Boundary Digraph and Boundary Neighbour Digraph of a graph G

M. Bhanumathi and M. Kavitha

Government Arts College for Women, Pudukkottai-622 001, Tamil Nadu, India.

ARTICLE INFO
 Article history:

Received: 11 February 2016; Received in revised form: 2 April 2016; Accepted: 7 April 2016;

Keywords

Boundary vertex,
Digraph,
Boundary digraph, Boundary neighbor graph, Boundary neighbor digraph.

Abstract

A digraph D is a pair (V, A), where V is a non-empty set whose elements are called the vertices and A is the subset of the set of ordered pairs of distinct elements of V . The elements of A are called the arcs of D. A vertex v is a boundary vertex of u if $d(u, w) \leq$ $\mathrm{d}(\mathrm{u}, \mathrm{v})$ for all $\mathrm{w} \in \mathrm{N}(\mathrm{v})$. The boundary digraph $\mathrm{BD}(\mathrm{G})$ of a graph(digraph) G is the digraph that has the same vertex set as G and an arc from u to v exists in $\operatorname{BD}(\mathrm{G})$ if and only if v is a boundary vertex of u in G. The boundary neighbor digraph BND(G) of a graph G is the graph that has the same vertex set as G and a directed edge (arc) from u to v exists in $\operatorname{BND}(\mathrm{G})$ if and only if v is a boundary neighbor of u in G.

© 2016 Elixir all rights reserved.

1.Introduction

Interconnection networks are pervasive in today's society, including networks for the distribution of goods, communication networks, social networks and the Internet, to name just a few. The topology of an interconnection network is usually modeled by a graph, either directed or undirected, depending on the particular application. In all cases, there are some common fundamental characteristics of networks such as the number of nodes, number of connections at each node, total number of connections, clustering of nodes, etc. Many of the most important basic properties, under pinning the functionalities of a network, are related to the distance between the nodes in a network. Such properties include the eccentricities of the nodes, the radius of the network and the diameter of the network.

The notion of the eccentric digraph of a graph was introduced by Buckley [3]. This construction was refined and extended by others, including Boland and Miller [5]. This has led to the study of the boundary graph of a graph G and boundary digraph of a graph G by us in [1].

A digraph D is a pair (V, A), where V is a non-empty set whose elements are called the vertices and A is the subset of the set of ordered pairs of distinct elements of V. The elements of A are called the arcs of D. The order of G is the cardinality of $V(G)$ and is denoted by $|G|=|V(G)|$. If (u, v) is an arc, it is said that u is adjacent to v and also that v is adjacent from u. A digraph $\mathrm{D}=(\mathrm{V}, \mathrm{A})$ is said to be complete if both uv and $v u \in$ A, for all $u, v \in V$. Obviously, this corresponds to K_{n}, where $|\mathrm{V}|=\mathrm{n}$, and is denoted by $\mathrm{K}_{\mathrm{n}}{ }^{*}$. A complete anti-symmetric digraph or a complete oriented graph is called a tournament. Clearly, a tournament is an orientation of K_{n}. The set of vertices which are adjacent from [to] a given vertex v is denoted by $\mathrm{N}^{+}(\mathrm{v})\left[\mathrm{N}^{-}(\mathrm{v})\right]$ and its cardinality is the out-degree of v denoted by $\mathrm{d}^{+}(\mathrm{v})$ [in-degree of v denoted by $\left.\mathrm{d}^{-}(\mathrm{v})\right]$. A vertex v for which $\mathrm{d}^{+}(\mathrm{v})=\mathrm{d}^{-}(\mathrm{v})=0$ is called an isolate $[2,6]$.

A vertex v is called a transmitter or a receiver according as $\mathrm{d}^{+}(\mathrm{v})>0, \mathrm{~d}^{-}(\mathrm{v})=0$ or $\mathrm{d}^{+}(\mathrm{v})=0, \mathrm{~d}^{-}(\mathrm{v})>0$. A vertex v is called a carrier if $\mathrm{d}^{+}(\mathrm{v})=\mathrm{d}^{-}(\mathrm{v})=1$. The total degree (or simply
degree) of v is $d(v)=d^{+}(v)+d^{-}(v)$. If $d(v)=k$ for every $v \in$ V , then D is said to be a k-regular digraph. If for every $\mathrm{v} \in \mathrm{V}$, $\mathrm{d}^{+}(\mathrm{v})=\mathrm{d}^{-}(\mathrm{v})$, the digraph is said to be an isograph or balanced digraph. A walk of length h from a vertex u to a vertex $v(u \rightarrow$ v walk) in G is a sequence of vertices $u=u_{0}, u_{1}, \ldots, u_{h-1}, u_{h}=$ v such that each pair $\left(u_{i-1}, u_{i}\right)$ is an arc of G. An arc sequence in a digraph D is an alternating sequence of vertices and arcs of D. A digraph G is strongly connected if there is a $u \rightarrow v$ walk for any pair of vertices u and v of G. The length of a shortest $u \rightarrow v$ walk is the distance from u to v, denoted by $\operatorname{dist}(u, v)$. If there is no $u \rightarrow v$ walk in G then we define $\operatorname{dist}(u$, $v)=\infty$. The eccentricity of a vertex u, denoted by $e(u)$, is the maximum distance from u to any vertex in G. If $\operatorname{dist}(u, v)=$ $e(u)(v \neq u)$ we say that v is an eccentric vertex of u. The radius of $G, \operatorname{rad}(\mathrm{G})$, is the minimum eccentricity of the vertices in G; the diameter, $\operatorname{diam}(\mathrm{G})$, is the maximum eccentricity of the vertices in G. If these two are equal in a graph, that graph is called self-centered graph with radius r . A graph G is unique eccentric vertex graph if each vertex in G has exactly one eccentric vertex [6, 7].

In digraph, * denotes the symmetric digraph.
The corona [10] G_{1} o G_{2} of two graphs G_{1} and G_{2} was defined as the graph G obtained by taking one copy of G_{1} (which has n vertices) and n copies of G_{2} and then joining the $\mathrm{i}^{\text {th }}$ vertex of G_{1} to every vertex in the $\mathrm{i}^{\text {th }}$ copy of G_{2}.

The Cocktail Party graph [11] $\mathrm{H}_{\mathrm{m}, \mathrm{n}}, \mathrm{m}, \mathrm{n} \geq 2$, is the graph with a vertex set $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{mn}}\right\}$ partitioned into n independent sets $I_{1}, I_{2}, \ldots, I_{n}$ such that $V=I_{1} \cup I_{2} \ldots \cup I_{n}$ each of size m such that $v_{i} v_{j} \in E$ for all $i, j \in\{1,2, \ldots, m n\}$ where i $\in I_{p}, j \in I_{q}, p \neq q$.

The hypercube Q_{n} is the graph whose vertex set is $\{0,1\}^{\mathrm{n}}$ and where two vertices are adjacent if they differ in exactly one coordinate. Let $\mathrm{V}\left(\mathrm{Q}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, v_{2^{n}}\right\}$ and let $\mathrm{v}_{\mathrm{i}} \in$ $\mathrm{V}\left(\mathrm{Q}_{\mathrm{n}}\right)$ with $\mathrm{v}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i} 1}, \mathrm{v}_{\mathrm{i} 2}, \ldots, \mathrm{v}_{\mathrm{in}}\right), \mathrm{v}_{\mathrm{ij}}=0$ or 1 . Then $\overline{v_{i}}=\left(\overline{v_{i 1}}, \overline{v_{i 2}}, \ldots, \overline{v_{i n}}\right)$ is a vertex of $\mathrm{V}\left(\mathrm{Q}_{\mathrm{n}}\right)$ with $\overline{v_{i j}} \neq v_{i j}, \mathrm{i}, \mathrm{j}=$ 0 or 1 .

Tele:

E-mail address: kavisdev@gmail.com

A Spider is a tree with at most one vertex of degree more than two, called the center of Spider. A leg of a Spider is a path from the center to a vertex of degree one. Thus, a star with k legs is a Spider of k legs, each of length 1.

For disjoint graphs G and H, the join $G+H$ has $V(G) \cup$ $\mathrm{V}(\mathrm{H})$ vertices and $\mathrm{E}(\mathrm{G}+\mathrm{H})=\mathrm{E}(\mathrm{G}) \cup \mathrm{E}(\mathrm{H}) \cup\{u v: u \in \mathrm{~V}(\mathrm{G})$ and $v \in V(H)\}$.

The eccentric digraph[5] of a digraph G, denoted by $\mathrm{ED}(\mathrm{G})$, is the digraph with the same vertex set as G with an arc from vertex u to vertex v in $\operatorname{ED}(\mathrm{G})$ if and only if v is an eccentric vertex of u in G.

Given a positive integer $\mathrm{k} \geq 2$, the $\mathrm{k}^{\text {th }}$ iterated eccentric digraph of $G[8]$ is written as $\operatorname{ED}^{\mathrm{k}}(\mathrm{G})=\mathrm{ED}\left(\mathrm{ED}^{\mathrm{k}-1}(\mathrm{G})\right)$ where $\mathrm{ED}^{0}(\mathrm{G})=\mathrm{G}$.

Let G be a graph. A vertex v is a boundary vertex [4] of u if $d(u, w) \leq d(u, v)$ for all $w \in N(v)$. A vertex v is called a boundary neighbor of u if v is a nearest boundary of u.

We introduced the boundary graph $\mathrm{G}_{\mathrm{b}}(\mathrm{G})$ [1] of a graph G and boundary digraph $\mathrm{BD}(\mathrm{G})$ of a graph G . Let G be a simple (p, q) graph with vertex set $V(G)$ and edge set $E(G)$. The boundary graph of a graph G, denoted by $\mathrm{G}_{\mathrm{b}}(\mathrm{G})$ has the same set of vertices as G with two vertices u and v being adjacent in $G_{b}(G)$ if and only if either v is a boundary vertex of u in G or u is a boundary vertex of v in G.

We need the following results to study the boundary digraph of a graph G.
Theorem: 1.1 [9] A digraph D is unilateral if and only if it has a spanning arc sequence.
Theorem: 1.2 [9] A digraph is strong if and only if it has a spanning closed arc sequence.

2. Boundary Digraph and Boundary Neighbor Digraph of a graph G:

In [1], we have defined the boundary digraph $\mathrm{BD}(\mathrm{G})$ of a graph G as follows:
The boundary digraph $\mathrm{BD}(\mathrm{G})$ of a graph (digraph) G is the digraph that has the same vertex set as G and a directed edge (arc) from u to v exists in $\operatorname{BD}(\mathrm{G})$ if and only if v is a boundary vertex of u in G.

Example: 2.1

 G:

Fig. 2.1

Boundary digraph

A digraph G is said to be boundary digraph if there exists a graph H such that $G=B D(H)$.
Example: 2.2

G:

H:

Fig. 2.2

Here G is a boundary digraph, since $\mathrm{BD}(\mathrm{H}) \cong \mathrm{G}$.
Now, we define new graphs known as boundary neighbor graph and boundary neighbor digraph of a graph G as follows:

The boundary neighbor graph $\mathrm{BN}(\mathrm{G})$ of a graph G is the graph that has the same vertex set as G with two vertices u and v being adjacent in $\mathrm{BN}(\mathrm{G})$ if and only if either v is a boundary neighbor of u in G or u is a boundary neighbor of v in G.

The boundary neighbor digraph $\operatorname{BND}(\mathrm{G})$ of a graph G is the graph that has the same vertex set as G and a directed edge (arc) from u to v exists in $\operatorname{BND}(G)$ if and only if v is a boundary neighbor of u in G .

Example: 2.3

Fig 2.3

Observation: 2.1

(i) Since every vertex in a connected graph has at least one boundary vertex, in a boundary digraph, every vertex will have out degree at least one.
(ii) Odd cycles are a class of graphs for which $\mathrm{BD}(\mathrm{G}) \cong \mathrm{G}$.
(iii) Two isomorphic graphs have their boundary digraph isomorphic but the converse need not be true always.
Example: 2.4

Fig: 2.4
$\mathrm{G}, \mathrm{G}_{2}$ are non isomorphic graphs, but $\mathrm{BD}\left(\mathrm{G}_{1}\right)=\mathrm{BD}\left(\mathrm{G}_{2}\right)$.
(iv) All the eccentric vertices of a connected graph G are boundary vertices also, but not conversely. Hence, always eccentric digraph of a connected graph G is a spanning sub graph of the boundary digraph of G.
(v) If the eccentric vertices are the only boundary vertices, then $\mathrm{ED}(\mathrm{G})=\mathrm{BD}(\mathrm{G})$.
(vi) $\mathrm{K}_{1, \mathrm{n}}$ is not a boundary digraph of any other graph.
(vii) If G is disconnected, eccentric vertices are not boundary vertices.
(viii) If G is the complete graph K_{n}, then $\mathrm{BD}(\mathrm{G})=\mathrm{G}^{*}$.
(ix) The boundary digraph of a directed cycle is $\operatorname{BD}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{C}_{\mathrm{n}}$.
(x) A non-trivial boundary digraph has no vertex of out degree zero.
(xi) If boundary vertices are at least two in G, then $\mathrm{d}^{-}(\mathrm{v})>0$ for at least two vertices in $\mathrm{BD}(\mathrm{G})$.
(xii) There exists at least one bidirectional edge in $\mathrm{BD}(\mathrm{G})$.
(xiii) $\operatorname{BND}(\mathrm{G})$ is a sub graph of $\mathrm{BD}(\mathrm{G})$ and $\mathrm{BN}(\mathrm{G})$ is a sub graph of $\mathrm{G}_{\mathrm{b}}(\mathrm{G})$.
(xiv) $\mathrm{BD}(\mathrm{G})=\mathrm{BND}(\mathrm{G})$ if and only if there exists only one boundary vertex for each vertex in G.
(xv) $\operatorname{BND}(\mathrm{G})$ may be connected or disconnected.
(xvi) If $P=v_{1}, v_{2}, \ldots, v_{n}$ is a diametral path in G, then v_{1} and v_{n} are boundary neighbors for some vertices of G. Thus G has at least two boundary neighbors.

Theorem: 2.1

$\operatorname{BD}\left(\mathrm{K}_{\mathrm{n}}\right)=\operatorname{BND}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{K}_{\mathrm{n}}{ }^{*}$.
Proof
When $G=K_{n}$. Any vertex $u \in V(G)$ is a boundary vertex of other vertices. Hence, $\operatorname{BD}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{K}_{\mathrm{n}}{ }^{*}$ and $\operatorname{BD}\left(\mathrm{K}_{\mathrm{n}}\right)$ is symmetric and its underlying graph is $\mathrm{G}_{\mathrm{b}}(\mathrm{G})=\mathrm{K}_{\mathrm{n}}$.

Theorem: 2.2

Let $\mathrm{W}_{\mathrm{n}}, \mathrm{n} \geq 4$ be a wheel graph. Then the underlying graph of $\mathrm{BD}\left(\mathrm{W}_{\mathrm{n}}\right)$ is $\mathrm{K}_{1}+\overline{C_{n}}$. Also, $\mathrm{BD}\left(\mathrm{W}_{\mathrm{n}}\right)=\mathrm{BND}\left(\mathrm{W}_{\mathrm{n}}\right)$.

Proof

Let $\mathrm{G}=\mathrm{W}_{\mathrm{n}}, \mathrm{n} \geq 4$ be a wheel graph with $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}, \mathrm{v}_{1}\right.$, $\left.\mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$. Let v be a central vertex of $G . \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ are the boundary vertices of v and $v_{1}, v_{2}, \ldots, v_{i-2}, v_{i+2}, \ldots, v_{n}$ are the boundary vertices of v_{i}. This proves the theorem.

Theorem: 2.3

If $\mathrm{G}=\mathrm{C}_{\mathrm{n}}$, then $\mathrm{BD}(\mathrm{G})=\operatorname{BND}(\mathrm{G})=\left\{\begin{array}{cl}C_{n}{ }^{*} & \text { if } n \text { is odd } \\ \frac{n}{2} K_{2}{ }^{*} & \text { if } n \text { is even }\end{array}\right.$

Proof

Let G be a cycle with n vertices.
Case (i) n is odd ($n=2 r+1$, where r is the radius of C_{n})
Let $v_{1}, v_{2}, \ldots, v_{r}, v_{r+1}, \ldots, v_{n}$ be the vertices of C_{n}. Every vertex v_{i} of C_{n} has two boundary vertices. Thus, the out-degree of every vertex in $\mathrm{BD}(\mathrm{G})$ is two. Each vertex of C_{n} is a boundary vertex of two vertices in G. Thus, in-degree of every vertex v_{i} of $\operatorname{BD}(\mathrm{G})$ is two in $\operatorname{BD}(\mathrm{G})$. Thus, we get a directed cycle $\mathrm{C}_{\mathrm{n}}{ }^{*}$. Hence, $\mathrm{BD}(\mathrm{G})=\mathrm{C}_{\mathrm{n}}{ }^{*}$.
Case (ii) n is even ($n=2 r$, where r is the radius of C_{n})
Every vertex of C_{n} has exactly one boundary vertex. Also, if u is a boundary vertex of v then v is a boundary vertex of u. Therefore, we get $\operatorname{BD}(G)=(n / 2) K_{2}{ }^{*}$.

Theorem: 2.4

If $\mathrm{G}=\mathrm{P}_{\mathrm{n}}$, then $\mathrm{BD}(\mathrm{G})$ has ($\mathrm{n}-2$) transmitters.

Proof

Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ be the vertices of P_{n}. The vertices v_{1} and v_{n} are the pendant vertices. The non pendant vertices of P_{n} have two boundary vertices v_{1} and v_{n}, and the non pendant vertices are not boundary vertices. Thus, the ($n-2$) non pendant vertices have indegree zero and outdegree 2 . Hence, $\mathrm{BD}(\mathrm{G})$ has ($\mathrm{n}-2$) transmitters.

Theorem: 2.5

Let G be a graph $K_{2 n}-M$, where M is a 1 -factor, then $\mathrm{BD}(\mathrm{G})=\mathrm{nK}_{2}$.
Proof

Let $G=K_{2 n}-M$, where M is a 1 -factor. G is a unique eccentric point graph. Thus in this graph, eccentric vertices are as same as the boundary vertices. Then $\mathrm{BD}(\mathrm{G})=\mathrm{nK} \mathrm{K}_{2}$.
Theorem: 2.6
Let G be a graph $K_{m, n}$, then $\operatorname{BD}\left(K_{m, n}\right)=K_{m}{ }^{*} \cup K_{n}{ }^{*}$.
Proof
Let G be a graph $K_{m, n}$ with vertex set $V(G)=V_{1} \cup V_{2}$. $\left|V_{1}(G)\right|=m$ vertices form a complete digraph, since every vertex $u \in V_{1}(G)$ have their boundary vertices in $V_{1}(G)$ and vise versa. By the definition of $\mathrm{BD}(\mathrm{G})$, we have two components $\mathrm{K}_{\mathrm{m}}{ }^{*}$ and $\mathrm{K}_{\mathrm{n}}{ }^{*}$ of $\mathrm{BD}(\mathrm{G})$.

Corollary: 2.6

The boundary digraph of a complete multipartite digraph is a disjoint union of complete digraphs more precisely, $\mathrm{BD}\left(\mathrm{K}_{\mathrm{n} 1},{ }_{\mathrm{n} 2}, \ldots,{ }_{\mathrm{nk}}\right)=\mathrm{K}_{\mathrm{n} 1} \cup \mathrm{~K}_{\mathrm{n} 2} \cup \ldots \cup \mathrm{~K}_{\mathrm{nk}}$.
Theorem: 2.7
(i) If $\mathrm{G}=\overline{C_{n}}$, then $\mathrm{BD}(\mathrm{G})=\mathrm{C}_{\mathrm{n}}{ }^{*}$ and $\mathrm{BD}(\mathrm{G})$ is symmetric.
(ii) If $\mathrm{G}=\bar{P}_{n}$, then $\mathrm{BD}(\mathrm{G})=\mathrm{P}_{\mathrm{n}}{ }^{*}$ and $\mathrm{BD}(\mathrm{G})$ is symmetric.

Proof

(i) Let $\mathrm{G}=\overline{C_{n}}$. In $\overline{C_{n}}$, every vertex $\mathrm{v}_{\mathrm{i}} \in \mathrm{V}(\mathrm{BD}(\mathrm{G}))$ has two boundary vertices $v_{i-1}, v_{i+1} . d^{+}\left(v_{i}\right)=2$ in $\operatorname{BD}(G)$. Also, every vertex v is a boundary vertex of exactly two vertices of G. Therefore, $\mathrm{d}^{-}\left(\mathrm{v}_{\mathrm{i}}\right)=2$ in $\mathrm{BD}(\mathrm{G})$. Hence, $\mathrm{BD}(\mathrm{G})=\mathrm{C}_{\mathrm{n}}{ }^{*}$.
(ii) Let $\mathrm{G}=\overline{P_{n}}$ with $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$. The non adjacent vertices of v_{i} in G are the boundary vertices of v_{i} in $B D(G)$. In $B D(G)$, for every vertex $v_{i}, d^{+}\left(v_{i}\right)=d^{-}\left(v_{i}\right)=2$ for $\mathrm{i}=2,3, \ldots, \mathrm{n}-1$ and $\mathrm{d}^{+}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{d}^{-}\left(\mathrm{v}_{\mathrm{i}}\right)=2$ for $\mathrm{i}=1$, n . Hence, $\mathrm{BD}(\mathrm{G})=\mathrm{P}_{\mathrm{n}}{ }^{*}$.
Remark: 2.1
(i) When n is even, $\mathrm{BD}\left(\mathrm{C}_{\mathrm{n}}\right)=(\mathrm{n} / 2) \mathrm{K}_{2}{ }^{*}$ and $\mathrm{BD}\left(\overline{C_{n}}\right)=\mathrm{C}_{\mathrm{n}}{ }^{*}$.
(ii) When n is odd, $\mathrm{BD}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{BD}\left(\overline{C_{n}}\right)=\mathrm{C}_{\mathrm{n}}{ }^{*}$.

Theorem: 2.8

If $G=S_{m, n}$, then $B D(G)$ has 2 transmitters and $m+n$ vertices of $\mathrm{BD}(\mathrm{G})$ form a complete symmetric sub graph, where $\mathrm{S}_{\mathrm{m}, \mathrm{n}}=$ $\overline{K_{m}}+\mathrm{K}_{1}+\mathrm{K}_{1}+\overline{K_{n}}$.

Proof

Let G be a bistar $S_{m, n}$ with $m+n$ pendant vertices, u and v are the central vertices. The $m+n$ pendent vertices form a complete symmetric sub graph in $\mathrm{BD}(\mathrm{G})$ and the central vertices u and v have out degree $m+n$ in $\operatorname{BD}(G)$ and $d^{+}(v)=$ $d^{+}(u)=0$. Hence, u and v are transmitters in $\operatorname{BD}(G)$.

Theorem: 2.9

If $G=K_{1, n}$, then $\operatorname{BD}\left(K_{1, n}\right)$ is unilateral.
Proof
Consider $G=K_{1, n}$ with vertex set $V(G)=\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let v be a central vertex of G and v has n boundary vertices in G. Thus, the out-degree of a vertex v is n and in-degree is zero in $\mathrm{BD}(\mathrm{G})$. The pendant vertices of G form a complete digraph in $\mathrm{BD}(\mathrm{G})$. Thus, $\mathrm{v}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ is a spanning arc sequence in $\mathrm{BD}(\mathrm{G})$. By Theorem 1.1, $\mathrm{BD}(\mathrm{G})$ is unilateral. The underlying graph of $B D\left(K_{1, n}\right)$ is $K_{1}+K_{n}=K_{n+1}$.
Theorem: $\mathbf{2 . 1 0}$
A digraph $\mathrm{BD}(\mathrm{G})$ is strong if $\mathrm{G}=\overline{C_{n}}$ or $\mathrm{G}=\mathrm{C}_{\mathrm{n}}, \mathrm{n}$ is odd.

Proof

(i) Assume $\mathrm{G}=\mathrm{C}_{\mathrm{n}}, \mathrm{n}$ is odd. By Theorem 2.3, we get $\mathrm{BD}(\mathrm{G})=$ $C_{n}{ }^{*}$. Let u and v be two distinct vertices of C_{n}. If v follows u in any spanning closed arc sequence, say Q of $\mathrm{BD}(\mathrm{G})$, then there
exists a sequence of the arcs of Q forming an arc sequence from u to v. If u follows v in Q, then there is an arc sequence from u to the last vertex of Q and an arc sequence from that vertex to v. By Theorem 1.2 $\mathrm{BD}(\mathrm{G})$ is strong.
(ii) Assume $\mathrm{G}=\overline{C_{n}}$, by theorem 2.7, $\mathrm{BD}\left(\overline{C_{n}}\right)=\mathrm{C}_{\mathrm{n}}{ }^{*}$. The proof is similar to proof of case(i).

Theorem: 2.11

If G is a graph with radius 1 , then radius of $\mathrm{BD}(\mathrm{G})$ is one. Proof

Let G be a graph with radius one. The center vertex u has $\mathrm{p}-1$ boundary vertices. Thus the out degree of u is $p-1$ in $\mathrm{BD}(\mathrm{G})$. Hence, the eccentricity of u is one in $\operatorname{BD}(\mathrm{G})$.

Theorem: $\mathbf{2 . 1 2}$

If a connected graph G has a pendant vertex, then in degree of that vertex is $\mathrm{p}-1$ in $\mathrm{BD}(\mathrm{G})$.

Proof

Let G be a connected graph with pendant vertex u. u is a boundary vertex of all other vertices of G. By the definition of $\mathrm{BD}(\mathrm{G})$, in degree of u is $\mathrm{p}-1$.

Theorem: 2.13

If T is a tree with m pendant vertices, then $\mathrm{BD}(\mathrm{T})$ has $\mathrm{p}-\mathrm{m}$ transmitters and m vertices having in-degree $\mathrm{p}-1$ and out-degree $\mathrm{m}-1$.

Proof

Let T be a tree with m pendant vertices. These pendant vertices are only the boundary vertices. Thus the pendant vertices are boundary vertex of other vertices of T. Hence, the in-degree of pendent vertex of T is $\mathrm{p}-1$ and the out-degree of pendant vertex is $\mathrm{m}-1$ in $\mathrm{BD}(\mathrm{T})$. A non pendant vertex of T has in degree zero and out-degree $\mathrm{m}>0$ in $\mathrm{BD}(\mathrm{T})$. Therefore, $\mathrm{BD}(\mathrm{T})$ has $\mathrm{p}-\mathrm{m}$ transmitters.
Theorem: 2.14
If $\mathrm{G}=\mathrm{C}_{2 \mathrm{n}+1}$, then $\mathrm{BD}(\mathrm{G})$ is Hamiltonian and Eulerian.
Proof
Let $\mathrm{G}=\mathrm{C}_{2 \mathrm{n}+1}$. By Theorem 2.10, $\mathrm{BD}(\mathrm{G})$ has a spanning closed arc sequence. Thus, $\mathrm{BD}(\mathrm{G})$ is Hamiltonian. By Theorem 2.3, in $\mathrm{BD}(\mathrm{G}), d^{-}\left(v_{i}\right)=d^{+}\left(v_{i}\right)=2$ for all $\mathrm{v}_{\mathrm{i}} \in \mathrm{V}(\mathrm{BD}(\mathrm{G})), \mathrm{i}=1,2,3, \ldots, 2 \mathrm{n}+1$. Thus, $\mathrm{BD}(\mathrm{G})$ is Eulerian. Theorem: 2.15

Let $\mathrm{G}=\mathrm{H}^{+}$, then $\mathrm{BD}(\mathrm{G})$ has n transmitters and n vertices form a complete sub graph.

Proof

Consider $\mathrm{G}=\mathrm{H}^{+} .|\mathrm{V}(\mathrm{H})|=\mathrm{n}$ and $|\mathrm{V}(\mathrm{G})|=2 \mathrm{n}$. By the definition of boundary digraph, the non pendant vertices of G are transmitters. The pendant vertices of G form a complete symmetric sub graph on n vertices.

Theorem: 2.16

Let G be a graph with $r(G)>1$. If G has a pendant vertex, then $\operatorname{ED}(\mathrm{G}) \neq \mathrm{BD}(\mathrm{G})$.
Proof
Suppose v is a pendant vertex of G and u is its support vertex. Then there is an arc from u to v in $\operatorname{BD}(\mathrm{G})$, but it is not in $\operatorname{ED}(\mathrm{G})$. Hence, $\mathrm{ED}(\mathrm{G}) \neq \mathrm{BD}(\mathrm{G})$.

Theorem: 2.17

If there is a triangle with a vertex of degree two or there exist a clique in G with r vertices, having a vertex of degree $\mathrm{r}-1$, then $\mathrm{ED}(\mathrm{G}) \neq \mathrm{BD}(\mathrm{G})$.

Proof

Let G be a connected graph. Consider G has a triangle with a vertex of degree two. Let u, v, w form a triangle with $\operatorname{deg} w=2$. Then w is a boundary vertex of u and v. But w is not an eccentric vertex of u and v and hence $\operatorname{ED}(G) \neq B D(G)$.

Similarly, if there exist a clique in G with r vertices and having a vertex of degree $\mathrm{r}-1$ in that clique, then $\mathrm{BD}(\mathrm{G}) \neq \mathrm{ED}(\mathrm{G})$.

Remark: 2.2

The converse of the theorem 2.16 is not true.
For example,

Fig: 2.5
Here $\mathrm{ED}(\mathrm{G}) \neq \mathrm{BD}(\mathrm{G})$. But G has no pendant vertex.

Theorem: $\mathbf{2 . 1 8}$

If G is a self-centered unique eccentric point graph, then $\mathrm{BD}(\mathrm{G})=(\mathrm{n} / 2) \mathrm{K}_{2}{ }^{*}$.
Proof
Assume G is a self-centered unique eccentric point graph with n vertices. Every vertex is an eccentric vertex in G. Each vertex has exactly only one boundary vertex which is also the eccentric vertex. Hence, $\operatorname{BD}(\mathrm{G})=(\mathrm{p} / 2) \mathrm{K}_{2}{ }^{*}$ and its underlying graph is $\mathrm{G}_{\mathrm{b}}(\mathrm{G})=(\mathrm{p} / 2) \mathrm{K}_{2}$.

Corollary 2.18:

If G is a Hypercube graph Q_{n}, then $\mathrm{BD}(\mathrm{G})=2^{\mathrm{n}-1} \mathrm{~K}_{2}{ }^{*}$.

Proof

Let G be a Hypercube graph $Q_{n} . Q_{n}$ is a self centered unique eccentric point graph. In this graph, the boundary vertices are the eccentric vertices. By Theorem 2.18, $\mathrm{BD}(\mathrm{G})=$ $\operatorname{ED}(\mathrm{G})=\left(2^{\mathrm{n}} / 2\right) \mathrm{K}_{2}{ }^{*}=2^{\mathrm{n}-1} \mathrm{~K}_{2}{ }^{*}$.
Theorem: 2.19
If G is a Cocktail party graph $\mathrm{H}_{\mathrm{m}, \mathrm{n}}$, then $\mathrm{BD}(\mathrm{G})=\mathrm{nK}_{\mathrm{m}}{ }^{*}$.

Proof

Let G be a Cocktail party graph $H_{m, n}$. The boundary vertices are the eccentric vertices. $\mathrm{BD}(\mathrm{G})=\mathrm{ED}(\mathrm{G})=\mathrm{nK}_{\mathrm{m}}{ }^{*}$.

Theorem: $\mathbf{2 . 2 0}$

If G is a disconnected graph with k components, then
(i) $\mathrm{BD}(\mathrm{G})$ is also a disconnected digraph.
(ii) $\mathrm{ED}(\mathrm{G})$ is connected and $\mathrm{ED}(\mathrm{G})$ is a k-partite graph.

Proof:

(i) Let G be a disconnected graph with two components G_{1} and G_{2}. Here the boundary vertices of G_{1} are in G_{1} and vice versa. Thus $\mathrm{BD}\left(\mathrm{G}_{1}\right)$ and $\mathrm{BD}\left(\mathrm{G}_{2}\right)$ are the components of $\mathrm{BD}(\mathrm{G})$. Hence $\mathrm{BD}(\mathrm{G})$ is a disconnected graph with two components. Similarly if G has k components, then $\operatorname{BD}(G)$ also has k components.
(ii) Consider a connected graph G has k components. Let G_{1}, G_{2}, \ldots, G_{k} be the components of G. For each vertex $v \in V\left(G_{i}\right)$, $\mathrm{e}(\mathrm{v})=\mathrm{V}\left(\mathrm{G}_{1}\right) \cup \mathrm{V}\left(\mathrm{G}_{2}\right) \cup \ldots \cup \mathrm{V}\left(\mathrm{G}_{\mathrm{i}-1}\right) \cup \mathrm{V}\left(\mathrm{G}_{\mathrm{i}+1}\right) \cup \ldots \cup$ $\mathrm{V}\left(\mathrm{G}_{\mathrm{k}}\right)$. Thus all the vertices of G_{i} are adjacent to all the vertices of other components of G in $\mathrm{ED}(\mathrm{G})$. There is no arcs between any two vertices of G_{i} in $\operatorname{ED}(\mathrm{G})$. Therefore, $\operatorname{ED}(\mathrm{G})$ is a k-partite graph.

Theorem: $\mathbf{2 . 2 1}$

For a path P_{m},
(i) $\mathrm{BN}\left(\mathrm{P}_{\mathrm{m}}\right)=\bar{K}_{n-1}+K_{1}+K_{1}+\bar{K}_{n-1}$ if m is even and $\mathrm{m}=$ 2n.
(ii) $\mathrm{BN}\left(\mathrm{P}_{\mathrm{m}}\right)=\mathrm{G}^{\prime}$ if n is odd and $\mathrm{m}=2 \mathrm{n}+1$, where G^{\prime} is given in figure 2.6.
G^{\prime} :

Fig: 2.6
$\mathrm{BND}(\mathrm{G})$ is a digraph whose underlying graph is $\mathrm{BN}\left(\mathrm{P}_{\mathrm{m}}\right)$. Proof

Let $G=P_{m}$ be a path with n vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$. Case(i): m is even ($m=2 n$)
$\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}, \ldots, \mathrm{v}_{2 \mathrm{n}}\right\} . \mathrm{v}_{1}$ and $\mathrm{v}_{2 \mathrm{n}}$ are the boundary vertices of $P_{n} . v_{1}$ is a boundary neighbour of v_{2}, v_{3}, $\ldots, v_{n}, v_{2 n}$ and vertex $v_{2 n}$ is a boundary neighbour of v_{n+1}, v_{n+2}, $v_{n+3}, \ldots, v_{2 n-1}, v_{1}$. There exists a bidirectional edge between the vertices v_{1} and $v_{2 n}$ in $\operatorname{BND}(G)$. The vertices v_{1} and $v_{2 n}$ have in-degree n and out-degree 1 in $\operatorname{BND}(\mathrm{G})$.
Hence, $\mathrm{BN}(\mathrm{G})=\bar{K}_{n-1}+K_{1}+K_{1}+\bar{K}_{n-1}$ and $\operatorname{BND}(\mathrm{G})$ is a digraph whose underlying graph is $\bar{K}_{n-1}+K_{1}+K_{1}+\bar{K}_{n-1}$. Case(ii): m is odd ($m=2 n+1$)
$\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}+1}, \ldots, \mathrm{v}_{2 \mathrm{n}}, \mathrm{v}_{2 \mathrm{n}+1}\right\} . \mathrm{v}_{1}$ and $\mathrm{v}_{2 \mathrm{n}}$ are the boundary vertices of $P_{n} . v_{1}$ is a boundary neighbor of v_{2}, $\mathrm{v}_{3}, \mathrm{v}_{4}, \ldots, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}+1}, \mathrm{v}_{2 \mathrm{n}+1}$ and vertex $\mathrm{v}_{2 \mathrm{n}+1}$ is a boundary neighbor of $\mathrm{v}_{\mathrm{n}+1}, \mathrm{v}_{\mathrm{n}+2}, \mathrm{v}_{\mathrm{n}+3}, \ldots, \mathrm{v}_{2 \mathrm{n}}, \mathrm{v}_{1}$. There exists a bidirectional edge between the vertices $\left(\mathrm{v}_{1}, \mathrm{v}_{2 \mathrm{n}+1}\right)$, $\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}+1}\right)$, $\left(v_{2 n+1}, v_{n+1}\right)$ in $\operatorname{BND}(G)$. The vertices v_{1} and $v_{2 n+1}$ have indegree $n+1$ and out-degree 2 in $\operatorname{BND}(G)$. Hence $B N D(G)=G^{\prime}$ is given in Fig 2.6.

Theorem: $\mathbf{2 . 2 2}$

Let H be a path of length n. If G is obtained from H by attaching a path of length m, then $B N(G)=P_{n}(m-1) K_{1}$ and $\operatorname{BND}(\mathrm{G})$ is a digraph whose underlying graph is $\mathrm{P}_{\mathrm{n}^{\circ}}(\mathrm{m}-1) \mathrm{K}_{1}$. Proof

Let H be a path P_{n} and G has n boundary vertices $u_{1 m}, u_{2 m}$, $u_{3 m}, \ldots, u_{n m}$. These vertices are the boundary vertices of G. $u_{i m}$ is the boundary neighbor of $\mathbf{u}_{(\mathrm{i}-1) \mathrm{m}}$ and $\mathrm{u}_{(\mathrm{i}+1) \mathrm{m}}$ in G. It follows that, the pendant $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ represent the vertices of H. Consider a path P_{m} with vertex set $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$. A graph G obtained from H by attaching a path P_{m} at each vertex v_{i} of H. Thus vertices of G form a path P of length n in $B N(G)$. Pendant vertex $u_{1 m}$ is the boundary neighbor of u_{11}, u_{12}, u_{13}, $\ldots, u_{1(\mathrm{~m}-1)}$. In $\mathrm{BN}(\mathrm{G}), \mathrm{u}_{11}, \mathrm{u}_{12}, \ldots, \mathrm{u}_{1(\mathrm{~m}-1)}$ becomes the pendant vertices of $\operatorname{BN}(G)$. Hence degree of $u_{1 m}$ is m in $B N(G)$. Similarly, degree of $u_{n m}$ is also m in $\operatorname{BN}(G)$. The vertices $u_{2 m}$, $u_{3 m}, \ldots, u_{(n-1) m}$ have the degree $m+1$ in $B N(G)$. Hence $B N(G)$ $=P_{n}(m-1) K_{1}$ and $\operatorname{BND}(G)$ is a digraph whose underlying graph is $\mathrm{P}_{\mathrm{n}}{ }^{\circ}(\mathrm{m}-1) \mathrm{K}_{1}$.
Remark: 2.3
(i) A symmetric path P of length n is an induced sub graph of BND(G).
(ii) $\mathrm{BND}(\mathrm{G})$ has $\mathrm{n}(\mathrm{m}-1)$ transmitters.

Theorem: $\mathbf{2 . 2 3}$

Let G be a connected graph with m vertices. Then $\mathrm{BN}\left(\mathrm{G}_{\circ} \mathrm{K}_{\mathrm{n}}\right)=\mathrm{mK}_{\mathrm{n}+1}$ and $\mathrm{BND}\left(\mathrm{G} \circ \mathrm{K}_{\mathrm{n}}\right)=\mathrm{mK}_{\mathrm{n}+1}$. Proof

Consider a connected graph G with vertex set $|V(G)|=m$. In $\mathrm{G}_{\mathrm{K}} \mathrm{K}_{\mathrm{n}}$, every vertex of G has n boundary neighbors. Thus, every vertex of G is adjacent to all the vertices of K_{n} in $\mathrm{BN}\left(\mathrm{G} \circ \mathrm{K}_{\mathrm{n}}\right)$. A vertex $\mathrm{v} \in \mathrm{V}\left(\mathrm{K}_{\mathrm{n}}\right)$ has n boundary neighbours in $\mathrm{BN}\left(\mathrm{G} \circ \mathrm{K}_{\mathrm{n}}\right)$. The vertices of G are disjoint in $\mathrm{BN}\left(\mathrm{G} \circ \mathrm{K}_{\mathrm{n}}\right)$. Hence $\operatorname{BN}\left(\mathrm{G} \circ \mathrm{K}_{\mathrm{n}}\right)=\mathrm{mK}_{\mathrm{n}+1}$ and $\operatorname{BND}\left(\mathrm{G} \circ \mathrm{K}_{\mathrm{n}}\right)=\mathrm{mK}_{\mathrm{n}+1}$ *.

Theorem: 2.24

Let G be a connected graph with n vertices. Then $\mathrm{BN}\left(\mathrm{G} \bullet 2 \mathrm{~K}_{1}\right)$ has n triangles and also disconnected.

Proof:

Consider a connected graph G with vertex set $V(G)=\left\{\mathrm{v}_{1}\right.$, $\left.\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$. Let $\mathrm{v}_{\mathrm{i}}{ }^{\prime}$ and $\mathrm{v}_{\mathrm{i}}{ }^{\prime \prime}$ be the pendant vertices adjacent to v_{i} in $\mathrm{G}_{0} 2 \mathrm{~K}_{1}$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}$. The vertices $v_{\mathrm{i}}{ }^{\prime}$ and $v_{\mathrm{i}}{ }^{\prime \prime}$ are the boundary neighbor of v_{i} in $G_{0} 2 \mathrm{~K}_{1}$ and v_{i}^{\prime} is the boundary neighbour of $v_{i}{ }^{\prime \prime}$ and vice versa. Thus the vertices of G are disjoint in $\mathrm{BN}\left(\mathrm{G}_{\circ} 2 \mathrm{~K}_{1}\right)$. Hence, $\mathrm{BN}\left(\mathrm{G}_{\circ} 2 \mathrm{~K}_{1}\right)$ is disconnected and has n triangles and its digraph is $\mathrm{BND}\left(\mathrm{G} \circ 2 \mathrm{~K}_{1}\right) . \mathrm{nK}_{2} *$ is an induced sub graph of $\operatorname{BND}\left(\mathrm{G}_{\circ} 2 \mathrm{~K}_{1}\right)$.
Corollary: 2.24
For any connected graph G,
(i) $\mathrm{BN}\left(\mathrm{G} \circ \mathrm{mK}_{1}\right)=\mathrm{P}_{\mathrm{m}}+\mathrm{K}_{1}$.
(ii) n symmetric arc sequence with length m in $\operatorname{BND}\left(G \circ m K_{1}\right)$ Proof:

The proof follows from Theorem 2.24.

Theorem: 2. 25

If G is a spider with $2 n+1$ vertices, then $\mathrm{BN}(\mathrm{G})=$ $\left(\mathrm{K}_{\mathrm{n}+1}{ }^{\circ} \mathrm{K}_{1}\right)-\mathrm{u}^{\prime}$, where u^{\prime} is a vertex which is attached with u in $K_{n+1}{ }^{\circ} K_{1}$, where u is the central vertex of G.

Proof:

Consider a spider G with $2 \mathrm{n}+1$ vertices. Let u be a central vertex of G. G has n pendant vertices. By the definition of $\mathrm{BN}(\mathrm{G})$, the pendant vertices of G form a complete sub graph in $\operatorname{BN}(\mathrm{G})$. Central vertex u of G has n boundary neighbors in G. Thus u is adjacent to all the pendant vertices of G in $B N(G)$. Hence it follows that, K_{n+1} is an induced sub graph of $B N(G)$. Consider a leaf $e_{i}=v_{i}{ }^{\prime} v_{i+1}^{\prime}$ in G. v_{i+1}^{\prime} is a boundary neighbor of v_{i}^{\prime} in G. Thus the pendant vertices are the boundary neighbors of the corresponding support vertices. Hence, the support vertices of G are adjacent to their corresponding pendant vertex in $\mathrm{BN}(\mathrm{G})$. Hence, $\mathrm{BN}(\mathrm{G})=$ $\left(\mathrm{K}_{\mathrm{n}+1} \mathrm{~K}_{1}\right)-\mathrm{u}^{\prime}$.

Corollary: 2.25

If G is a spider with $\mathrm{km}+1$ vertices, then $\mathrm{BN}(\mathrm{G})=$ $\left(K_{n+1}{ }^{\circ} K_{1}\right)-\left\{v_{1}{ }^{\prime}, v_{2}{ }^{\prime}, v_{3}{ }^{\prime}, \ldots, v_{k-1}{ }^{\prime}\right\}$, where $\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime}, \ldots\right.$, $\left.\mathrm{v}_{\mathrm{k}-1}{ }^{\prime}\right\}$ are the vertices which are attached with u in $\mathrm{K}_{\mathrm{n}+1}{ }^{\circ} \mathrm{K}_{1}$, where u is the central vertex of G.

Proof:

The proof follows from the Theorem.

Theorem: 2.26

If G is a spider with $2 n+1$ vertices, then $\operatorname{BND}(G)$ has $n+1$ transmitters and $\mathrm{K}_{\mathrm{n}} *$ is an induced sub graph of $\mathrm{BND}(\mathrm{G})$.

Proof

Let G be a spider with $2 n+1$ vertices. The non pendant vertex u of G has $d^{-}(u)=0$ and $d^{+}(u)>0$ in $\operatorname{BND}(G)$. Thus $\operatorname{BND}(\mathrm{G})$ has $\mathrm{n}+1$ transmitters. By the definition of $\mathrm{BND}(\mathrm{G})$, the pendant vertices are adjacent to each other. Hence $K_{n}{ }^{*}$ is an induced sub graph of $\mathrm{BND}(\mathrm{G})$.
Theorem: 2.27

If G is a wounded spider with one wounded leg, then $\mathrm{BN}(\mathrm{G})=\mathrm{G}$.

Proof

When G is a wounded spider having one wounded leg e = $u v$, Let u be a central vertex. By the definition of $\mathrm{BN}(\mathrm{G})$, vertex v is a boundary neighbor of the pendant vertices of G and the central vertex u. The boundary vertex of other support vertices is their corresponding pendant vertices in G. Thus the support vertex of G other than u become a pendant vertex in $\mathrm{BN}(\mathrm{G})$ and the pendant vertex v of wounded leg e in G become a central vertex in $\mathrm{BN}(\mathrm{G})$. The central vertex of G is adjacent to v only in $\mathrm{BN}(\mathrm{G})$. Hence, $\mathrm{BN}(\mathrm{G})$ is a wounded spider.
Corollary: 2.27
If G is a wounded spider, then $B N(G)$ is a graph of radius 2 and diameter 4.

Proof

The proof follows from the Theorem 2.27.

Remark: 2.4

If G is a wounded spider with m wounded legs and n non wounded legs, then
(i) $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is an induced sub graph of $\mathrm{BN}(\mathrm{G})$.
(ii) $\mathrm{K}_{1, \mathrm{~m}}$ is an induced sub graph of $\mathrm{BN}(\mathrm{G})$.
(iii) $\mathrm{BN}(\mathrm{G})$ has n pendant vertices.

Theorem: $\mathbf{2 . 2 8}$

If G is a wounded spider with n non wounded legs, then BND(G) has $\mathrm{n}+1$ transmitters.

Proof

Assume G has m wounded legs and n non wounded legs. The central vertex of G and m pendant vertices have n boundary neighbors. The support vertices of G has only one boundary neighbor. The support vertex v_{i} and central vertex u of G are not a boundary neighbor of any other vertex. Therefore, $\mathrm{d}^{+}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{d}^{+}(\mathrm{u})=0$ and $\mathrm{d}^{-}\left(\mathrm{v}_{\mathrm{i}}\right)>0, \mathrm{~d}^{-}(\mathrm{u})>0$. This implies, $\mathrm{BND}(\mathrm{G})$ has $\mathrm{n}+1$ transmitters.

Iterated Boundary Digraph

The Boundary Digraph $\mathrm{BD}(\mathrm{G})$ of a digraph G is the digraph that has the same vertex set as G and the arc set defined as follows there is an arc from u to v if and only if v is a boundary vertex of u.

Fig: 2.7
The boundary digraph of a graph and boundary graph of a graph was introduced by us in [1]. An example of a graph and its boundary digraph is given in Example 2.1. Note that arcs of graphs are drawn as directed edges with arrows.

Given a positive integer $\mathrm{k} \geq 2$, the $\mathrm{k}^{\text {th }}$ iterated boundary digraph of G is written as $\mathrm{BD}^{\mathrm{k}}(\mathrm{G})=\mathrm{BD}\left(\mathrm{BD}^{\mathrm{k}-1}(\mathrm{G})\right)$ where $\mathrm{BD}^{0}(\mathrm{G})=\mathrm{G}$. The following example illustrates these definitions showing graph G and its iterated boundary digraphs $\mathrm{BD}(\mathrm{G}), \mathrm{BD}^{2}(\mathrm{G}), \mathrm{BD}^{3}(\mathrm{G})$ and $\mathrm{BD}^{4}(\mathrm{G})$. Note that in this case, $\mathrm{BD}^{3}(\mathrm{G})=\mathrm{BD}^{4}(\mathrm{G})$.
An interesting line of investigation concerns the iterated sequence of boundary digraphs. For every digraph G there exist smallest integer numbers $p>0$ and $t \geq 0$ such that $\mathrm{BD}^{\mathrm{t}}(\mathrm{G}) \cong \mathrm{BD}^{\mathrm{pt}}(\mathrm{G})$, where \cong denotes graph isomorphism.

Iterated Boundary Neighbor Digraph

The Boundary Neighbor Digraph BND(G) of a digraph G is the digraph that has the same vertex set as G and the arc set defined as follows: there is an arc from u to v if and only if v is a boundary neighbor of u.

An example of a graph and its boundary neighbor digraph is given in Example 2.3. Note that arcs of graphs are drawn as directed edges with arrows.

Given a positive integer $\mathrm{k} \geq 2$, the $\mathrm{k}^{\text {th }}$ iterated boundary neighbor digraph of G is written as $B N D^{k}(G)=$ $\operatorname{BND}\left(\mathrm{BND}^{\mathrm{k}-1}(\mathrm{G})\right)$ where $\mathrm{BND}^{0}(\mathrm{G})=\mathrm{G}$. The following example illustrates these definitions showing graph G and its iterated boundary neighbor digraphs $\mathrm{BND}(\mathrm{G}), \mathrm{BND}^{2}(\mathrm{G})$ and $\mathrm{BND}^{3}(\mathrm{G})$. Note that in this case, $\mathrm{BND}^{2}(\mathrm{G})=\mathrm{BND}^{3}(\mathrm{G})$.

Fig: 2.8
For every digraph G there exist smallest integer numbers $\mathrm{p}>0$ and $\mathrm{t} \geq 0$ such that $\mathrm{BND}^{\mathrm{t}}(\mathrm{G}) \cong \mathrm{BND}^{\mathrm{ptt}}(\mathrm{G})$, where \cong denotes graph isomorphism.

Conclusion

In this paper, some properties of boundary digraph of a graph G, Boundary neighbor graph of a graph G and Boundary neighbor digraph of a graph G are discussed. Iterated boundary digraph and Iterated boundary neighbor digraph are studied.

References

[1] Bhanumathi M., and Kavitha M., " Boundary graph of a graph" , International Journal of Electrical, Electronics \& Computer Science Engineering, Volume 2, Issue 5-October, 2015, pp. 01-05.
[2] Buckley F. and Harary F., "Distance in Graphs", AddisonWesley, Red-wood City, CA, 1990.
[3] Buckley F., "The eccentric digraph of a graph" Congr. Number. 149(2001), 65-76.
[4] Gary Chartrand and Ping Zhang, "Introduction to Graph Theory", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.
[5]James Boland, Fred Buckley, Mirka Miller, "Eccentric Digraphs", Discrete Mathematics 286(2004) 25-29.
[6]Joan Gimbert, Nacho Lopez, Mirka Miller, and Joseph Ryan, "Charaterization of Eccentric Digraphs", Discrete Mathematics, 6 February 2006, Vol. 306(2): 210-219.
[7] Medha Itagi Huilgol, Syed Asif Ulla S., Sunilchandra A.R., "On Eccentric Digraphs of Graphs", Applied Mathematics, 2011, 2, 705-710.
[8] Mirka Miller, Joan Gimbert, Frank Ruskey and Joseph Ryan, "Iterations of eccentric Digraphs" Bulletin of ICA, 45(2005), 41-50.
[9] Narsingh Deo, "Graph Theory with applications to Engineering and Computer Science" Prentice Hall of India pvt. Ltd., New Delhi, 2007
[10] Sri Kuntari and Tri Atmojo Kusmayadi, " The Eccentric Digraph of the Corona of C_{n} with K_{m}, C_{m} or P_{m} ", J. Indones. Math. Soc. Vol.18, No. 2(2012), pp. 113-118.
[11] Tri Atmojo Kusmayadi and Nugroho Arif Sudibyo, "Eccentric Digraph of Cocktail Party Graph and Hypercube", IPTEK, The Journal of Technology and Science, Vol. 22, No. 4, November 2011.

