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Introduction 

Graphs discussed in this paper are undirected and simple. 

For graph theoretic terminology refer to Harary[5], Buckley 

and Harary[3]. For a graph, let V(G) and E(G) denotes its 

vertex and edge set respectively. A graph with p vertices and q 

edges is called a (p, q) graph.  

The concept of distance in graph plays a dominant role in 

the study of structural properties of graphs in various angles 

using related concept of eccentricity of vertices in graphs. The 

length of any shortest path between any two vertices u and v 

of a connected graph G is called the distance between u and v 

and it is denoted by dG(u, v). The distance between two 

vertices in different components of a disconnected graph is 

defined to be . For a connected graph G, The eccentricity 

e(v) of  v is the distance to a vertex farthest from v. Thus, e(v) 

= max{d(u, v) : u  V}.The radius rad(G) is the minimum 

eccentricity of the vertices, whereas the diameter diam(G) is 

the maximum eccentricity. If these two are equal in a graph, 

that graph is called self-centered graph with radius r and is 

called an r self-centered graph. For any connected graph G, 

rad(G) ≤ diam(G) ≤ 2rad(G). v is a central vertex if e(v) = 

r(G). The center C(G) is the set of all central vertices. For a 

vertex v, each vertex at a distance e(v) from v is an eccentric 

vertex of v.  

A graph G is connected if every two of its vertices are 

connected, otherwise G is disconnected. The vertex 

connectivity or simply connectivity κ(G) of a graph G is the 

minimum number of vertices whose removal from G results in 

a disconnected or trivial graph. The edge connectivity λ(G) of 

a graph G is the minimum number of edges whose removal 

from G results in a disconnected or trivial graph. A set S of 

vertices of G is independent if no two vertices in S are 

adjacent. The independence number βo(G) of G is the 

maximum cardinality of an independent set.  

The concept of domination in graphs was introduced by 

Ore [11]. The concept of domination in graphs is originated 

from the chess games theory and that paved the way to the 

development of the study of various domination parameters 

and its relation to various other graph parameters. For details 

on γ(G), refer to [4, 12].  

A set D  V is said to be a dominating set in G, if every 

vertex in VD is adjacent to some vertex in D. The minimum 

cardinality of a dominating set is called the domination 

number and is denoted by (G). 

Janakiraman, Bhanumathi and Muthammai [6] introduced 

and studied the concept of eccentric dominating set. A set D  

V(G) is an eccentric dominating set if D is a dominating set of 

G and for every v  VD, there exists at least one eccentric 

vertex of v in D. The minimum cardinality of an eccentric 

dominating set is called the eccentric domination number and 

is denoted by ed(G).  An eccentric dominating set with 

cardinality ed(G) is known as minimum eccentric dominating 

set.  

If D is an eccentric dominating set, then every superset D 

 D is also an eccentric dominating set. But D  D is not 

necessarily an eccentric dominating set. An eccentric 

dominating set D is a minimal eccentric dominating set if no 

proper subset D  D is an eccentric dominating set. 

A partition of V(G) is called eccentric domatic if all its 

classes are eccentric dominating sets in G. The maximum 

number of classes of an eccentric domatic partition of V(G) is 

called the eccentric domatic number of G and is denoted by 

ded(G). 

A vertex v is said to be good [14] if there is a γ-set of G 

containing v. If there is no γ-set of G containing v, then v is 

said to be a bad vertex. 

In this manner, we define ed-good and ed-bad vertices as 

follows: Let u V(G). u is said to be ed-good if u is contained 

in a γed-set of G. u is said to be ed-bad if there exists no γed-set 

of G containing u. 

In [13], Walikar, Acharya and et al., defined γD(G) as the 

total number of minimum dominating sets in a graph G. 

In [1], we have defined γED(G) as the total number of 

minimum eccentric dominating sets in a graph G.
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ABSTRACT 

The eccentric dominating graph EDmG
abc

(G) of a graph G is obtained from G with vertex 

set V = V  S, where V = V(G) and S is the set of all γed-sets of G. Two elements in V 

are said to satisfy property ‘a’ if u, v  V and are adjacent in G. Two elements in V are 

said to satisfy property ‘b’ if u = D1, v = D2  S and have a common vertex. Two 

elements in V are said to satisfy property ‘c’ if u  V, v = D  S such that u  D. Two 

elements in V are said to satisfy property ‘d’ if u, v  V and there exists D  S such that 

u, v  D. A graph having vertex set V and any two elements in V are adjacent if and 

only if they satisfy any one of the property a, b, c is denoted by EDmG
abc

(G).  In this 

paper EDmG
abc

(G) of some families of graphs and some basic properties of EDmG
abc

(G) 

are studied. Also, we have discussed the eccentricity properties of EDmG
abc

(G), and we 

have characterized graphs G for which EDmG
abc

(G) is complete or a tree. 
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In [7, 8, 9, 10], Kulli, Janakiram and Niranjan introduced 

the following concepts in the field of domination theory. 

The minimal dominating graph MD(G)[8] of a graph G is 

the intersection graph defined on the family of all minimal 

dominating sets of vertices of G. The vertex minimal 

dominating graph MvD(G)[9] of a graph G with V(MvD(G)) = 

V = V  S, where S is the collection of all minimal 

dominating sets of G with two vertices u, v  V are adjacent 

if either they are adjacent in G or v = D is a minimal 

dominating set of G containing u.  

The dominating graph D(G)[10] of a graph G = (V, E) is 

a graph with V(D(G)) = V  S, where S is the set of all  

minimal dominating sets of G and with two vertices u, v  

V(D(G)) are adjacent if u  V and v = D is a minimal 

dominating set of G containing u.  

In [2], we have defined and studied the dominating graph 

DG
abc

(G) of a graph G. 

In this paper, we define EDmG
abc

(G) with property a, b 

and c. We find EDmG
abc

(G) for some families of graphs, and 

some basic properties of EDmG
abc

(G) are studied. Also, the 

characterization of EDmG
abc

(G) are established. 

In section 3, we have defined and studied the properties of 

EDG
abc

(G). 

The following results are needed to study EDmG
abc

(G) . 

Theorem: 1.1[4] A graph G is Eulerian if and only if every 

vertex of G is of even degree. 

Theorem: 1.2[1] 

 (i) ED(P3k) = k. 

(ii) ED(P3k+1) = 1. 

(iii) ED(P3k+2) = 

2 3 2

2

k k 
. 

Theorem: 1.3[13]  

(i) D(C3k) = 3. 

(ii) D(C3k+1) = (3k+1)(k+2)/2. 

 (iii) D(C3k+2) = 3k+2. 

Theorem: 1.4[5]  

ed(Kn) = 1. 

Theorem: 1.5[5]  

ed(Km,  n) = 2. 

Theorem: 1.6[5] 

 ed(K1, n) = 2, n  2. 

Theorem: 1.7[5]  

ed(W3) = 1, ed(W4) = 2, ed(W5) = 3, ed(W6) = 2 and ed(Wn) 

= 3 for n  7. 

2. The eccentric dominating graph EDmG
abc

(G) of a Graph 

G 
We define a new class of intersection graphs in the field 

of domination theory as follows. 

Definition: 2.1  
Let G be a graph with vertex set V(G) and let S be the set 

of all γed-sets of G. Then two elements in V are said to satisfy 

property ‘a’ if u, v  V and are adjacent in G. Two elements 

in V are said to satisfy property ‘b’ if u = D1, v = D2  S and 

have a common vertex. Two elements in V are said to satisfy 

property ‘c’ if u  V(G), v = D  S such that u  D. A graph 

having vertex set V = V  S, where V = V(G) and S is the set 

of all γed-sets of G and any two elements in V are adjacent if 

and only if they satisfy any one of the property a, b, c is 

denoted by EDmG
abc

(G). Here, the elements of V(G) are called 

as point vertices and the elements of S are known  as set 

vertices. 

 

Remark: 2.1 

(i) Total number of vertices in EDmG
abc

(G) is p + γED(G). 

(ii) Total number of edges in EDmG
abc

(G) is  q + γED(G) 

γed(G)+
( )( ( ) 1)

2

ED EDG G  
. 

(iii) G is an induced sub graph of EDmG
abc

(G). 

(iv) Number of edges in EDmG
abc

(G) > q. 

(v) 
( )

deg abc
m

iED G G
v   degG iv + γED(G), 1 ≤ i ≤ p. The 

equality holds when v  V(G) lie on all γed-sets of G. 

(vi) Deg Dj ≤ γed(G) + γED(G)1, 1 ≤ j ≤ n. The equality holds 

when Di  Dj  . 
Example 

G:    

 
EDmG

abc  
(G):

          
 

 

Fig.  2.1 

{1, 3, 6} and {1, 4, 6} are ed-sets of G. 

Theorem: 2.1  

Let G = Kp. Then EDmG
abc 

(G)
 
is Kp K1 and EDmG

abc 
(G) is bi-

eccentric with radius 2. 

Proof 

When G = Kp, each vertex form a ed-set. By the definition, 

EDmG
abc

(G)
 
is Kp K1. The eccentricity of pendant vertices is 3 

and the eccentricity of other vertices is 2. Hence, EDmG
abc 

(G) 

is bi-eccentric with radius 2. 

Theorem: 2.2  

Let G = 
pK . Then EDmG

abc 
(G) is K1, p. 

Proof 

When G = 
pK , the whole vertex set is a ed-set of G. By the 

definition, EDmG
abc 

(G)
 
is K1, p. 

Lemma: 2.1  
(i) If G = W3, then γED(G) = 4. 

(ii) If G = W4, then γED(G) = 4. 

(iii) If G = Wp, then a) γED(G) = 15 if p = 5. 

b) γED(G) = 3 if p = 6. 

c) γED(G) = 28 if p = 7. 

d) γED(G) =  28 if p = 8. 

e) γED(G) =  12 if p = 9. 

f) γED(G) = p(p3)/2 if p  10. 

Proof:  
Let G = Wp = Cn+K1.  

(i) G = W3 = K4. Hence ed(G) = 1. Then it follows that, γED(G) 

= 4. 

(ii) When G = W4, any two adjacent non-central vertices form 

ed -set of G. Thus, we get four such ed-sets. Hence, γED(G) = 

4. 

(iii) a) When p = 5. Let u1 be the central vertex of G. D1 = {x, 

y, u1}, where x and y are adjacent vertices in Cn and D2 = {x, 
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y, z} where x, y and z are three consecutive vertices in Cn and 

D3 = {x, y, z} where x and y are adjacent vertices and d(x, z) = 

d(y, z) = 2 in Cn form ed-sets of G. Therefore, we get p+p+p = 

3p such ed-sets of G. Hence, γED(G) = 3p = 15. 

b) When p = 6. Let V = {v1, v2, v3, v4, v5, v6} be the vertices 

of C6. D1 = {v1, v4}, D2 = {v2, v5} and D3 = {v3, v6} are ed-sets 

of W6. Hence, γED(G) = 3. 

c) When p = 7 = 3k+1. Let u1 be the central vertex of G. D1 = 

{x, y, u1}, where d(x, y)  2 in Cn are ed-sets of G. Therefore, 

we get p(p3)/2 ed-sets which contains u1 and (3k+1)(k+2)/2 

ed-sets which contain vertices of C7, since D(Cn) = 

(3k+1)(k+2)/2, by Theorem 1.3. Therefore, γED(G) =  

2

)2)(13()313)(13(  kkkk
 = 2k(3k+1) = 28. 

d) When p = 8 = 3k+2. Let u1 be the central vertex of G. D1 = 

{x, y, u1}, where d(x, y)  2 in Cn are ed-sets of G. Therefore, 

we get p(p3)/2 ed-sets which contains u1 and (3k+2) ed-sets 

which contain vertices of C8, since D(Cp) = 3k+2, by Theorem 

1.3.  

Therefore, γED(G) = 

(3 2)(3 2 3) (3 1)(3 2)
(3 2) 28.

2 2

k k k k
k

    
     

e) When p = 9 = 3k. Let u1 be the central vertex of G. D1 = 

{x, y, u1}, where d(x, y)  2 in Cn. Therefore, we get p(p3)/2 

ed-sets which contains u1 and 3 ed-sets which contains 

vertices of C9, since D(Cn) = 3, by Theorem 1.3. Therefore, 

γED(G) = 

2

)2(3

2

)2)1((3
3

2

)33)(3( 2 





 kkkkkk
 = 

12. 

f) When p  10. Let u1 be the central vertex of G. D1 = {x, y, 

u1}, where d(x, y) 2 in Cn. Therefore, we get p(p3)/2 ed-

sets such that each ed-set contains central vertex u1. Hence, 

γED(G) = p(p3)/2. 

Theorem: 2.3  

(i) If G = W3, then EDmG
abc

(G) is K4  K1. 

(ii) If G = W4, then EDmG
abc

(G) is a 2-self-centered graph. 

(iii) If G = Wp, p = 5, 7, 8 and 9, then EDmG
abc

(G) is a 2-self-

centered graph. If p = 6, then EDmG
abc

(G) is bi-eccentric with 

radius 2. 

(iv) If G = Wp, p ≥ 10, then EDmG
abc

(G) is of radius 1 and 

diameter 2. 

Proof 

(i) By Lemma 2.1, ed(G) = 1 and γED(G) = 4. Hence, by 

definition, EDmG
abc

(G) is K4K1. 

(ii) By Lemma 2.1, γED(G) = 4. 

G: 

 
 

EDmG
abc

(G) 

                                     
Fig 2.2               

D1 = {v1, v2}, D2 = {v2, v3}, D3 = {v3, v4} and D4 = {v4, v1} are 

ed-sets of G. 

Thus, eccentricity of point vertices is 2 and eccentricity of set 

vertices is also 2. Hence, EDmG
abc

(G) is a 2-self-centered 

graph. 

(iii) a) When G = W5. By Lemma 2.1, γED(G) = 15. Consider 

the following cases. 

Case (i) Suppose u, v  V and dG(u, v) ≤ 2 

Since G is an induced sub graph of G, in EDmG
abc

(G), d(u, v) 

= 1 or  2. 

Case (ii) Suppose u  V and v = D  S 

If u  D, then in EDmG
abc

(G), d(u, v) =1. 

If u  D, then there exists a vertex u  V such that u 

dominates u and u  D, then it follows that in EDmG
abc

(G), 

d(u, v) = d(u, u)+d(u, D) = 2. 

Case (iii) Suppose u, v  S 

If u and v have a vertex in common, then in EDmG
abc

(G), d(u, 

v) = 1, otherwise d(u, v) = 2. Therefore, eccentricity of point 

vertices is 2 and eccentricity of set vertices is also 2. Hence, 

EDmG
abc

(G) is a 2-self-centered graph. 

b) When G = W6. By Lemma 2.1, γED(G) = 3. Consider the 

following cases. 

Case (i) Suppose u, v  V and dG(u, v) ≤ 2 

As in case (i) of (iii) a), d(u, v)  2 in EDmG
abc

(G). 

Case (ii) Suppose u  V and v = D  S 

As in case (ii) of (iii) a), d(u, v)  2 in EDmG
abc

(G). 

Case (iii) Suppose u, v  S 

Set vertices are disjoint. Let u = D1 and v = D2 be two ed-sets 

of G. There exists some vertices of D1 is adjacent to some 

vertices of D2. Then in EDmG
abc

(G), uv1v2v is a path. 

Therefore, d(u, v) = 3. 

Therefore, eccentricity of point vertices is 2 and eccentricity 

of set vertices is 3. Hence, EDmG
abc

(G) is bi-eccentric with 

radius 2. 

c) When p = 7, 8, 9, G has atleast two disjoint ed-sets.  
Let u = D1 and v = D2 be two ed-sets of G. If D1 and D2 are 

disjoint, then there exists a ed-set D3 such that D3 is adjacent 

to both D1 and D2. In EDmG
abc

(G), d(D1, D2) = d(D1, 

D3)+d(D3, D2) = 2. Therefore, eccentricity of point vertices is 

2 and eccentricity of set vertices is also 2. Hence, EDmG
abc

(G) 

is a 2-self-centered graph. 

Therefore, eccentricity of point vertices is 2 and eccentricity 

of set vertices is also 2. Hence, EDmG
abc

(G) is a 2-self-

centered graph. 

 (iv) When G = Wp, p  10. By Lemma 2.1, γED(G) = 

p(p3)/2. Let u1 be the central vertex of G, every ed-set 

contains the central vertex. Thus, eccentricity of central vertex 

is 1 in EDmG
abc

(G).  
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Eccentricity of point vertices except central vertex is 2 and 

eccentricity of set vertices is also 2. Hence, EDmG
abc

(G) is of 

radius 1 and diameter 2. 

Theorem: 2.4  
If G = Km,n, then EDmG

abc
(G) is a 2- self-centered graph. 

Proof 

G = Km,n. V(G) = V1  V2. V1= m and V2= n. D = {u, 

v}, u  V1 and v  V2 is a ed-sets of G. Thus, we get mn such 

ed-sets. Since G is an induced sub graph of EDmG
abc

(G), e(u) 

= e(v) = 2. Suppose x, y  V. Then x = D1 and y = D2 are two 

ed-sets of G. If D1 and D2 have a common vertex, then, in 

EDmG
abc

(G), d(D1, D2) = 1. Suppose D1 and D2 are disjoint. 

Then there exists a ed-set D3 such that D3 is adjacent to both 

D1 and D2. Then, in EDmG
abc

(G), d(D1, D2) = d(D1, D3)+d(D3, 

D2) = 2. Thus, the eccentricity of point vertices is 2 and 

eccentricity of set vertices is also 2. Hence EDmG
abc 

(G) is a 2-

self-centered graph. 

Theorem: 2.5  
If G = K1,n, n ≥ 3, then K1,2n and Kn

+
 are edge disjoint sub 

graphs of EDmG
abc

(G). 

Proof 

G = K1,n, n  3. Let D = {u, v}, where v is the central 

vertex. The central vertex dominates all vertices in VD and u 

is an eccentric vertex of VD. Hence, D is a ed-set of G. We 

get n such ed -sets. In EDmG
abc

(G), set vertices form a clique. 

Central vertex v is adjacent to n point vertices and n set 

vertices. These edges form K1, 2n and the remaining edges form 

Kn
+
. Hence, K1,2n and Kn

+
 are edge disjoint sub graphs of 

EDmG
abc

(G). 

Theorem: 2.6  
If G = Pp, then  

(i) EDmG
abc

(G) is of radius 2 and diameter 4, when p = 3k, 

3k+1, k ≥ 3. 

(ii) EDmG
abc

(G) is bi-eccentric with radius 2, when p = 3k+2, 

k ≥ 3. 

(iii) EDmG
abc

(G) is 2-self-centered, when p = 3, 4 and 5. 

Proof 

(i) G = Pp, p = 3k, 3k+1.  
Two end vertices of G are eccentric vertices. Every γed-set 

contains two end vertices. Hence, set vertices are adjacent to 

each other in EDmG
abc

(G). 

From Theorem 1.2, γED(G) = 
3

1 3 1

k if p k

if p k




 
 

Consider the following sub cases. 

case (i) Suppose u, v  V. 

If there exists a γed-set D1 such that D1 contains u and v, then 

in EDmG
abc

(G), d(u, v) = 2. 

If u  D1 and v  D2, then there exists a vertex u1 such that u1 

dominates u and u1  D2. Thus in EDmG
abc

(G), uu1D2v is a 

path. Therefore, d(u, v) = 3. 

If there is no γed-set which contains u and v, then there exists 

γed-set D3 such that D3 contains u and v, u dominates u and 

v dominates v. Then in, EDmG
abc

(G), uuD3vv is a path. 

Therefore, d(u, v) = 4. 

case (ii) Suppose x  V, y  S, y = D4 is the γed-set of G. 

If x  D4, then in EDmG
abc

(G), d(x, y) = 1. 

If x  D4, then there exists a vertex x  V(G) such that x 

dominates x and x  D4. Then in EDmG
abc

(G), d(x, y) = d(x, 

x)+d(x, y) = 2. 

Hence, rad(EDmG
abc

(G)) = 2, diam(EDmG
abc

(G)) = 4. 

(ii) When p = 3k+2. From Theorem 1.2, γED(G) = 
2 3 2

2

k k 
. Here, all vertices are ed-good. 

case (i) Suppose u, v  V. 

If there exists a γed-set D1 such that D1 contains u and v, then 

in EDmG
abc

(G), d(u, v) = 2 in EDmG
abc

(G). 

If u  D1 and v  D2, then there exists a vertex u1 such that u1 

dominates u and u1  D2. In EDmG
abc

(G), uu1D2v is a path. 

Therefore, d(u, v) = 3. 

case (ii) Suppose x  V, y  S, y = D3 is the γed-set of G. 

If x  D3, then in EDmG
abc

(G), d(x, y) = 1. 

If x  D3, then there exists a vertex x  V(G) such that x 

dominates x and x  D3. Then in EDmG
abc

(G), d(x, y) = d(x, 

x)+d(x, y) = 2. 

Hence, rad(EDmG
abc

(G)) = 2, diam(EDmG
abc

(G)) = 3. 

(iii) When p = 3, 4 and 5. Eccentricity of point vertices is 2 

and eccentricity of set vertices is also 2. Hence, EDmG
abc

(G) is 

a 2-self-centered graph. 

Theorem: 2.7  

If G = K2nF, where F is a 1-factor, then EDmG
abc

(G) is a 

2-self-centered graph. 

Proof 

Let G be a graph obtained from the complete graph K2n by 

deleting edges of a linear factor. That is, G = K2nF, where F 

is a 1-factor. Let ui and ui, i = 1, 2, 3,..., n be a pair of non-

adjacent vertices in G. Then ui and ui are eccentric to each 

other. D = {v1, v2, v3, ..., vn}, where, vi = ui or ui is a γed-set of 

G. Therefore, there are 2
n
 such γed-sets of G, ui, ui cannot be 

in a single γed-set of G, i = 1, 2, 3, ..., n. Let u, v  V. 

Consider the following cases. 

Case (i) u, v  V. 

In this case, G is an induced sub graph of EDmG
abc

(G). 

Then in, EDmG
abc

(G), d(u, v) = 2. 

Case (ii) u  V and v  S, v = D is the γed-set of G.  

If u  D, then in EDmG
abc

(G), d(u, v) = 1. If u  D, then there 

exists a vertex u  V(G) such that u dominates u and u  D. 

Then it follows that, in EDmG
abc

(G), d(u, v) = d(u, u)+d(u, v) 

= 2. 

Case (iii) u, v  S, u = D1 and v = D2 are two γed-sets of G. 

 If D1 and D2 have a vertex in common, then in EDmG
abc

(G), 

d(u, v) = 1. 

If D1 and D2 are disjoint, then there exists a γed-set D3 such 

that D3 is adjacent to both D1 and D2. Then it follows that, in 

EDmG
abc

(G), d(D1, D2) = d(D1, D3,)+d(D3, D2) = 2. 

Hence, eccentricity of point vertices is 2 and eccentricity of set 

vertices is also 2. Hence, EDmG
abc

(G) is a 2-self-centered 

graph. 

Corollary: 2.7 Let G = KnF, where F is a 1- factor, n is even. 

Then EDmG
abc

(G) is Eulerian if n  0(mod 4). 

Proof: Number of vertices in EDmG
abc

(G) is n+2
n/2.

 

Degree of point vertex in EDmG
abc

(G) is n2+2
n/21

. 

Degree of set vertex in EDmG
abc

(G) is n/2+2
n/21

. All vertices 

have even degree in EDmG
abc

(G), since n is even. Then by 

Theorem 1.1, EDmG
abc

(G) is Eulerian.  

Theorem: 2.8 For any graph G, EDmG
abc

(G)
 
is connected. 

Proof: Case (i) G is connected.  

G is an induced sub graph of EDmG
abc

(G). If D is any γed-

set, it is adjacent to some vertices of G. Therefore, 

EDmG
abc

(G)
 
is connected. 
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Case (ii) G is disconnected.  

Let D be a γed-set of G. Then D contains vertices from 

each component of G. In EDmG
abc 

(G), D is adjacent to those 

vertices. Therefore, in EDmG
abc

(G), any two vertices are 

connected by a path. Hence, EDmG
abc

(G)
 
is connected. 

Theorem: 2.9  
EDmG

abc
(G)is complete if and only if G = K1. 

Proof  
Suppose EDmG

abc
(G)

 
is complete. Then G is complete and 

each ed -set contains all the vertices of G. That is, G has 

exactly one ed-set. Hence, G = K1. 

Conversely, G = K1, by the definition, we get EDmG
abc

(G) = 

K2. This implies that EDmG
abc

(G)
  
is complete. 

Theorem: 2.10  
For any graph G, EDmG

abc
(G) is a tree if and only if G is 

K2 or 
pK . 

Proof 
Suppose EDmG

abc
(G) is a tree. Then G has no cycle. To 

prove that G is K2 or 
pK . On the contrary, suppose G  

pK  

or K2. Consider the following two cases. 

Case (i) If (G) = p1, p ≥ 3, then G is a star. By Theorem 

2.5, EDmG
abc

(G) has a cycle, a contradiction. 

Case (ii) If (G) ≤ p2, Since G is a tree, then there exists 

three vertices u, v and w  V such that u and v are adjacent 

and w is not adjacent to both u and v and is an eccentric 

vertex. This implies that, in EDmG
abc

(G), u and v are 

connected by at least two paths, a contradiction. Hence from 

the above cases, G = K2 or 
pK . 

Conversely, Suppose, G = K2 or
pK . EDmG

abc
(G) is K1,p1 or 

P4. Hence, EDmG
abc

(G) is a tree. 

 

Theorem: 2.11  

(i) o(EDmG
abc

(G)) ≥ max{o(G), ded(G)}. 

(ii) For any graph G, (EDmG
abc

(G)) ≤ min

 )(,1degmin ,)(
Gpiv ediGGED abc

m

 . 

(iii) For any graph G, (EDmG
abc

(G)) ≤ min

 )(,1degmin ,)(
Gpiv ediGGED abc

m

 . 

(iv) (G) ≤ ( EDmG
abc

(G)) ≤ (G)+ED(G). Furthermore, both 

bounds are sharp. 

Proof 

(i) Proof is obvious. 

(ii) Case (i) Let v  V and is of minimum degree among the 

all vertices of EDmG
abc

(G). Then by deleting the vertices 

adjacent to v, the resulting graph is disconnected. Thus, 

(EDmG
abc

(G)) ≤ min{ }1,deg piviGED abc
m

 . 

Case (ii) Let S be the set of all ed-sets of G. Cardinality of 

each set is ed(G). Suppose ed (G) ≤ (G). Then by deleting the 

vertices adjacent to any one ed-set, the resulting graph is 

disconnected. Hence, (EDmG
abc

(G)) ≤ min

 )(,1degmin ,)(
Gpiv ediGGED abc

m

 . 

(iii) As in ii), (EDmG
abc

(G)) ≤ min

 )(,1degmin ,)(
Gpiv ediGGED abc

m

 . 

(iv) Proof is obvious. 

Theorem: 2.12  
For any graph G, distance between any two vertices in 

EDmG
abc

(G)
 
is at most four. 

Proof 
Suppose G has at least two vertices then EDmG

abc
(G)

 
has 

at least three vertices. Let u, v  V. We consider the 

following cases. 

Case (i) Suppose u, v  V.  

If u and v are adjacent in G, then in EDmG
abc

(G), d(u, v) = 1. 

Suppose u and v are not adjacent in G. 

Sub Case (i) In this case, there exists a ed-set containing u 

and v. This implies that, in EDmG
abc

(G)
 
, d(u, v) = 2. 

Sub Case (ii) In this case, there exists a vertex w such that w 

is adjacent to both u and v. Then, in EDmG
abc

(G)
 
, d(u, v) = 

d(u, w)+d(w, v) = 2. 

Sub Case (iii) y = D is a ed-set of G. Suppose the vertices w, 

x  D are adjacent to u and v respectively, then in EDmG
abc 

(G), d(u, v) ≤ d(u, w) + d(w, y) + d(y, x) + d(x, v) = 4. 

Case (ii) Suppose u V and v  S, v = D is the ed-set of G. 

If u  D, then in EDmG
abc

(G), d(u, v) = 1. If  u  D, then there 

exists a vertex w  D adjacent to u and hence in EDmG
abc

(G), 

d(u, v) = d(u, w) + d(w, v) = 2. 

Case (iii) Suppose u, v  S, u = D and v = D are two ed-

sets of G.  

If D and D have a vertex in common, then in EDmG
abc

(G), 

d(u, v) = 1. 

If D and D are disjoint. Consider the following sub cases. 

Sub case (i) If there exists a ed-set D such that D is adjacent 

to both D and D. Thus, in EDmG
abc

(G), d(D, D) = d(D, 

D)+d(D, D) = 2. 

Sub case (ii) every vertex of w  D is adjacent to some vertex 

x  D and vice versa. Thus, it follows that in EDmG
abc

(G), 

uwxv is a path. Therefore, d(u, v)  3. 

Hence, from the above cases, distance between any two 

vertices in EDmG
abc

(G) is at most four. 

Theorem: 2.13  
Let G be a connected graph with rad(G) = 1 and diam(G) 

= 2. Any central vertex lies on all the ed-set if and only if 

radius of EDmG
abc

(G) is one. 

Proof 
Let G be a connected graph with rad(G) = 1, diam(G) = 2 

and let u be any central vertex. Suppose u lies on all the ed-

sets of G. Then, in EDmG
abc

(G), all the ed-sets are adjacent to 

each other and deg u = (p1)+ ED(G). Therefore, eccentricity 

of u in EDmG
abc 

(G) is one. Since G is connected ed (G) ≤ p1, 

implies eccentricity of set vertices is not equal to one. Suppose 

there exists a vertex u  V such that u is not in any ed-set, 

then also eccentricity of u in EDmG
abc

(G) is not equal to one. 

Therefore, rad(EDmG
abc

(G)) = 1 if and only if there exists u  

V such that u belongs to every ed-set of G. 

Theorem: 2. 14 

       Let G be a 2-self-centered graph. If Di  Dj   for i  j, 

then EDmG
abc

(G) is a 2-self-centered graph. Otherwise, 

EDmG
ac

(G) is bi-eccentric with diameter three. 

Proof  

Let G be a 2-self-centered graph. Let u, v  V. Consider the 

following cases. 

Case (i) Suppose u, v  V. Since G is an induced sub graph 

of EDmG
abc

(G). Then, it follows that, in EDmG
abc

(G), d(u, v) = 

2. 

Case (ii) Suppose u  V and v  V. Then v = D is a γed-set 

of G. 

If u  D, then in EDmG
abc

(G), d(u, v) = 1. If u  D, then there 

exists a vertex w  V such that w dominates u and w  D. 
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Thus, it follows that, in EDmG
abc

(G), u-w-v is a path, d(u, v) = 

d(u, w)+d(w, v)  2. 

Case (iii) Suppose u, v  V. Then u = D1 and v = D2 are two 

γed-sets of G. If Di  Dj   for i  j, then any two set vertices 

have a common vertex. There exists a vertex y  V such that y 

 D1 and D2. Thus, it follows that, in EDmG
abc

(G), u-y-v is a 

path, d(u, v) = d(u,y)+d(y, v)  2. 

Therefore, eccentricity of point vertices is 2 and eccentricity 

of set vertices is also 2. Hence, EDmG
abc

(G) is a 2-self-

centered graph. 

 Suppose Di  Dj = , for i  j. If D1 and D2 are 

disjoint. Then each vertex x  D1 is adjacent to some vertex z 

 D2 and vice versa. Thus, it follows that, in EDmG
abc

(G), u-x-

z-v is a path, d(u, v) = d(u, x)+d(x, z)+d(z, v)  3. 

Hence, EDmG
abc

(G) is bi-eccentric with diameter three.  

Theorem: 2.15  
Let G be a graph with diameter 3. Then 

diam(EDmG
abc

(G)) is 2 or 3. 

Proof  

Let G be a graph with diameter 3 and let u, v  V. We 

consider the following cases. 

Case (i) Suppose u, v  V.  

If u and v are adjacent in G, then in EDmG
abc

(G), d(u, v) = 1, 

since EDmG
abc

(G) contains G. 

Suppose u and v are not adjacent in G. 

Sub case (i) d(u, v) = 2.  

a) There exists a ed -set D such that D contains u and v, then 

in EDmG
abc

(G), d(u, v) = 2. 

b) There exists no ed -set containing both u and v, and u, v 

belongs to some ed -sets, then in EDmG
abc

(G), d(u, v) = 2. 

c) u and v are not ed-good vertices, d(u, v) = 2 in EDmG
abc

(G). 

Sub case (ii) d(u, v) = 3. 

a) There exists a ed -set D1 such that D1 contains u and v, then 

in EDmG
abc

(G), d(u, v) = d(u, D1)+d(D1, v) = 2. 

b) u  D1 and v  D2. If there exists a vertex w such that w is 

adjacent to both u and v, then in EDmG
abc

(G), d(u, v) = d(u, 

w)+d(w, v) = 2. 

c) u and v are not ed-good vertices, in EDmG
abc

(G), d(u, v) = 

3. 

Case (ii) Suppose u  V and v  S, v = D3 is the ed-set of 

G. 

 If u  D3, then in EDmG
abc

(G), d(u, v) = 1. If u  D3, then 

there exists a vertex u such that u dominates u and u  D3. It 

follows that, in EDmG
abc

(G), d(u, v) = d(u, u)+d(u, v) = 2. 

Case (iii) Suppose u, v  S, u = D4 and v = D5 are two ed-

sets of G.  

If D4 and D5 have a common vertex, then in EDmG
abc

(G), 

d(D4, D5) = 1. 

Suppose D4 and D5 are disjoint. Then there exists a ed-set D6 

such that D6 is adjacent to both D4 and D5. Then, it follows 

that, in EDmG
abc

(G), d(D4, D5) = d(D4, D6)+d(D6, D5) = 2. If 

there does not exist, then every vertex w  D4 is adjacent to 

some vertex w  D5 and vice versa. This implies that, in 

EDmG
abc

(G), uwwv is a path. Therefore, d(u, v) = 3.  

Hence, diameter of EDmG
abc

(G) is 2 or 3. 

Corollary: 2.15 

(i) If G = P4, then EDmG
abc

(G) is C5 which is 2-self-centered. 

(ii) If G = C6, then EDmG
abc

(G) is 3-self-centered. 

Theorem: 2.16  
Let G be a graph with diameter greater than or equal to 4. 

Then diam(EDmG
abc

(G))  4. 

 

Proof 

Let G be a graph with diam(G) ≥ 4 and let u, v  V. 

Consider the following cases. 

Case (i) Suppose u, v  V.  

If u and v are adjacent in G, then it follows that, in 

EDmG
abc

(G), d(u, v) =1. 

Suppose u and v are not adjacent in G. 

Sub case (i) If there exists a vertex x  V such that x is 

adjacent to both u and v. Then, in EDmG
abc

(G), d(u, v) = d(u, 

x)+d(x, v) = 2. 

Sub case (ii) supposes u and v are eccentric vertices of G.  

If there exists a ed-set D1 such that D1 contains u and v. 

Then it follows that, in EDmG
abc

(G), d(u, v) = d(u, D1)+d(D1, 

v) = 2. 

Sub case (iii) u  D2, v  D3.  

In this case, there exists a vertex y  V such that y 

dominates v and y  D2. It follows that, in EDmG
abc

(G), uD2yv 

is a path. Therefore, d(u, v)  3. 

Sub case (iv) u and v are not ed-good vertices.  

In this case, there exists vertices u, v  V such that u 

dominates u, v dominates v and D3 contains u and v. Then, it 

follows that, in EDmG
abc

(G), uuD3vv is a path. Therefore, 

d(u, v)  4.  

Case (ii) Suppose u  V and v  S, v = D4 is the ed-set of 

G.  

If u  D4, then in EDmG
abc

(G), d(u, v) = 1. If u  D4, then 

there exists a vertex z  V such that z dominates u and z  D4. 

It follows that, in EDmG
abc

(G), d(u, v) = d(u, z)+d(z, v) = 2. 

Case (iii) Suppose u, v  S, u = D5 and v = D6 are two ed-

sets of G. 

 If D5 and D6 have a common vertex, then in EDmG
abc

(G), 

d(D5, D6) = 1. 

Suppose D5 and D6 are disjoint. If there exists a ed-set D7 

such that D7 is adjacent to both D5 and D6, it follows that, in 

EDmG
abc

(G), d(D5, D6) = d(D5, D7)+d(D7, D6) = 2. If D5 and 

D6 are disjoint, then every vertex w  D5 is adjacent to some 

vertex w  D6 and vice versa. This implies that, in 

EDmG
abc

(G), uwwv is a path. Therefore, d(u, v)  3.  

So, diam(EDmG
abc

(G))  4. 

Example:  
Consider G = P10.  diam(EDmG

abc
(G)) is 4. 

G: 

 
D = {1, 4, 7, 10} is a ed -set of G. 

EDmG
abc

(G): 

 
Fig. 2.3 

Theorem: 2.17  
EDmG

abc
(G) is self-centered with diameter 2 if G is any 

one of the following: 

(i) rad(G) = 1, diam(G) = 2 and any central vertex does not 

lie on any ed -set of G. 

(ii) G is self-centered with diameter 2 and Di  Dj   for i  

j. 
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(iii)  G = nm KKKK  11 , m, n  2. 

(iv) G is a wounded spider with k legs, k > 2 and one non-

wounded leg. 

Proof 

(i) When rad(G) = 1, diam(G) = 2. Consider the following 

two cases. Let u be the central vertex. 

Case (i) a) Suppose u  D, where D is a ed-set of G.  

Let v = D be the ed-set of G. If u  D, then there exists a 

vertex w  V such that w dominates u and w  D. This 

implies that, in EDmG
abc

(G), d(u, v) = d(u, w)+d(w, v) = 2. 

Let D1 and D2 be two disjoint ed-sets of G. Suppose vertices x 

 D1 and x  D2, and there exists a ed-set D3 containing x 

and x. Thus, it follows that, d(D1, D2) = d(D1, D3)+d(D3, D2) 

= 2. If D1, D2 are not disjoint, d(D1, D2) = 1. Also, rad(G) = 1, 

diam(G) = 2 implies ed(G) < p –1. Hence, there exists u  V 

such that d(u, D) = 2 for any D. Hence, EDmG
abc

(G) is self-

centered with diameter 2. 

b) Suppose the central vertex lies on some ed-sets of G.  

Let D1 be the ed-set of G. Suppose u  D1, then there 

exists a ed-set D2 contains u such that D1 and D2 are adjacent. 

This follows that, in EDmG
abc

(G), d(u, D1) = d(u, D2)+d(D2, 

D1) = 2. 

Let w  V and D3 be the ed-set of G. Suppose w  D3, 

then there exists a vertex w adjacent to w such that D3 

contains w. This, it follows that d(w, D3) = d(w, w)+d(w,D3) 

= 2. Hence, EDmG
abc

(G) is self-centered with diameter 2. 

(ii) G is self-centered with diameter 2 and Di  Dj   for i 

 j. 
By Theorem 2.14,  EDmG

abc
(G) is self-centered with diameter 

2. 

 (iii) When G = nm KKKK  11 , m, n  2.  

Let u, v  V. dG(u, v) = 3. Suppose the ed-set D contains 

u and v. Then in EDmG
abc

(G), d(u, v) = d(u, D)+d(D, v) = 2. 

The two central vertices lie on all ed-sets of G. Let w be the 

pendant vertex and D1 be the ed-set of G. Suppose w  D1. 

Then there exists a ed-set D2 such that D2 contains w. This 

follows that, in EDmG
abc

(G), d(w, D1) = d(D1, D2)+d(D2, w) = 

2. Hence, EDmG
abc 

(G) is self-centered with diameter 2. 

 (iv) Let G be a wounded spider with k legs, k > 2 and one 

non-wounded leg.  

Let usv represent the non wounded leg, where v is 

pendant, u support vertex of the wounded legs. D1 = {u, s, v}, 

D2 = {u, w, v} where w is a pendant vertex of wounded leg are 

ed-sets of G. Let x, y  V, dG(x, y) = 3. Then there exists a 

ed-set D such that D contains x, y. Thus, in EDmG
abc

(G), d(x, 

y) = d(x, D)+d(D, y) = 2. Every ed-set contains u and v. Thus, 

ed-sets are adjacent to each other. Hence, in EDmG
abc

(G), 

d(Di, Dj) = 1. Suppose x  D1. In EDmG
abc

(G), d(x, D1) = d(x, 

u)+d(u, D1) = 2. Hence, EDmG
abc

(G) is self-centered with 

diameter 2. 

3. The Eccentric dominating graph EDG
abc

(G) of a graph 

G 

Definition: 3.1 

The eccentric dominating graph EDG
abc

(G) of a graph G 

is obtained from G with vertex set V = V  S, where V = 

V(G) and S is the set of all minimal eccentric dominating sets 

of G. Then two elements in V are said to satisfy property ‘a’ 

if u, v  V and are adjacent in G. Two elements in V are said 

to satisfy property ‘b’ if u = D1, v = D2  S and have a 

common vertex. Two elements in V are said to satisfy 

property ‘c’ if u  V, v = D  S such that u  D. Two 

elements in V are said to satisfy property‘d’ if u, v  V and 

there exists D  S such that u, v  D. A graph having vertex 

set V and any two elements in V are adjacent if and only if 

they satisfy any one of the property a, b, c is denoted by 

EDG
abc

(G). 

Example: 3.1 

G: 

       

{1, 3, 6}, {1, 4, 6} and {1, 2, 5, 6} are minimal eccentric 

dominating sets of G. 

EDG
abc

(G)

 
Fig. 2.4 

Remarks: 3.1 

(i) G is an induced sub graph of EDG
abc

(G). 

(ii) EDmG
abc

(G) is a sub graph of EDG
abc

(G). 

(iii) Number of vertices in EDG
abc

(G) is p+number of minimal 

eccentric dominating sets of G. 

(iv) Number of edges in EDG
abc

(G) is greater than q. 

(v) 
( )

deg degabc j G j jEDG G
v v S  , 1  j  p, where Sj is the 

number of minimal eccentric dominating set containing vj. 

(vi) deg Di  |Di|+|S|(|S|1)/2, 1  i  n, where S is the set of 

all minimal eccentric dominating sets of G. 

Observation: 3.1  

If all γed-sets of G are minimal, then EDG
abc

(G)  EDmG
abc

(G). 

Theorem: 3.1  

If G = Kp, then EDG
abc

(G) = EDmG
abc

(G). That is, EDG
abc

(G) 

is Kp K1 and EDG
abc

(G) is of radius 2 and diameter 3. 

Proof 
Proof is similar to the proof of Theorem 2.1. 

Theorem: 3.2  

If G = 
pK , then EDG

abc
(G) = EDmG

abc
(G). That is, 

EDG
abc

(G) is K1,p. 

Proof 

Proof is similar to the proof of Theorem 2.2. 

Theorem: 3.3  

If G = K1,p1, then EDG
abc

(G) is a 2-self-centered graph. 

Proof 

Let G = K1,p1. D = {u, v}, where u is the central vertex 

and v is the non-central vertex of G and all pendant vertices 

form minimal eccentric dominating sets of G. Thus, we get p 

such minimal eccentric dominating sets of G. Let x, y  V. 

Consider the following cases. 

Case (i) Suppose x, y  V. 

 If dG(x, y)  2, then G is an induced sub graph of EDG
abc

(G). 

Then in EDG
abc

(G), d(x, y)  2. 

Case (ii) x  V and y  S, y = D1 is the minimal eccentric 

dominating set of G.  

If x  D1, then in EDG
abc

(G), d(x, y) = 1. 

If x  D1, then there exists a vertex x  V such that x 

dominates x and x  D1. Thus, in EDG
abc

(G), d(x, y) = d(x, 

x)+d(x, y) = 2. 
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Case (iii) Suppose x, y  S, x = D2, y = D3 are two minimal 

eccentric dominating sets of G.  

In this case, set vertices are adjacent to each other. Then, it 

follows that, in EDG
abc

(G), d(x, y) = 1. 

Hence, EDG
abc

(G) is a 2-self-centered graph.  

Theorem: 3.4  
If G = Km,n, then EDG

abc
(G) is a 2-self-centered graph. Here, 

EDG
abc

(G) = EDmG
abc

(G). 

Proof:  
Proof is similar to the proof of Theorem 2.4. 

Theorem: 3.5  
For any graph G, EDG

abc
(G) is connected. 

Proof:  
Proof is similar to the proof of Theorem 2.8. 

Theorem: 3.6  
EDG

abc
(G) is complete if and only if G = K1. 

Proof:  
Proof is similar to the proof of Theorem 2.9. 

Theorem: 3.7  

EDG
abc

(G) is a tree if and only if G is 
pK  or K2. 

Proof:  
Proof is similar to the proof of Theorem 2.10. 

Theorem: 3.8  
For any graph G, distance between any two vertices in 

EDG
abc

(G) is at most four. 

Proof:  

Let u, v  V. Consider the following cases: 

Case (i) u, v  V. 
If u and v are adjacent in G, then in EDG

abc
(G), d(u, v) = 1.  

Suppose u and v are not adjacent in G.  

a) There exists a minimal eccentric dominating set containing 

u and v. In EDG
abc

(G), d(u, v) = 2. 

b) y = D is a ed-set of G. Suppose the vertices w, x  D are 

adjacent to u and v respectively, then in EDmG
abc 

(G), d(u,v) ≤ 

d(u, w) + d(w,y) + d(y,x) + d(x,v) = 4. 

Case (ii) u  V and v  S. 

In this case, v  S, thus v = D is a minimal eccentric 

dominating set of G. If u D, then in EDG
abc

(G), d(u, v) = 1. 

If u  D, then there exists a vertex w  D dominates u and 

hence in EDG
abc

(G), d(u, v) = d(u, w)+d(w, v) = 2. 

Case (iii) u, v  S. 
In this case, u = D1 and v = D2 are two minimal eccentric 

dominating sets of G. If D1 and D2 are disjoint, then every 

vertex z  D1 is adjacent to some vertex in x  D2 and vice 

versa. Then it follows that, in EDG
abc

(G), uzxv is a path. 

Therefore, d(u, v)   3. If there exists a minimal eccentric 

dominating set D3 such that D3 is adjacent to both D1 and D3. 

Then it follows that, in EDG
abc

(G), d(D1, D2) = d(D1, 

D3)+d(D3, D2) = 2.  

If D1 and D2 have a vertex in common, then in EDG
abc

(G) 

d(D1, D2) = 1.  

Thus, from all the three cases, distance between any two 

vertices in EDG
abc

(G) is at most four. 

Conclusion 

 In this paper, we have defined and studied the new 

eccentric dominating graphs EDmG
abc

(G) and EDG
abc

(G). 
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