and hardware units that accelerate time critical operations to 

achieve required performance. Computationally intensive 

parts of the algorithm can be handled by the hardware 

accelerator(s), while sequential and control-oriented parts can 

be run by the processor core. The additional advantages of the 

hardware–software approach include the following: 

1) Rapid prototyping of applications. Developers can build 

their applications in software without knowing every detail of 

the underlying hardware architecture. 

2) Flexibility in design modification. The parts of the 

algorithm which require future modification can be 

implemented initially in software. 

3) Universality in system architecture. The use of the general-

purpose processor core enables developers to integrate ASR 

easily with other applications. 

In this paper, we present the development and tradeoffs of 

a hardware–software co processing ASR system which 

primarily targets on embedded applications. The system 

includes an optimized hardware accelerator that deals with the 

critical part of the ASR algorithm. The final system achieves 

real-time performance with a combination of software- and 

hardware implemented functionality and can be easily 

integrated into applications with voice (speech) control.  

 

Fig 1. Data flow diagram of a typical ASR system. The 

input of the system is an audio speech signal. The output is 

a sequence of words. 

II. Automatic Speech Recognition System 

In a typical hidden Markov model (HMM)-based ASR 

system, three main stages are involved. Fig. 1 shows the 

dataflow within the ASR algorithm. The first stage is feature 

extraction. Its main purpose is to convert a speech signal into 

a sequence of acoustic feature vectors, o
T

1= {o1, o2, . . . ,oT}, 

where T is the number of feature vectors in the sequence. 
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The system consists of a standard microprocessor and a hardware accelerator for 
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performance by exploiting data parallelism. In order to avoid large memory requirement, 
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with no assumption made on the access pattern of these parameters. Experiments on 
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while the word accuracy rate is preserved at 93.33%. As a part of the recognizer, a new 

adaptive beam-pruning algorithm is also proposed and implemented, which further 

reduces the average real-time factor to 0.54 with the word accuracy rate of 93.16%. The 

proposed speech recognizer is suitable for integration in various types of voice (speech)-
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The entire speech signal is segmented into a sequence of 

shorter speech signals known as frames. The time duration of 

each frame is typically 25ms with 15ms of overlapping 

between two consecutive frames. Each frame is characterized 

by an acoustic feature vector consisting of D coefficients. One 

of the widely used acoustic features is called Mel frequency 

campestral coefficient (MFCC). Feature extraction continues 

until the end of the speech signal is reached. The next stage is 

the calculation of the emission probability which is the 

likelihood of observing an acoustic feature vector. The 

emission probability densities are often modeled by Gaussian 

mixture models (GMMs). The last stage is Viterbi search 

which involves searching for the most probable word 

transcription based on the emission probabilities and the 

search space. The use of weighted finite state transducers 

(WFSTs) offers a tractable way for representing the search 

space. The advantage is that the search space represented by a 

WFST is compact and optimal. Fig. 2 shows an example of a 

search space. Basically, a WFST is a finite state machine with 

a number of states and transitions. As shown in Fig. 2, each 

WFST transition has an input symbol, an output symbol, and a 

weight. The input symbols are the triphone or biphone labels. 

The output symbols are the word labels. In ASR, a word is 

considered as a sequence of sub word units called phones. 

Two or three phones are concatenated to form biphones or 

triphones. Each triphone or biphone label is modeled by an 

HMM. In other words, each WFST transition in Fig. 2 is 

substituted by an HMM. The entire WFST is essentially a 

network of HMM states. The WFST weights are the language 

model probabilities which model the probabilistic relationship 

among the words in a word sequence. Usually, a word is 

grouped with its preceding (n − 1) words. The n-word 

sequence called n-gram is considered as a probabilistic event. 

The WFST weights estimate the probabilities of such events. 

Typical n-grams used in ASR are unigram (one word), bigram 

(two word, also known as word pair grammar), and trigram 

(three word).For implementation purposes, each HMM state 

has a bookkeeping entity called token which records the 

probability(score) of the best HMM state sequence ended at 

that state. Each token is propagated to its succeeding HMM 

states according to the topology of the search space. For 

example, in Fig. 2, the token in State 3 of the /k-ae+t/ HMM 

will replicate itself. One will propagate to its own state with 

HMM transition probability (a33 in this example) added to the 

token’s score. Another replicated token will enter State 1 of 

the /ae-t/ HMM and the WFST weight (ω6) will be added to 

its score. When two tokens meet at an HMM state, only the 

better token with a higher score survives and stays at the 

HMM state. Other losing tokens are discarded. This method of 

performing the Viterbi search is known as token passing. In 

addition to as core, tokens also record a sequence of word 

labels encountered during propagation. The pseudo code of the 

ASR algorithm is shown in Fig. 3. In the beginning of the 

algorithm, a token is instantiated in each of HMM states at the 

start of each word (Line 2). Qword−start is a set of word-

starting HMM states. The score of each token is reset (Line 3). 

After the initialization, the algorithm begins to process each 

frame of speech. An acoustic feature vector, ot, is generated by 

feature extraction (Line 6) for each speech frame. In practice, 

it is intractable to perform a complete Viterbi search over all 

the HMM states within the search space. Therefore, pruning is 

essential for practical applications with the cost of introducing 

search errors. One of the common pruning techniques is called 

beam pruning. A pruning threshold is determined by 

subtracting a certain value called pruning beam width from the 

maximum token score (Lines 8–9). A token remains active if 

its score is above the pruning threshold (Line 13). Otherwise, 

the token is discarded. Pruning is said to be tight when the 

pruning beam width is narrow, which reduces the number of 

active tokens in the search space. Since there are fewer tokens, 

the decoding time is shorter. However, the word accuracy rate 

tends to decrease in tight pruning since the token with the 

correct word transcription has a greater chance to be 

discarded. 

 

Fig  2. Search space represented by a WFST. Each WFST 

transition x: y/z has three attributes. X is an input symbol 

representing a triphone or biphone label. y is an output 

label representing a word label. 

 

Fig 3.  Pseudo code of the speech recognition algorithm 

with beam pruning.
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Fig 4. Pseudo code of the viterbi_search function 

After feature extraction and setting the pruning threshold, 

the algorithm iterates through all the HMM states that have a 

token(Lines 12–18). If the token stays above the pruning 

threshold, the emission probability of that state is calculated 

(Line 14). After that, Viterbi search is performed on that 

HMM state (Line 15).Token-passing takes place during this 

process. It returns a set of new HMM states, V, which are 

occupied by the new tokens after token passing. The new 

tokens are accumulated into another set ˜Qt+1 which is 

prepared for the next speech frame. Once all the speech frames 

have been processed, the best token is found among all the 

word-end HMM states denoted by Q (Lines 21–22). The best 

token records its propagation path from which the word 

transcription can be determined. Fig. 4 shows the pseudo code 

of the viterbi_search () function. The for-loop iterates through 

all the succeeding states of q (Lines 2–9). For each succeeding 

state, new_scoreis calculated (Line 3) where the transition 

weight can be either the HMM transition probability for 

within-HMM transitions or the WFST transition weight for 

cross-HMM transitions. If new score is greater than the score 

at q_suc, the new score will update the score at q_suc(Line 5). 

The path record of the original token at q_suc is replaced by 

the path record at q (Line 6).The pseudo code shows that there 

are three major levels of iterations in the ASR algorithm: 1) 

iteration of T speech frames (Line 5 in Fig. 3); 2) iteration of 

˜QtHMM states in each frame (Line 12 in Fig. 3); and 3) 

iteration of qsuc states for each active HMM state (Line 2 in 

Fig. 4). Since the search result of each speech frame in the 

first iteration loop depends on previous frames, only the 

second and the third loops are suitable for possible 

parallelism. However, data contention is likely to occur 

because an HMM state is often a qsuc state of multiple HMM 

states. The impact of contention on timing performance needs 

to be carefully studied if parallelism is adopted. The 

performance of an ASR system is often evaluated by two 

metrics. The first metric is word accuracy rate which is 

defined as follows [23]: 

                  (1) 

Where n is the total number of words. s is the number of 

word substitutions (incorrectly recognized words). d and i are 

the numbers of word deletions and word insertions, 

respectively. The second metric is real-time factor which 

measures the timing performance of the ASR system. It is 

defined as follows: 

                   (2) 

III.Hardware–Softwarecoprocessing System 

The ASR algorithm is partitioned into three main parts: 

feature extraction, GMM emission probability calculation, and 

Viterbi search. The speech recognizer is first implemented in 

software where the 16-b fixed-point implementation of the 

recognizer is compared with the floating-point 

implementation. The experimental results show that there is no 

degradation in recognition accuracy in the fixed-point 

implementation. Hence, the fixed-point system is chosen as 

our baseline system for time profiling. It shows that about 

69% of the total elapsed time is spent on GMM computation. 

The proportions of time spent on feature extraction and Viterbi 

search are 7% and 24%, respectively. Since GMM 

computation is the most computationally intensive part, a 

hardware accelerator is designed in order to speed up this part 

of the ASR algorithm. 

A. System Architecture 

The architecture of the hardware–software co processing 

system is shown in Fig. 5. The system consists of an Altera 

Nios II processor core and a GMM hardware accelerator. The 

Nios II processor acts as the control unit of the entire system. 

Feature extraction and Viterbi search are implemented in 

software. When the system needs to perform a GMM 

calculation, the processor instructs the accelerator to carry out 

the computation. The accelerator returns the computation 

result to the Nios II core. The entire co processing system is 

synthesized on an Altera Stratix II EP2S60F672C5ES field-

programmable gate array (FPGA). 

 

Fig  5. System architecture of the hardware–software co 

processing recognizer with the GMM hardware 

accelerator. Inside the brackets, it shows the data size and 

the ASR sub stages in which the data are accessed. The 

Nios II processor performs feature extraction and Viterbi 

search, while the GMM accelerator is used for GMM 

computation. 

B. GMM Emission Probability Hardware Accelerator 

1) Data path: The GMM hardware accelerator calculates 

the log emission probability of an observation vector given an 

HMM state. Given an observation feature vector ot, the 

emission probability function in an HMM state j is modeled  

by a sum of weighted Gaussian mixtures 
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          (3) 

Where bjm(ot) is the probability density function of the 

weighted mth Gaussian mixture. N(.) denotes a Gaussian 

mixture. The mean vector and the covariance matrix of the 

Gaussian mixture are denoted by μjmand Σjm, respectively. 

Since the coefficients of a feature vector are assumed to be 

independent, Σjmis a diagonal matrix. The total number of 

Gaussian mixtures isMper HMM state. The weight of the 

mthGaussian mixture is cjm. The logarithm of a weighted 

Gaussian mixture, log bjm(ot),can be expressed by the 

following equation: 

          (4) 

In the equation, o(d)t is the dth dimension of the 

observation vector at time t. D is the dimension of the 

observation vector. In many ASR applications, the typical 

value of D is 39, which is commonly adopted by the research 

community. μ(d)jmis the dth dimension of the μjm mean 

vector. Cjm, v(d)jm, and gjm are constants defined as follows: 

 

             (5) 

             (6) 

            (7) 

Where the symbol (σ(d)jm)2 is the dth feature variance, 

which is the dth diagonal element of the covariance matrix. 

The log emission probability, log bj(ot), can be evaluated 

recursively by the following equation: 

            (8) 

The ⊕symbol represents the log-add operator, which has 

the following definition and approximation: 

           (9) 

Where z = x − y. When |z| is greater than a threshold, the 

difference between exp(x) and exp(y) is large enough to just 

consider only the greater number. The threshold value of 16 is 

chosen because it shows no degradation in recognition 

accuracy and also it is a power of two. Several different 

thresholds (8, 16,and 32) are tested. The word accuracy rates 

stay at 93.33% for threshold values of 16 and 32, whereas 

there is a slight decrease in word accuracy (about 0.03%) 

when the threshold is 8. The log(1 + exp(.)) function can be 

calculated offline and stored in a lookup table. The |z| value 

can be used as the look-up index of the table. It can be seen 

from (4) that there is a summation of D interim values. Since 

these values are independent of each other, it is possible to 

compute N of them at the same time in parallel, where 1 ≤ N ≤ 

D. For example, if N = D, D interim values are calculated in 

one go. However, if 1 < N < D, N interim values are 

calculated each time and it requires _D/N_ iterations to 

calculate all the values. In contrast, there is no parallelism if N 

= 1. In other words, the degree of parallelism is governed by 

N, and it is a design variable which needs to be optimally 

chosen. In order to avoid pipeline stalls, the hardware 

accelerator adopts a double-buffering scheme as shown in Fig. 

6. Each buffer contains the GMM parameters of an HMM 

state. Since the Avalon bus is 32-b wide and there are two 

separate memories (SRAM and SDRAM), 8 B of parameters 

can be loaded to the buffer in each clock cycle. GMM 

calculation and Viterbi search are performed during the 

retrieval of the next HMM state parameters from the off-chip 

memories. The accelerator only needs to store the parameters 

of two HMM states, which are about 1280 B in the internal 

memory of the FPGA chip. observation vector only needs to 

be loaded once for each speech frame. The size of the 

observation vector buffer is 78 B. 

 

Fig 6. Double-buffering inside the GMM hardware 

accelerator. The arithmetic unit is reading from one buffer 

while another buffer is retrieving GMM parameters from 

off-chip memories. 

The major differences between the proposed system and 

the other co processing system are as follows: 

a) The GMM accelerator has only one computation unit for 

calculating one dimension. We argue that this architecture is 

not optimized. The proposed system includes N computation 

units and a parallel adder block to further employ data 

parallelism. 

b) The accelerator in their system computes log bjm(ot)only. 

The summation of Gaussian mixtures is done by the general 

purpose processor in software, while the proposed accelerator 

includes a hardware log-add unit and the final output is log 

bj(ot). 

c) The accelerator in their system internally stores 128 kB of 

HMM parameters, which is about 20% of the total amount.
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This makes the architecture infeasible for larger 

vocabulary tasks. In addition, the parameters are 

predetermined. The parameters of the most probable HMM 

states, which are found by offline profiling on the test speech 

data, are stored inside the accelerator. In contrast, our 

proposed accelerator only stores two HMM states (1280 

B).Furthermore, we do not make any assumptions on which 

HMM states should be stored. 

2) Timing Profile: After synthesis and place and route, the 

proposed system is implemented on the target FPGA board. 

The first experiment is to investigate the relationship between 

the speedup in GMM calculation and the number of parallel 

computation units (N). The aim is to find the smallest number 

of computation units with maximum speed up. Fig. 9shows the 

number of clock cycles for GMM calculation versus the 

number of computation units. The task is the Resource 

Management (RM1) task, which consists of 1200 test 

utterances. The vocabulary size is 993. Triphone HMM 

models with three emitting states and four Gaussian mixtures 

per state are trained on 2880 utterances. Acoustic features are 

39-D MFCCs with the zero
th

 coefficient plus their delta and 

delta–delta coefficients. The language model is word-pair 

grammar (bigram).In terms of word accuracy, the GMM 

accelerator is the exact implementation of the algorithm. 

Hence, the word accuracy rate is 93.33% which is the same as 

that of the pure software-based system. 

3) Resource Usage: Table II shows the resource usage of 

the GMM hardware accelerator. Adaptive Logic Module 

(ALM), which can be programmed to perform logic functions, 

is the building block of a Stratix II FPGA device. M4K RAM 

blocks on the FPGA provide on-chip memory storage. 

Hardware multipliers are also embedded on the FPGA. 

IV. Adaptive Pruning 

Our goal is to reduce the decoding time of those 

utterances which have a relatively greater real-time factor, 

while keeping the recognition accuracy of the other utterances. 

In order to fulfill this goal, an adaptive pruning scheme is 

proposed, where the pruning beam width is adaptive according 

to the number of active tokens. 

A. Algorithm 

Fig. 11 shows the pseudo code of the ASR algorithm with 

adaptive pruning. In the beginning, the beam width is 

initialized to a value (Line 4). Before token passing, the 

algorithm modifies the pruning beam width according to the 

number of active tokens, n(˜Qt). If the number of tokens is 

greater than a threshold, upper, a tighter beam width is 

adopted. The beam width is decreased by a certain amount 

denoted by δ (Lines 11–12).However, if the number of active 

tokens is smaller than another threshold, τlower, and also if the 

beam width is tightened previously, the beam width will be 

relaxed and its value will be increased by δ (Lines 13–16). The 

rest of the algorithm is the same as the one shown in Fig. 

3.The proposed pruning scheme is more flexible than the 

narrow and fixed pruning scheme. The number of active 

tokens is often time varying in the duration of an utterance. 

The fixed pruning scheme applies a tight beam width 

throughout the entire utterance regardless of the number of 

active tokens. on the other hand, the adaptive scheme allows 

relaxation of the beam width in parts of the utterance where 

the workload is less heavy. In terms of implementation, the 

proposed adaptive scheme is simpler than histogram pruning. 

Implementing histogram pruning requires a sorted list of the 

token scores. For each token, the recognizer needs to perform 

an insertion sort which involves searching for the token’s 

ranking in a sorted list of the previously iterated token scores. 

Maintaining the tokens in a sorted order is computationally 

intensive. In contrast, the adaptive pruning scheme only 

requires to record the number of active tokens and a few 

decision-making statements (if-statements) for adjusting the 

beam width once for every speech frame. 

B. Timing Profile 

Fig. 12 shows the real-time factor of the co processing 

system. Fixed beam pruning and adaptive beam pruning are 

compared. The beam width is held constant at 170 for the 

fixed beam-pruning scheme. In adaptive beam pruning, the 

original beam width variable is also set to 170. The thresholds, 

τlower and τupper, are 1900 and 2300, respectively. The beam 

width adjustment value is 10 (δ = 10). These parameters are 

determined empirically. In the fixed beam-pruning scheme, 

about 94% of the utterances have a real-time factor below one. 

When the adaptive beam-pruning scheme is used, this 

percentage increases to99.75%. Only 3 out of 1200 utterances 

have a real-time factor above one. Compared with the fixed 

beam-pruning scheme, there is a small degradation in 

recognition accuracy which decreases from 93.33% to 

93.16%.We have also tried to tighten the adaptive pruning 

scheme by adjusting τupper and τlower to smaller values 

(τupper = 1700, τlower = 1250), so that the real-time factors of 

all the utterances are below 1. The word accuracy rate reduces 

to 92.62%. 

 

Fig 7. Speech recognition algorithm with adaptive beam 

pruning.
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V. Conclusion 

The proposed ASR system shows much better real-time 

factors than the other approaches without decreasing the word 

accuracy rate. Other advantages of the proposed approach 

include rapid prototyping, flexibility in design modifications, 

and ease of integrating ASR with other applications. These 

advantages, both quantitative and qualitative, suggest that the 

proposed co processing architecture is an attractive approach 

for embedded ASR. The proposed GMM accelerator shows 

three major improvements in comparison with another co 

processing system. First, the proposed accelerator is about 

four times faster by further exploiting parallelism. Second, the 

proposed accelerator uses a double-buffering scheme with a 

smaller memory footprint, thus being more suitable for larger 

vocabulary tasks. Third, no assumption is made on the access 

pattern of the acoustic parameters, whereas the accelerator has 

a predetermined set of parameters. Finally, we have presented 

a novel adaptive pruning algorithm which further improves the 

real-time factor. Compared with other conventional pruning 

techniques, the proposed algorithm is more flexible to deal 

with the time-varying number of active tokens in an utterance. 

The performance of the proposed system is sufficient for a 

wide range of speech-controlled applications. For more 

complex applications which involve multiple tasks working 

with ASR, further improvement of timing performance, for 

example, by accelerating the Viterbi search algorithm, might 

be required. 
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