40476

Awakening to Reality Thangaraj Beaula and R. Raja/ Elixir Adv. Pure Math. 94 (2016) 40476-40482

Available online at www.elixirpublishers.com (Elixir International Journal)

Advances in Pure Mathematics

Elixir Adv. Pure Math. 94 (2016) 40476-40482

Urysohn Lemma and Tietze Extension Theorem in Fuzzy soft topological

space

Thangaraj Beaula and R. Raja

Department of Mathematics, T.B.M.L. College, Porayar 609 307, Tamil Nadu, India.

ARTICLE INFO

Article history: Received: 2 April 2016; Received in revised form: 16 May 2016; Accepted: 21 May 2016;

ABSTRACT

In this paper fuzzy soft mapping, fuzzy soft continuity on family of soft sets are introduced. Equivalent conditions related these concepts are proved. The famous Urysohn lemma and Tietze Extension theorem are established in fuzzy soft setting.

© 2016 Elixir All rights reserved.

Keywor ds

Fuzzy soft mapping, Fuzzy soft continuity.

1. Introduction

In 1999, Molodtsov[5] proposed a new approach viz soft set theory for modeling vagueness and uncertainties inherent in the problems of physical science, biological science, engineering, economics, social science ,medical science, etc. After that in 2001 to 2003 Maji et al[3,4] worked on some mathematical aspects of soft sets and fuzzy soft sets. On the other hand, Biswas and Nanda[2] and Rosenfeld[7] worked on rough groups and fuzzy groups respectively. In 2007 Aktas and Cagman[1] introduced a basic version of soft groups [6] theory which further extended to fuzzy soft group[6] in 2011. Recently, in 2011, Shabir and Naz[9] introduced a notion of fuzzy soft topological spaces.

In this paper fuzzy soft mapping and fuzzy soft continuity on family of soft sets are defined and some basic theorems related to these concepts are established. Later the Urysohn Lemma and Tietze Extension theorem are proved in fuzzy soft topological space.

2. Preliminaries

In this section we present some basic definitions of fuzzy soft set. Throughout our discussion, U refers to an initial universe, E the set of all parameters for U and $P(\tilde{U})$ the set of all fuzzy sets of U. (U,E) means the universal set U and the parameter set E.

Definition 2.1 [5]

A pair (F, E) is called a soft set (over U) if and only if F i s a mapping of E into the set of all subsets of the set U. **Definition 2.2 [4]**

A pair (F, A) is called a fuzzy soft set over U where $F: A \rightarrow P(\widetilde{U})$ is a mapping from A into $P(\widetilde{U})$.

For two fuzzy soft sets (F, A) and (G, B) in a fuzzy soft cl ass (U, E), we say that

(F, A) is a fuzzy soft subset of (G, B), if

(i) $A \subseteq B$ (ii) For all $\varepsilon \in A$, $F(\varepsilon) \subseteq G(\varepsilon)$ and is written as $(F, A) \subseteq (G, B)$.

Definition 2.4 [4]

Union of two fuzzy soft sets (F, A) and (G, B) in a soft class (U, E) is a fuzzy soft set (H,C) where $C = A \cup B$ and $\forall \varepsilon \in C$,

$$\begin{array}{l} H(\Box) \coloneqq \\ \begin{cases} F(\varepsilon), & \text{if } \varepsilon \in A - B \\ G(\varepsilon), & \text{if } \varepsilon \in B - A \\ F(\varepsilon) \cup G(\varepsilon), & \text{if } \varepsilon \in A \cap B \\ & \text{and is written as} \\ \end{cases}$$

Definition 2.5 [4]

Intersection of two fuzzy soft sets (F, A) and (G, B)in a soft class (U, E) is a fuzzy soft set (H, C) where $C = A \cap B$ and $\forall \varepsilon \in C$, $H(\varepsilon) = F(\varepsilon)$ or $G(\varepsilon)$ (as both are same fuzzy set) and is written as $(F, A) \simeq (G, B) = (H, C)$

Definition 2.6 [8]

Let
$$A \subseteq E$$
 then the
mapping $F_A : E \to \widetilde{P}(U)$, defined by $F_A^{(e)} = \mu^e F_A^{(a)}$

fuzzy subset of U), is called soft set over (U,E), where $\mu^e F_A = \widetilde{0}$ if $e \in E - A$ and $\mu^e F_A \neq \widetilde{0}$ if $e \in A$. The set of all fuzzy soft set over (U,E) is denoted by FS (U,E). **Definition 2.7 [8]**

The fuzzy soft set $F_{\Phi} \in FS(U, E)$ is called null fuzzy s oft set and it is denoted by $\widetilde{\Phi}$. Here $F_{\phi}(e) = \widetilde{0}$ for every

e∈E

Definition 2.8 [8]

Let
$$F_E \in FS(U, E)$$
 and $F_E(e) = 1$ for all $e \in E$.

Then F_E is called absolute fuzzy soft set. It is denoted by

$$\widetilde{E}$$
 .

Tele: E-mail address: edwinbeaula@yahoo.co.in

© 2016 Elixir All rights reserved

Definition 2.9 [8]

Let
$$F_A, G_B \in FS(U, E)$$
. If $F_A(e) \subseteq G_B(e)$ for
all $e \in E$
i.e., if $\mu^e F_A \subseteq \mu^e G_B$ for all $e \in E$, *i.e.*, if
 $\mu^e F_A(x) \leq \mu^e G_B(x)$ for all $x \in U$

and for all $e \in E$, then F_A is said

to be fuzzy soft subset of G_R , denoted by

 $F_A \cong G_B$. Definition 2.10 [8]

Let F_A , $G_B \in FS(U, E)$. Then the union of F_A and G_{R} is also

fuzzy softset H_C , defined by

 $H_{C}(e) = \mu^{e} H_{C} = \mu^{e} F_{A} \cup \mu^{e} G_{B} \text{ for all } e \in E \text{ where}$ $C = A \cup B \cdot \text{Here we write} \quad H_{C} = F_{A} \cup G_{B} \cdot$

$$C = A \cup B$$
. Here we write $H_C = F_A \cup G_B$

Definition 2.11 [8]

Let F_A , $G_B \in FS(U, E)$. Then the intersection of F_A and G_B is also a fuzzy soft

set , defined by $H_C(e) = \mu^e H_C = \mu^e F_A \cap \mu^e G_B$ for all $e \in E$ where $C = A \cap B$. Here we write

 $H_C = F_A \cap G_B$ **Definition 2.12**

Let $F_A \in FS(U, E)$. The complement of F_A is denoted by F_{A}^{C} and is defined

By
$$F_A^{\ C}: E \to \widetilde{P}(U)$$
 is a mapping given by $F_A^{\ C}(\varepsilon) = F_A^{\ C}(\varepsilon)$

 $[\mathbf{F}(\varepsilon)] \ C, \quad \forall \varepsilon \in E \ .$

3. Urysohn Lemma and Tietze Extension Theorem in Fuzzy soft topological space

Definition 3.1

Let FS(U,E) and FS(U',E') be families of fuzzy soft sets over U and U' respectively and E,E' be parameters for universe U and U' respectively. Let u:U \rightarrow U', p:E \rightarrow E' then the fuzzy soft mapping $h_{up}: FS(U, E) \to FS(U', E')$ is defined as

1) If F_A is a fuzzy soft set in FS(U,E) then the image of F_A under h_{up} is written as $(h_{up})F_A$ a fuzzy soft set in FS(U', E') such that

$$[h_{up}(F_{A})](e^{*})(s) = \begin{cases} \sup_{s \in U^{-1}(s)} \left[\sup_{e \in p^{-1}(e)} F_{A}(e) \right] (s) & \text{if } p^{-1}(e) \neq \widetilde{\phi} \quad and \quad U^{-1}(s) \neq \widetilde{\phi} \\ 0 & \text{otherwise} \end{cases}$$

for every $s \in S'$ and $e \in E'$

2) If $F_{\rm M}$ be a fuzzy soft set in FS(U',E'). The inverse image of $F_{A'}$ under h_{up} is written as $(h_{up})^{-1}F_{A'}$ a fuzzy soft set in FS(U,E) such that

$$[h_{up}^{-1}(F_{A'})](e)(s) = \begin{cases} F_{A'}(p(e))(u(s) & \text{for } p(e) \in E' \\ 0 & \text{otherwise} \end{cases}$$

for every $s \in S'$ and $e \in E'$

Definition 3.2

Let $(U_1, E_1, \mathfrak{I}_1)$ and $(U_2, E_2, \mathfrak{I}_2)$ be two fuzzy soft topological spaces relative to parameters E_1 and E_2 respectively. Then a fuzzy soft mapping $h_{up}: FS(U_1, \mathfrak{I}_1) \rightarrow FS(U_2, \mathfrak{I}_2)$ is said to be fuzzy soft continuous if $(h_{up})^{-1}F_{A'} \in \mathfrak{I}_1$ for each $F_{A'} \in \mathfrak{I}_2$.

Theorem 3.3

Let $(U_1, E_1, \mathfrak{I}_1)$ and $(U_2, E_2, \mathfrak{I}_2)$ be two fuzzy soft topological spaces and $h_{up}: FS(U_1,\mathfrak{I}_1) \to FS(U_2,\mathfrak{I}_2)$ be fuzzy soft mapping. Then the following are equivalent $^{i)}h_{i}$ is continuous

For every fuzzy soft set
$$F_A \in FS(U_1, E_1)$$
,
 $h_{up}(\overline{F}_A) \cong \overline{h_{up}(F_A)}$.

iii)For every fuzzy soft closed set $F_{A'}$ in $FS(U_2, E_2)$, $(h_{up})^{-1}F_{A'}$ is fuzzy soft closed in $FS(U_1, E_1)$

 $_{\mathrm{iv}}$ For each $F_{e_1} \in FS(U_1, E_1)$ and each fuzzy soft neighbourhood $F_{A'}$ of $(h_{up})(F_{e_1})$ there exists a fuzzy soft neighbourhood F_A of (F_{e_1}) such that $(h_{up})(F_A) \subset F_{A'}$.

Proof

(i) \Rightarrow (ii) Let us assume that the fuzzy soft mapping h_{un} is fuzzy soft continuous. Let F_A

be any fuzzy soft set in $FS(U_1, E_1)$. We show that if $F_{e_1} \in \overline{F}_A$ then $(h_{up})(F_{e_1}) \in \overline{(h_{up})F_A}$. Let $F_{e_1} \in \overline{F}_A$ and F_{A} be a fuzzy soft neighbourhood of $(h_{up})(F_{e_1})$. Then $(h_{up})^{-1}(F_{A'})$ is a fuzzy soft neighbourhood of F_{e_i} in

FS(U,E). Then $(h_{up})^{-1}(F_{A'})$ and F_{A} are disjoint and so $F_{A'}(h_{up})F_A$ are disjoint. ie, $F_{e_1} \in \overline{(h_{up})F_A}$, hence $(h_{un})\overline{F}_{A} \cong \overline{h_{un}F_{A}}$.

(ii) \Rightarrow (iii) Let F_A be any fuzzy soft closed set in $FS(U_2, E_2)$ and let $(h_{up})^{-1}(F_{A'}) = F_A$.

Let us prove that F_A is fuzzy soft closed. That is $\overline{F}_A = F_A$. Hence $(h_{up})(F_A) = h_{up}[(h_{up})^{-1}F_{A'}] \cong F_{A'}$.

40478

Thangaraj Beaula and R. Raja/Elixir Adv. Pure Math. 94 (2016) 40476-40482

If
$$F_{e_1} \in \overline{F}_A$$
, then $(h_{up})(F_{e_1}) \in (h_{up})(\overline{F}_A)$
 $\subseteq \overline{(h_{up})(F_A)}$ (by

 $\begin{array}{l} \text{(ii))} \ \widetilde{\subseteq} \ \overline{F}_{A'} = F_{A'} \ \stackrel{(\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot F_{A'} \ \text{is fuzzy soft closed })}{\text{So}}, \ F_{e_1} \in (h_{up})^{-1}(F_{A'}) = F_A \cdot \text{Thus} \ F_{e_1} \in \overline{F}_A \ \text{implies} \\ F_{e_1} \in F_A \cdot \text{Hence} \ \overline{F}_A = F_A \cdot \text{Therefore} \ F_A \ \text{is fuzzy soft closed.} \end{array}$

(iii) \Rightarrow (iv) Let $F_{A'}$ be any fuzzy soft compact open set in $FS(U_2, E_2)$, then $F_{A'}^{\ C}$ is fuzzy

soft closed in $FS(U_2, E_2) \cdot (By (iii))$. $(h_{up})^{-1} F_{A'}^{C}$ is fuzzy soft closed in $FS(U_1, E_1) \cdot And$ $(h_{up})^{-1} (F_{A'}^{C}) = [(h_{up})^{-1} F_{A'}]^{C} \cdot \cdots (h_{up})^{-1} F_{A'}$ is fuzzy soft open in $FS(U_1, E_1)$ and (h_{up}) is fuzzy soft continuous.

 $(iv) \Longrightarrow$ (i) Proof is similar.

Theorem 3.4

Let $FS(U_1, E_1)$ and $FS(U_2, E_2)$ be families of all fuzzy soft sets over U_1 and U_2 respectively. For a function $h_{up}: FS(U_1, E_1) \rightarrow FS(U_2, E_2)$ the following statement are true.

- i) $(h_{up})^{-1} F_{A'}^{\ C} = [(h_{up})^{-1} F_{A'}^{\ C} \text{ for any fuzzy soft set}$ $F_{A'}^{\ in} FS(U_2, E_2)$ ii) $h_{up}[(h_{up})^{-1} F_{A'}] \cong F_{A'}^{\ if} (h_{up})$ is surjective.
- iii) $F_A \cong (h_{up})^{-1}[(h_{up}) \ F_A]$ for any fuzzy soft set $F_A \stackrel{\text{in}}{=} FS(U_1, E_1)$.

Proof

i) Consider

$$([(h_{up})^{-1}(F_{A'})^{C}](e_{1})(s) = F_{A'}^{C}(p(e_{1})(U(s)))$$

$$= {}^{1-}F_{A'}(p(e_{1})U(s))$$

$$= {}^{1}_{Y} - [(h_{up})^{-1}(F_{A'})](e_{1})(s)$$

$$= ([(h_{up})^{-1}(F_{A'})](e_{1})(s))^{C}$$
Hence $(h_{up})^{-1}(F_{A'})^{C} = ((h_{up})^{-1}F_{A'})^{C}$

$$ii) [(hup)^{-1}F_{A'}](e_{1})(s) = F_{A'}(p(e_{1})(U(s))$$

$$(h_{up})[F_{A'}p(e_1)U(s)](e_2)(S')$$

$$\begin{cases} \sup_{S \in U^{-1}(s)} \left[\sup_{e_1 \in p^{-1}(e_2)} F_{A'}(p(e_1)U(s)) \right](e_1)(s) & \text{if } U^{-1}(s') \neq \phi, p^{-1}(e_2) \neq \phi \\ 0 & \text{otherwise} \end{cases} \\ = \\ \begin{cases} \sup_{S \in U^{-1}(s)} \left[\sup_{e_1 \in p^{-1}(e_2)} [(h_{up})^{-1}F_{A'}] \right](e_2)(s) & \text{if } U^{-1}(s') \neq \phi, p^{-1}(e_2) \neq \phi \\ 0 & \text{otherwise} \end{cases} \end{cases}$$

$$\begin{cases} \sup_{s=U^{-1}(s)} \left[\sup_{e_{1}=p^{-1}(e_{2})} F_{A'} \right] (e_{2})(s') \quad](e_{1})(s) \\ 0 \quad otherwise \end{cases}$$
$$= \begin{cases} \sup[\sup F_{A'}](e_{1})(s) \end{cases}$$
if (h_{up}) is surjective

⁼
$$F_{A'}$$

ⁱⁱⁱ⁾ $(hup)^{-1}[(hup)F_{A}](e_{2})(S')$

$$= (hup)^{-1} \begin{cases} \sup_{s \in U^{-1}(s)} \left[\sup_{e_1 \in p^{-1}(e_2)} (hup)^{-1} F_A \right] (e_1)(s) & \text{if } U^{-1}(s') \neq \phi, p^{-1}(e_2) \neq \phi \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} \sup_{S \in U^{-1}(s)} \left[\sup_{e_{1} \in p^{-1}(e_{2})} (hup)^{-1} F_{A} \right] (e_{1})(s) & \text{if } U^{-1}(s') \neq \phi, p^{-1}(e_{2}) \neq \phi \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} \sup_{S \in U^{-1}(s')} \left[\sup_{e_{1} \in p^{-1}(e_{2})} F_{A} - p(e_{1})U(s) \right] & \text{if } U^{-1}(s') \neq \phi, p^{-1}(e_{2}) \neq \phi \\ 0 & \text{otherwise} \end{cases}$$

$$= [F_A](e_2)(s)$$

if $s = U^{-1}(s') \neq \phi, e_1 = p^{-1}(e_2) \neq \phi$

ie., (h_{up}) is surjective.

Definition 3.5

Let (U, E, \mathfrak{I}) be a fuzzy soft topological space. Then a subfamily **B** of \mathfrak{I} is called a base for \mathfrak{I} if every member of \mathfrak{I} can be written as a union of members of **B**.

Definition 3.6

Let (U, E, \mathfrak{I}) be a fuzzy soft topological space. Then a subfamily **S** of \mathfrak{I} is called a subbase for \mathfrak{I} if the family of finite intersection of its members forms a base for \mathfrak{I} .

Definition 3.7

A fuzzy soft topological space over U is said to be generated by a subfamily S of fuzzy soft set over U if every member of \mathfrak{J} is a union of finite intersection of members of S.

Lemma 3.8

Let (U, E, \mathfrak{I}) be a fuzzy soft topological space and F_A be fuzzy soft closed in U, if G_A is a fuzzy soft open set

containing F_A then there exists a fuzzy soft open set $H_{A} \stackrel{\text{containing }}{=} F_{A} \stackrel{\text{such that}}{=} F_{A} \stackrel{\sim}{=} H_{A} \stackrel{\sim}{=} \overline{H}_{A} \stackrel{\sim}{=} G_{A} \stackrel{C}{=} .$ Proof

Let (U, E, \mathfrak{I}) be a fuzzy soft normal space. let F_{\downarrow} and G_{A} be two disjoint fuzzy soft closed sets in (U, E, \mathfrak{I}) . Then $(G_{A})^{C}$ is fuzzy soft open and contains F_{A} . By the hypothesis there exists fuzzy soft open set H_{\star} containing

$$\begin{split} F_{A} \stackrel{\text{such that}}{=} & F_{A} \stackrel{\simeq}{\subseteq} H_{A} \stackrel{\simeq}{\subseteq} \overline{H}_{A} \stackrel{\simeq}{\subseteq} G_{A} \stackrel{C}{\cdot} \\ & \text{Let} & \overline{H}_{A} \stackrel{C}{=} W_{A} \\ & \mu_{W_{A}}^{e(a)} = 1 - \mu_{\overline{H}_{A}}^{e(a)}, \text{ for all } e \in E, a \in A^{\cdot} \end{split}$$
 ie.,

Then
$$\overline{H}_{A} \cong G_{A}^{c}$$

 $\Rightarrow \mu_{\overline{H}_{A}}^{e(a)} = 1 - \mu_{G_{A}}^{e(a)}, \text{ for all } a \in A, e \in E$
 $\Rightarrow \mu_{G_{A}}^{e(a)} = 1 - \mu_{\overline{H}_{A}}^{e(a)}, \text{ for all } a \in A, e \in E$
 $=1 - \inf \left\{ \begin{array}{c} \mu_{S_{A}}^{e(a)} & : S_{A} \text{ is a fuzzy soft} \\ \mu_{S_{A}}^{e(a)} & : \end{array} \right\}$

closed set containing H_A .

 $\stackrel{\cdot\cdot}{\overset{\cdot}{=}} G_A \cong \overline{H}_A^{\ C}$ Hence H_A and W_A are two fuzzy soft open set containing F_A and G_A respectively with H_A and W_A being disjoint.

Conversly suppose (U, E, \mathfrak{I}) is fuzzy soft normal. Let G_{4} be a fuzzy soft open set containing the fuzzy soft closed set $F_A \cdot F_A$ is fuzzy soft closed implies F_A^{C} is fuzzy soft open.

 $\therefore F_A$ and $G_A^{\ C}$ are disjoint fuzzy soft closed sets in $(U.E.\mathfrak{I})$

Using fuzzy soft normality we can find a pair of disjoint fuzzy soft open sets H_A and W_A such that $F_A \cong H_A$ and

$$G_{A}^{C} \cong W_{A}$$
where $H_{A} \cap W_{A} = \phi$

$$\Rightarrow H_{A} \cong W_{A}^{C}$$

$$\Rightarrow \overline{H}_{A} \cong \overline{W}_{A}^{C}$$

$$\Rightarrow \overline{H}_{A} \cong G_{A}$$
Since H_{A} is fuzzy soft open, $H_{A} \cong \overline{H}_{A}$

$$\therefore F_{A} \cong H_{A} \cong \overline{H}_{A} \cong G_{A}^{C}$$

Definition 3.9

Let $a,b\in \mathfrak{R}$, let $F_{A_{(a,b)} = \{0,1\}}$ be a fuzzy soft set $F_{A_{(a,b)\tilde{\cap}[0,1]}}: E \to I^{I \text{ Where } I=[0,1]}$ and I^{I} represents the set of all fuzzy sets on [0,1] defined by $F_{A_{(a,b)\cap[0,1]}}(e) = \mu_{F_A}^{e_{((a,b)\cap[0,1])}} \text{ for every } e \in E. \text{ Then the}$

collection
$$\mathbf{B} = \left\{ F_{A_{(a,b)\tilde{\leftarrow}[0,1]}} : a, b \in \mathfrak{R} \right\}$$
 forms a base for the

fuzzy soft topology on [0,1].

3.10 Urysohn's Lemma

Let (U, E, \mathfrak{I}) be a fuzzy soft topological space and consider [0,1] with fuzzy soft topology. Then (U, E, \mathfrak{I}) is fuzzy soft normal iff for any two disjoint fuzzy soft closed subsets F_A and G_A in (U, E, \mathfrak{Z}) there exists a fuzzy soft continuous map $h_{up}: FS(U_1, E_1) \to FS([0,1], E_2)$ such that

$$(h_{up})(F_A) = [(h_{up})F_A](e_2)(d) = F_{e_0} = (h_{up})(F_{e_a})$$

$$(h_{up})(G_A) = [(h_{up})G_A](e_2)(d) = F_{e_1} = (h_{up})(G_{e_a})$$

where $F_{e_a} \in F_A$, $G_{e_a} \in G_A$, $F_{e_0}(x) = \widetilde{0}$ and $F_{e_1}(x) = \widetilde{1}$, $\widetilde{0}, \widetilde{1}$ are zero and unit fuzzy sets.

Proof

Let D be the set of all rational numbers in [0,1]. Arrange D in some order so that $d_0 = \widetilde{0}$ and $d_1 = \widetilde{1}$. Let the elements of D be listed as $\{d_0, d_1, \dots, d_n\}$. Define for each $d \in D$ a fuzzy soft open set F_{A_d} in (U, E, \mathfrak{I}) in such a way that for in $d, h \in D$ with d < h then $\overline{F}_{A_d} \cong F_{A_h}$.

Construct a sequence of fuzzy soft open sets in (U, E, \Im) as follows. First define $F_{A_{d_1}} = G_A^{\ C}$; a fuzzy soft closed set contained the fuzzy soft open set $F_{A_{d_{\alpha}}} = F_A$ using fuzzy soft normality of (U, E, \mathfrak{J}) and by lemma,

^{e get}
$$F_{A_{d_0}} \cong \overline{F}_{A_{d_0}} \cong F_{A_{d_1}}$$

In general let D_{μ} denote the set consisting of all first 'n' rational numbers in the sequence. $F_{A_{d_0}}, F_{A_{d_1}}, \dots, F_{A_{d_n}}$ be fuzzy soft sets satisfying the $\overline{F}_{A_d} \cong F_{A_h} \qquad ext{for} \qquad d < h$ property. where $d, h \in \{d_0, d_1, \dots, d_n\}$ consider the set

 $D_{n+1} = D \widetilde{\cup} \{d_{n+1}\}$ which is a finite subset of [0,1]. In a finite simply ordered set every element has an immediate predecessor and an immediate successer. Let the immediate predecessor of d_{n+1} be d and the immediate successor by h. Where $d, h \in D_n$. The set F_{A_d} and F_{A_h} are already defined and let $d_r, d_s \in D_n$ such that $d_r < d$ or $h < d_s$. By induction hypothesis, $\overline{F}_{A_d} \subset F_{A_h}$.

Therefore by normality (U, E, \mathfrak{I}) , there exists a fuzzy soft open set H_{A} in (U, E, \mathfrak{I}) such that

$$F_{A_d} \ \widetilde{\subseteq} \ H_A \ \widetilde{\subseteq} \ \overline{H}_A \ \widetilde{\subseteq} \ F_{A_d}$$

Thangaraj Beaula and R. Raja/Elixir Adv. Pure Math. 94 (2016) 40476-40482

Take $F_{A_{d_{n+1}}} = H_A$. It can be concluded by lemma that

$$\overline{F}_{A_d} \ \widetilde{\subseteq} \ F_{A_{d_r}} \ \widetilde{\subseteq} \ \overline{F}_{A_{d_r}} \ \widetilde{\subseteq} \ F_{A_h}$$

If both the elements lie in D_n then * holds by induction hypothesis.

Let d_s and d_r be elements in D such that either $d_s \le d$ (or) $d_r \ge h$ then

$$\overline{F}_{A_{d_s}} \cong F_{A_d} \cong F_{A_{d_r}}$$

and $\overline{F}_{A_{d_r}} \cong F_{d_h} \cong F_{d_s}$ respectively

Thus for every pair of elements of D_{n+1} * holds.

Extend this definition for all $d_t \in D$ by defining $F_{d_t} = \phi_A$; $d_t < 0$

$$=X_{A}$$
; $d_{t} > 1$ (1)

The relation (*) is still free for any pair of rational numbers $d_r < d_s$.

Define a fuzzy soft mapping

$$(h_{up}): FS(U, E) \rightarrow FS([0,1], E)$$
 by
 $(h_{up}): F = F = (h_{up}) F$ where

 $(h_{up})F_A = F_A = (h_{up})F_{e_a}$

 $(h_{up})(x_e) = \inf\{d/d \in F_{A_d}(x_e)\}$

 $(h_{up})(x_e) = F_{e_a(h_{up})(x_e)} \text{ for every } e \in E \text{ and } x \in X \cdot$ Then by above definition $(h_{up})F_A = F_{e_0} = \widetilde{0}$ and $(h_{up})G_A = F_{e_1} = \widetilde{1} \cdot$ To prove the continuity of the fuzzy soft mapping (h_{up}) , we show that inverse image of fuzzy soft open set in $([0,1], E, \mathfrak{I}')$ are fuzzy soft open in (U, E, \mathfrak{I}) .

For
$$t \in [0,1]$$
, we show that
 $(h_{up})^{-1}F_{A_{[0,h]}} = U\{F_{A_d} : d < h\}^{\text{if}} F_{e_a} \in (h_{up})^{-1}F_{A_{[0,h]}}$
 $\Leftrightarrow (h_{up})(F_{e_a}) \in F_{A_{[0,h]}}$
 $\Leftrightarrow (F_{e_a})(h_{up})(x_e) \in F_{A_{[0,h]}}$
 $\Leftrightarrow (h_{up})(x_e) \in [0,h]$
 $\Leftrightarrow (h_{up})(x_e) < h$
 $\Leftrightarrow (h_{up})(x_e) < d < h \text{ for some } d(< h) \in D \cap [0,1]$
 $\Leftrightarrow (F_{e_a}) \in F_{A_d} \text{ for some } d(< h) \in D \cap [0,1]$
 $\Leftrightarrow (F_{e_a}) \in U \quad \{F_{A_d} : d \in D \cap [0,1] \text{ and } d < h\}$
Therefore, $(h_{up})^{-1}F_{A_{[0,h]}} = U\{F_{A_d} : d < h\}$
Again if $F_{e_a} \in (h_{up})^{-1}F_{A_{[0,h]}}$
 $\Leftrightarrow (h_{up})F_{e_a} \in F_{A_{[0,h]}}$
 $\Leftrightarrow (h_{up})(x_e) \in [0,t]$

 $\Leftrightarrow (F_{e_a}) \widetilde{\in} F_{A_d} \text{ for any } h(>d) \in D \cdot$ Also for any $d \in D$ with d > h there exists $d_R \in Q$

with $d > d_{R} > h$ and consequently,

$$\overline{F}_{A_{d_R}} \cong F_{A_d} \cdot \text{Thus} \quad (F_{e_a}) \cong F_{A_d} \text{ for any}$$
$$d(>h) \in D$$
$$\text{iff } (F_{e_a}) \cong \overline{F}_{A_d}$$

Hence
$$(h_{up})^{-1}F_{A_{[0,h]}} = \widetilde{\frown} \{F_{A_d} : d \in D, d > h\}$$

Then $(h_{up})^{-1}F_{A_{[0,h]}}$ is fuzzy soft closed in

 (U, E, \mathfrak{I}) .

Consider

$$\begin{bmatrix} (h_{up})^{-1}F_{A_{[0,h]}} \end{bmatrix}^{C}(e)(s)$$

$$=1_{X} - \begin{bmatrix} (h_{up})^{-1}F_{A_{[0,h]}} \end{bmatrix}(e)(s)$$

$$=1_{X} - F_{A_{[0,h]}}((p(e))U(s))$$

$$=F_{A_{[0,h]}}^{C}((p(e))U(s))$$

$$=(h_{up})^{-1}[F_{A_{[0,h]}}^{C}](e)(s) \text{ is fuzzy soft open}$$

 (U, E, \mathfrak{I})

Hence inverse image of fuzzy soft open set.

 $F_{A_{[0,h]}}^{C}$ is a fuzzy soft open set in (U, E, \mathfrak{I}) and so

in

 (h_{un}) is a fuzzy soft continuous function.

$$\begin{array}{ll} \text{Define} & D(F_e) = \{d_t \, / \, F_e \in F_d \, \} \\ \text{From (1)} & D(F_e) = \phi_A \quad d_t < 0 \; ; \end{array}$$

Definition 3.11

Define a fuzzy soft mapping $(\phi,\psi): F_A \rightarrow ([a,b], E', \mathfrak{I}')^{\text{ is defined as}}$

 $(\phi,\psi)F_{A}(e')(t) = \sup_{s \in \phi^{-1}(t)} \left[\sup_{e \notin \psi^{-1}(e)} F_{A}\right](e)(s) \quad if \quad \phi^{-1}(t) \neq \phi, \psi^{-1}(e') \neq \phi \quad and \quad a = e$ $0 \qquad otherwise$

Tietze's Extension Theorem 3.12 Statement

If (U, E, \mathfrak{I}) is fuzzy soft topological space and $([a,b], E, \mathfrak{I}')$ be a fuzzy soft topological space with topology as in definition (3.11) then (U, E, \mathfrak{I}) is fuzzy soft normal iff for any fuzzy soft closed $F_{\scriptscriptstyle A}$ in (U, E, \Im) and a soft continuous fuzzy function $(\phi,\psi): F_A \to ([a,b], E, \mathfrak{I})$ there exists a fuzzy soft continuous function that such $(\phi',\psi'):(U,E,\mathfrak{I}) \to ([a,b],E',\mathfrak{I}')$ $(\phi',\psi')(F_e) = (\phi,\psi)(F_e)$ for every $F_e \in F_A$. Proof

Assume that (U, E, \mathfrak{I}) is fuzzy soft normal. Let $(\phi, \psi): F_A \to ([a, b], E', \mathfrak{I}')$ be a fuzzy soft continuous Thangaraj Beaula and R. Raja/Elixir Adv. Pure Math. 94 (2016) 40476-40482

map, F_{A} being a fuzzy soft closed subset of (U, E, \mathfrak{I}) . Take a=-1.b=1.

Define a fuzzy soft map

$$(\phi_0, \psi_0) : F_A \rightarrow ([-1,1], E', \mathfrak{I}')^{\text{as}}$$

 $[(\phi_0, \psi_0)F_A](e_0)(t) = [F_B](e)(s)^{\text{where }} a = e'$

$$= 0 \quad \text{otherwise}$$

For every $F_a \in F_A$. Divided the closed interval [-1,1]
into three parts namely [-1,-1/3] [-1/3,1/3] and [1/3,1]. F_A
is a fuzzy soft closed set means that it is a function from
 $F: A \rightarrow [-1,1]^I$ where $A \cong E$. Similarly define
 $G_{[-1,-1/3]}$ a fuzzy soft closed in ([-1,1], E') as a function
from $G: A' \rightarrow [-1,-1/3]^I$ where $A' \cong E'$ and define
 $H_{[1/3,1]}$ as $H: A' \rightarrow [1/3,1]^I$ with $A' \cong E'$ a fuzzy soft
closed set in ([-1,1], E', \mathfrak{I}').

Let

$$[(\phi_0,\psi_0)^{-1}G_{[-1,-1/3]} = G_{A_0}$$

and

 $[(\phi_0,\psi_0)^{-1}H_{[1/3,1]} = H_{A_0}$. Since $G_{[-1,-1/3]}$ and $H_{[1/3,1]}$ are fuzzy soft closed in ([-1,1], E', \Im') G_{A_0} and H_{A_0} are disjoint fuzzy soft closed set in (U, E, \mathfrak{I}) because (ϕ_0, ψ_0) is continuous as it is the restricted map of (ϕ, ψ) on the range.

By Urysohn Lemma, there exists a fuzzy soft continuous mapping $(\phi_1, \psi_1): (U, E, \mathfrak{I}) \rightarrow ([-1, 1], E', \mathfrak{I}')$ such that $(\phi_1, \psi_1)G_{A_0} = -\widetilde{1}/3$ and $(\phi_1, \psi_1)H_{A_0} = \widetilde{1}/3$ ^{ie,} $[(\phi_1, \psi_1)G_{a_0}](e')(t) = [G_{a_0}](e)(s) = -\widetilde{1}/3$ for all $e' \in E, e \in E, s \in S, t \in [-1,1]$ $[(\phi_1,\psi_1)H_{a_0}](e')(t) = [H_{a_0}](e)(s) = \tilde{1}/3$ Construct soft fuzzy mapping $(u_1, p_1): (U, E, \mathfrak{I}) \rightarrow ([-1,1], E', \mathfrak{I}')$ as $(u_1, p_1)F_a = [(\phi_0, \psi_0) - (\phi_1, \psi_1)F_a]$

Then

$$[(u_1, p_1)F_a](e')(t) = [(\phi_0, \psi_0)G_a](e)(s) - [(\phi_1, \psi_1)F_a](e)(s)$$

and

$$[(\phi_0,\psi_0)G_a](e)(s) \in [-1,1], [[(\phi_1,\psi_1)G_a](e)(s) \in [-1/3,1/3]$$

implies that
$$[(u_1, p_1)G_a](e')(t) \in [-2/3, 2/3]$$

Hence $(u_1, p_1)G_a \in G_{[-2/3, 2/3]}$ for all $G_a \in G_A$

So $(u_1, p_1): (U, E, \mathfrak{I}) \rightarrow ([-2/3, 2/3], E', \mathfrak{I}')$ is a fuzzy soft mapping, define $G_{A_1} = (u_1, p_1)^{-1} G_{[-2/3, 2/9]}$ $H_{A_1} = (u_1, p_1)^{-1} H_{[2/9, 2/3]}$. By similar argument G_{A_1} and H_{A} are disjoint fuzzy soft closed sets in (U, E, \mathfrak{I}) . Since (U, E, \mathfrak{I}) is fuzzy soft normal, by Urysohn lemma there exists a fuzzy soft continuous mapping

$$(\phi_2,\psi_2)$$
: $(U,E,\mathfrak{I}) \rightarrow ([-2/9,2/9], E',\mathfrak{I}')$

such that
$$(\phi_2, \psi_2)G_{A_1} = -\tilde{2}/9$$
 and
 $(\phi_2, \psi_2)H_{A_1} = \tilde{2}/9$
^{ie,} $[(\phi_2, \psi_2)G_{A_1}](e_2)t) = -\tilde{2}/9$
 $[(\phi_2, \psi_2)H_{A_1}](e_2)(t) = \tilde{2}/9$
 $\Rightarrow [G_{A_1}](e_1)(s) = -\tilde{2}/9 \cdot [H_{A_1}](e_1)(s) = \tilde{2}/9$
Define $(u_2, p_2)F_a = [(u_1, p_1) - (\phi_2, \psi_2)F_a]$
 $= [(\phi_0, \psi_0) - (\phi_1, \psi_1) - (\phi_2, \psi_2)]F_a$ for all
 $F_a \in F_A$

and

)

Then

such

that

is а $(u_2, p_2): (U, E, \mathfrak{I}) \rightarrow ([-4/9, 4/9, E', \mathfrak{I}')$ continuous fuzzy soft mapping continuous this process, we obtain a continuous fuzzy soft mapping.

$$(\phi_n, \psi_n): (U, E, \mathfrak{I}) \to ([-2^{n-1}/3^n, 2^{n-1}/3^n], E', \mathfrak{I}')$$

where $(\phi_n, \psi_n)G_{A_n} = -2^{n-1}/3^n$ and

$$(\phi_n, \psi_n) H_{A_n} = 2^{n-1} / 3^n$$
 and

$$\begin{aligned} &(u_n, p_n): (U, E, \mathfrak{I}) \to ([-2^n / 3^n, 2^n / 3^n], E', \mathfrak{I}') \\ &\text{defined} \\ &(u_n, p_n) F_a = [(\phi_0, \psi_0) - (\phi_1, \psi_1) + (\phi_2, \psi_2) + \dots + (\phi_n, \psi_n) (F_a) \\ &\text{for all} \quad F_a \in F_A \end{aligned}$$

Suppose

$$\widetilde{A}_{n}(F_{a}) = \sum_{i=1}^{n} (\phi_{i}, \psi_{i}) F_{a}$$

$$\widetilde{A}_{n}[(F_{a})]_{e'}(t) = \sum_{i=1}^{n} [(\phi_{i}, \psi_{i}) F_{a}]_{e'}(t)$$
for all

 $e' \in E, t \in [-1,1]$. As each (ϕ_i, ψ_i) is continuous, \widetilde{A}_{i} is also fuzzy soft continuous.

Also $\left| \widetilde{A}_{n}[(F_{a})](e')(t) \right| = \left| \sum_{i=1}^{n} [(\phi_{i}, \psi_{i})F_{a}](e')(t) \right|$ $\leq \sum_{i=1}^{n} 2^{i-1} / 3^{i}$ ----- (1) $\leq 1/2\sum_{i=1}^{\infty} 2^i/3^i$

By comparison test \widetilde{A}_n is uniformly fuzzy soft continuous. So the sum function $\sum_{i=1}^{\infty} [(\phi_i, \psi_i) F_a](e')(t)$ is

fuzzy soft continuous and let

$$(\phi', \psi') = \sum_{i=1}^{\infty} [(\phi_i, \psi_i) F_a](e')(t)$$

$$e' \in E, t \in [-1,1].$$
Thus

$$(\phi', \psi') : (U, F, \mathfrak{T}) \rightarrow ([-1,1], F', \mathfrak{T}') \text{ is a fuzzy soft}$$

 $(\phi',\psi'):(U,E,\mathfrak{Z}) \to ([-1,1],E',\mathfrak{Z}')$ is a fuzzy soft continuous mapping.

Again

$$(u_{n,}, p_{n})[F_{a}](e')(t) = [(\phi_{0}, \psi_{0}) - \sum_{n=1}^{n} [(\phi_{i}, \psi_{i})F_{a}](e')(t)$$

Thangaraj Beaula and R. Raja/Elixir Adv. Pure Math. 94 (2016) 40476-40482

 $\leq (2/3)^{n, \text{ for all }} e' \in E, t \in [-1,1]$ As $n \to \infty$ ∞

$$(\phi_0, \psi_0) = \sum_{n=1}^{\infty} [(\phi_i, \psi_i)]$$

Which implies

 $[(\phi_0, \psi_0)F_a](e')(t) = [(\phi', \psi')F_a](e')(t) \quad \text{for all} \\ e' \in E, t \in [-1, 1]$

Conversely suppose the given hypothesis holds. Let G_A and H_A be two disjoint fuzzy soft closed sets in (U, E, \mathfrak{I}) . Let $F_A = (G_A \cup H_A)$.

Let $(\phi,\psi):(F_A,E,\mathfrak{I}) \to ([-1,1],E',\mathfrak{I}')$ be a fuzzy soft mapping defined by $[(\phi,\psi)G_a](e')(t) = 0$ and

 $[(\phi,\psi)H_a](e')(t) = 1$. Let $C_{[-1,1]}$ be any closed set in $([-1,1], E', \mathfrak{I}')$ then

$$\begin{split} & [(\phi,\psi)^{-1}C_{[-1,1]}](e)(s) = C_{[-1,1]}(\phi(e),\psi(s)) \\ &= \begin{cases} [G_A](e)s) & if \quad 0 \in C_{[-1,1]}, 1 \notin C_{[-1,1]} \\ \\ [H_A](e)(s) & if \quad 1 \in C_{[-1,1]}, 0 \notin C_{[-1,1]} \\ \\ [F_A](e)(s) & if \quad 0 \in C_{[-1,1]} \\ \\ \phi & if \quad 0, 1 \in C_{[-1,1]} \\ \end{cases} \end{split}$$

Then $(\phi,\psi)^{-1}C_{[-1,1]}$ is fuzzy soft closed

 $(F_A, E', \mathfrak{I}_{F_A})$. Hence (ϕ, ψ) fuzzy soft continuous. By

the given hypothesis there is a fuzzy soft continuous $(\phi',\psi'): (U,E,\mathfrak{I}) \rightarrow ([-1,1],E',\mathfrak{I}')$ such that $[(\phi',\psi')F_a](e')(t) = [(\phi,\psi)F_a](e')(t)$ for every $e' \in E', t \in [-1,1]$. Then $[(\phi',\psi')^{-1}[B_{[-1,1/2]}]$ and $[(\phi',\psi')^{-1}[B_{[1/2,1]}]$ are disjoint fuzzy soft open sets and

$$G_A \cong [(\phi', \psi')^{-1} [B_{[-1,1/2]}]^{\text{and}}$$

 $H_A \cong [(\phi', \psi')^{-1}[B_{[1/2,1]}]$

Hence (U, E, \mathfrak{I}) is fuzzy soft normal.

References

1. Aktas, H, Cagman, N: Soft sets and soft groups. Information Sciences. **177**, 2726–2735 (2007).

2. Biswas, R, Nanda, S: Rough groups and rough subgroups. Bull. Polish Acad. Math. **42**, 251–254 (1994).

3. Maji, PK, Biswas, R, Roy, A: Soft set theory. Computers and Mathematics with Applications. **45**, 555–562 (2003).

4. Maji, PK, Biswas, R, Roy, A: Fuzzy soft sets. The Journal of Fuzzy Mathematics. **9**(3), 589–602 (2001).

5. Molodtsov, D: Soft set theory-first results. Computers and Mathematics with Applications. **37**, 19–31 (1999).

6. Nazmul, S, Samanta, SK: Fuzzy soft group. The Journal of Fuzzy Mathematics. **19**(1), 101–114 (2011).

7. Rosenfeld, A: Fuzzy groups. J. Math. Anal. Appl. 35, 512–517 (1971).

8.Roy,s. and Samanta T.K.,A note on Fuzzy Soft Topological Spaces, Annals of Fuzzy Mathematics and Informatics. 2011.

9. Shabir, M, Naz, M: On soft topological spaces. Computers and Mathematics with Applications. **61**(7), 1786–1799 (2011).