PRIME $(1,0)$ Rings

K.Subhashini and M.Ravi Kumar
G.Pulla Reddy Engineering College (Autonomous) Kurnool-518002, Andhra Pradesh, India.

ARTICLE INFO

Article history:

Received: 21 March 2016;
Received in revised form: 6 May 2016;
Accepted: 11 May 2016;

Keywords

Non-associative ring,
Aassociator,
Ccommutator,
Left alternative ring,
$(1,0)$ ring,
Strongly (1,0) ring, prime ring.

Introduction

Mathematics Subject Classification: 2010 MSC 17A30

Sterling[3] proved that a prime ($-1,1$) ring of characteristic $\neq 2,3$ with an idempotent $\mathrm{e} \neq 0,1$ is associative. To prove associativity in prime (1,0) rings with idempotent e $\neq 0,1$, Paul [4] assumed the additional identity ($(\mathrm{e}, \mathrm{x}), \mathrm{e}, \mathrm{e})=0$. E. Kleinfeld proved [1] a semi-prime right alternative ring of characteristic $\neq 2,3$ with $(a,(b, a))=0$ is strongly $(-1,1)$ ring. In this paper without any additional assumpotion we prove that a prime (1,0) ring of characteristic $\neq 2,3$ is either associative or strongly (1,0) ring.
A non-associative ring R is called $(1,0)$ ring if
$\bar{A}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv(\mathrm{x}, \mathrm{y}, \mathrm{z})+(\mathrm{y}, \mathrm{z}, \mathrm{x})+(\mathrm{z}, \mathrm{x}, \mathrm{y})=0$.
$\bar{B}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv(\mathrm{x}, \mathrm{y}, \mathrm{z})+(\mathrm{y}, \mathrm{x}, \mathrm{z})=0$.
for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in R , where the associator $(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xy} . \mathrm{z}-\mathrm{x} . \mathrm{yz}$. The commutator $(\mathrm{x}, \mathrm{y})=\mathrm{xy}-\mathrm{yx}$. If there exists a positive integer n such that na $=0$ for every element a of the ring R, the smallest such positive integer is called the characteristic of R.
A non-associative ring is said to be strongly $(1,0)$ ring if it satisfies $(x, y, z)+(y, x, z)=0$ and $((R, R), R)=0$.
A ring R is called prime, if whenever A and C are ideals of the ring such that $\mathrm{AC}=0$, then either $\mathrm{A}=0 \quad$ or $\mathrm{C}=0$. Throughout this paper R represents a (1,0) ring of characteristic $\neq 2,3$.

We consider two ideals A and C of R, where A is the ideal generated by
$\{(x, y, z) \backslash x, y, z \in R\}$ and C is the ideal generated by double commutator, $\{((x, y), z) \backslash x, y, z \in R\}$.
2.Preliminaries: The following identities hold good in left alternative rings[4]
$\bar{C}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv(\mathrm{xy}, \mathrm{y}, \mathrm{z})-\mathrm{y}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$.
$\bar{D}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv(\mathrm{wx}, \mathrm{y}, \mathrm{z})+(\mathrm{wy}, \mathrm{x}, \mathrm{z})-\mathrm{x}(\mathrm{w}, \mathrm{y}, \mathrm{z})-\mathrm{y}(\mathrm{w}, \mathrm{x}, \mathrm{z})=0$.
$\bar{E}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv\left(x^{2}, \mathrm{y}, \mathrm{z}\right)-(\mathrm{x}, \mathrm{xy}+\mathrm{yx}, \mathrm{z})=0$.
The identity known as Teichmuller identity holds in any arbitrary ring: $\bar{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{wx}, \mathrm{y}, \mathrm{z})-(\mathrm{w}, \mathrm{xy}, \mathrm{z})+(\mathrm{w}, \mathrm{x}, \mathrm{yz})-\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})-(\mathrm{w}, \mathrm{x}, \mathrm{y}) \mathrm{z}=0$.

In [2] Subhashini established that in $(1,0)$ ring, the associator commutes with every element of R. This is equation (18) in [2]. We take that identity here.
$(R,(R, R, R))=0$.
Lemma: In $\mathrm{R},(\mathrm{r}, \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}))=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}, \mathrm{r} \in \mathrm{R}$.
Proof: Let r be an arbitrary element of R. Commute equations (3), (4) and (5) with r, and then apply equation (6). We obtain
$(\mathrm{r}, \mathrm{y}(\mathrm{x}, \mathrm{y}, \mathrm{z}))=0$.
$(\mathrm{r}, \mathrm{x}(\mathrm{w}, \mathrm{y}, \mathrm{z}))=-(\mathrm{r}, \mathrm{y}(\mathrm{w}, \mathrm{x}, \mathrm{z}))$
$(\mathrm{r}, \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}))=-(\mathrm{r},(\mathrm{w}, \mathrm{x}, \mathrm{y}) \mathrm{z})$. From (6) ,this equation become
$(\mathrm{r}, \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}))=-(\mathrm{r}, \mathrm{Z}(\mathrm{w}, \mathrm{x}, \mathrm{y}))$.
Linearize equation (7)
$(\mathrm{r}, \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})=-(\mathrm{r}, \mathrm{y}(\mathrm{x}, \mathrm{w}, \mathrm{z}))$
Permutating cyclically $\mathrm{w}, \mathrm{z}, \mathrm{y}$ in (9) and then apply (10) and (2), we get $(\mathrm{r}, \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}))=-(\mathrm{r}, \mathrm{z}(\mathrm{w}, \mathrm{x}, \mathrm{y}))=(\mathrm{r}, \mathrm{y}(\mathrm{z}, \mathrm{w}, \mathrm{x}))=-(\mathrm{r}, \mathrm{w}(\mathrm{z}, \mathrm{y}, \mathrm{x}))=-$ (r,w(y,z,x)). Again use (2), (10) and again (2), we have $-(\mathrm{r}, \mathrm{z}(\mathrm{w}, \mathrm{x}, \mathrm{y}))=$
$(\mathrm{r}, \mathrm{z}(\mathrm{x}, \mathrm{w}, \mathrm{y}))=-(\mathrm{r}, \mathrm{w}(\mathrm{x}, \mathrm{z}, \mathrm{y}))=(\mathrm{r}, \mathrm{w}(\mathrm{z}, \mathrm{x}, \mathrm{y}))$. Therefore
$(\mathrm{r}, \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}))=(\mathrm{r}, \mathrm{w}(\mathrm{y}, \mathrm{z}, \mathrm{x}))=(\mathrm{r}, \mathrm{w}(\mathrm{z}, \mathrm{x}, \mathrm{y}))$
Multiply equation (1) by w and commute with r and apply (11). Then $3(r, w(x, y, z))=0$, since
Characteristic $\neq 3$, we have
$(\mathrm{r}, \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}))=0$.
To prove the required result , it is necessary to prove some other identities .
The semi Jacobi identity $(\mathrm{xy}, \mathrm{z})-\mathrm{x}(\mathrm{y}, \mathrm{z})-(\mathrm{x}, \mathrm{z}) \mathrm{y}-(\mathrm{x}, \mathrm{y}, \mathrm{z})+(\mathrm{x}, \mathrm{z}, \mathrm{y})-(\mathrm{z}, \mathrm{x}, \mathrm{y})=0$ holds good in any ring.
In a $(1,0)$ ring this identity becomes

$$
\bar{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{xy}, \mathrm{z})-\mathrm{x}(\mathrm{y}, \mathrm{z})-(\mathrm{x}, \mathrm{z}) \mathrm{y}-2(\mathrm{z}, \mathrm{x}, \mathrm{y})-(\mathrm{x}, \mathrm{y}, \mathrm{z})=0
$$

$\bar{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})-\bar{D}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})$ gives
$\bar{H}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv((\mathrm{w}, \mathrm{x}), \mathrm{y}, \mathrm{z})+(\mathrm{w}, \mathrm{x}, \mathrm{yz})-\mathrm{y}(\mathrm{w}, \mathrm{x}, \mathrm{z})-(\mathrm{w}, \mathrm{x}, \mathrm{y}) \mathrm{z}=0$.
And $\bar{H}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})-\bar{H}(\mathrm{w}, \mathrm{x}, \mathrm{z}, \mathrm{y})-\bar{A}((\mathrm{w}, \mathrm{x}), \mathrm{y}, \mathrm{z}))$ gives
$\bar{I}^{(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})} \equiv(\mathrm{w}, \mathrm{x},(\mathrm{y}, \mathrm{z}))-(\mathrm{y}, \mathrm{z},(\mathrm{w}, \mathrm{x}))+(\mathrm{z},(\mathrm{w}, \mathrm{x}, \mathrm{y}))-(\mathrm{y},(\mathrm{w}, \mathrm{x}, \mathrm{z}))=0$.
Now from (3) $\bar{I}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv(\mathrm{w}, \mathrm{x},(\mathrm{y}, \mathrm{z}))-(\mathrm{y}, \mathrm{z},(\mathrm{w}, \mathrm{x}))+(\mathrm{z},(\mathrm{w}, \mathrm{x}, \mathrm{y}))-(\mathrm{y},(\mathrm{w}, \mathrm{x}, \mathrm{z}))=0$ becomes
$(\mathrm{w}, \mathrm{x},(\mathrm{y}, \mathrm{z}))=(\mathrm{y}, \mathrm{z},(\mathrm{w}, \mathrm{x}))$.
Let us define $\mathrm{U}=\{u \in R /(u, R)=0\} \cdot \bar{G}(\mathrm{x}, \mathrm{x}, \mathrm{u})$ gives $-2(\mathrm{u}, \mathrm{x}, \mathrm{x})=0$. Because of characteristic $\neq 2$
$(\mathrm{u}, \mathrm{x}, \mathrm{x})=0$. Linearization of this gives
$\bar{J}(\mathrm{u}, \mathrm{x}, \mathrm{y}) \equiv(\mathrm{u}, \mathrm{x}, \mathrm{y})+(\mathrm{u}, \mathrm{y}, \mathrm{x})=0$.
$-\bar{G}(\mathrm{x}, \mathrm{y}, \mathrm{u})-2 \bar{J}(\mathrm{u}, \mathrm{x}, \mathrm{y})=0$ gives
$\bar{K}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \equiv(\mathrm{x}, \mathrm{y}, \mathrm{u})-2(\mathrm{u}, \mathrm{y}, \mathrm{x})=0$.
The combination of $-\bar{G}(\mathrm{u}, \mathrm{x}, \mathrm{y})-2 \bar{B}(\mathrm{u}, \mathrm{x}, \mathrm{y})+2 \bar{J}=0$ gives

$$
\begin{equation*}
\bar{L}(\mathrm{u}, \mathrm{x}, \mathrm{y}) \equiv 3(\mathrm{u}, \mathrm{x}, \mathrm{y})-(\mathrm{ux}, \mathrm{y})+\mathrm{u}(\mathrm{x}, \mathrm{y})=0 \tag{14}
\end{equation*}
$$

Theorem: If R is a prime (1,0) ring of characteristic $\neq 2,3$, then R is either associative or strongly (1,0) ring.
Proof: Put $u=(R, R, R)$ is an arbitrary associator in (14) and apply equation (6), then we have
$3((R, R, R), x, y)=-(R, R, R)(x, y)$. In this equation put $y=(R, R)$ an arbitrary commutator. Now this becomes $3((R, R, R), x,(R, R))=-(R, R, R) \quad(x,(R, R))$
Put $y=(R, R, R)$ an arbitrary associator in equation (13) and apply (6), we obtain $((R, R, R), z,(R, R))=0$
From (15) and (16) $(R, R, R)(x,(R, R))=0$ or $A C=0$. Since R is prime, either $A=0$ or $C=0$. If $A=0$ implies R is associative and if $\mathrm{C}=0$ implies R is strongly $(1,0)$ ring.

References

[1] E.Kleinfeld ,A generalization of strongly ($-1,1$) rings, J.Algebra,119. 218-225 (1988)
[2]K.Subhashini , Simple (1,0) rings, International Mathematical forum, Vol.7,(2012), 48,2407-2410.
[3] N.Sterling, Prime (-1,1) rings with an idempotent,Proc.Amer.Math.Soc.18(1967), 902-909
[4] Y.Paul, left alternative rings with an idempotent, Jn $\bar{a} n \bar{a} b h a$,V01 25,(1995) 59-64.

