41143

J.Joseline Manora and S.Veeramanikandan/ Elixir Appl. Math. 95 (2016) 41143-41147

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 95 (2016) 41143-41147

The Split Majority Domatic Number of a Graph

J.Joseline Manora¹ and S.Veeramanikandan²

Department of Mathematics, T.B.M.L. College, Porayar-609 307, India.

ARTICLE INFO

Article history: Received: 25 April 2016; Received in revised form: 17 June 2016; Accepted: 22 June 2016;

Keywords

Set, Split Majority Dominating set. **ABSTRACT** Let G = (V,E) be any simple finite graph. A subset D of V (G) is said to be Split Majority Dominating set of G if $|N[D]| \ge \left\lceil \frac{p}{2} \right\rceil$ and the induced subgraph $\langle V - D \rangle$ is disconnected. A split majority dominating set D is said to be minimal if there exists a vertex v of V such that D-{v} is not a split majority dominating set of G. The Split Majority Domatic Number denoted by $d_{sm}(G)$ is the maximum number of disjoint minimal split majority dominating sets obtained for a graph G. In this article, we have initiated the study of this concept.

Introduction

Let G = (V (G), E (G)) be any simple finit graph with |V(G)| = p and |E(G)| = q. With usual notations, the degree of a vertex v, the maximum and the minimum degree of a graph G are denoted by $d(v), \Delta(G)$ and $\delta(G)$ respectively.

A set $D \subseteq V(G)$ is said to be a dominating set [2] of G if for every vertex v in V-D there exists at least one vertex u in D such that u and v are adjacent in G. A Dominating set D is said to be minimal if for some vertex v of G, $D - \{v\}$ is not a dominating set. The minimum cardinality of a minimal dominating set is called the domination number of G and it is denoted by $\gamma(G)$.

A set $D \subseteq V(G)$ is said to be a majority dominating set [3] of G if atleast half of the vertices of G are either in D or adjacent to the vertices of D. i:e) $|N[D]| \ge \left[\frac{p}{2}\right]$. A majority Dominating set D is said to be minimal if for some vertex v of G, $D - \{v\}$

is not a majority dominating set. The minimum cardinality of a minimal majority dominating set is called the ma-jority domination number of G and it is denoted by M (G). This parameter was defined by Swaminathan and Joseline Manora.

A Dominating set $D \subset V(G)$ is said to be a split dominating set[8] if the induced subgraph $\langle V - D \rangle$ is disconnected. with usual inferences, the minimum cardinality of minimal split dominating set is denoted by s (G). This parameter was intoduced by kulli and Janakiram.

A subset D of V (G) is said to be Split Majority Dominating set[5] of G if $|N[D]| \ge \left\lfloor \frac{p}{2} \right\rfloor$ and the induced subgraph

 $\langle V - D \rangle$ is disconnected. As usual, the minimum cardinality of minimal split majority dominating set is called split majority domination number of a graph denoted by $\gamma_{sm}(G)$. This parameter was defined and studied by Joseline Manora and Veeramanikandan.

A partition Δ of its vertex set V (G) is called a domatic partition of G if each class of Δ is a dominating set in G. The maximum number of classes of a domatic partition of G is called the domatic number of G and is dentoed by d (G). The domatic number was introduced by Cockayne and Hedetniemi. In a similar fashion, a majority domatic partition of a graph G was introduced and each class of it is a majority dominating set in G. The maximum number of classes of a majority domatic partition of G is called the majority domatic number [4] and is denoted by $d_M(G)$. This parameter was introduced by Swaminathan and Joseline Manora.

2 Split Majority Domatic Number of a Graph

In this section, we define Split Majority Domatic Number of a graph G and this number $d_{sm}(G)$ is determined for some families of graphs.

Definition 2.1

Let \Re be the family of all disjoint minimal split majority dominating sets of G. The split majority domatic number of a graph G is defined to be the maximum number of disjoint minimal split majority dominating sets of G and it is denoted by $d_{sm}(G)$.

Remark 2.2

In this article, we consider only the family of disjoint minimal split majority dominating sets of G rather than the partition of vertices of G. The reason is that there are some vertices that are not the elements of any minimal split majority dominating set D of G since the definition of split majority dominating set is violated when these vertices are included in any set D.

Tele:
E-mail address: joseline_manora@yahoo.co.in
© 2016 Elixir All rights reserved

2.1 $d_{sm}(G)$ for some families of graphs 1. For $G = \overline{K_v}$, a totally disconnected graph.

$$d_{sm}(\overline{K_p}) = \begin{cases} 1 & if \ p & is \ odd \\ 2 & if \ p & is \ even \end{cases}$$

3. If G is a star $K_{1,p-1}$, $p \ge 3$. Then $d_{sm}(G) = 1$.

4. Suppose G being double star $D_{r,s}$, p = r + s + 2. Then $d_{sm}(G) = 2$.

5. For $G = C_{p}, p \ge 3$. Then $d_{sm}(G) = 3$.

6. If G is a complete biparpite graph $K_{m,n}$, $m \le n$, $d_{sm}(G) = 2$.

7. Let G be a petersen graph. Then $d_{sm}(G) = 2$.

8. Suppose G is a fan $F_p, p \ge 4$. Then $d_{sm}(G) = 1$.

3 Main Results on $d_{sm}(G)$.

Theorem 3.1

If G has a full degree vertex, $d_{sm}(G) = 1$.

Proof

Suppose G has a full degree vertex v. If v is a cut vertex then $D = \{v\}$ is a split majority dominating set of G. Assume that there exists another split majority dominating set S of G. Then S must contain v. If not, $\langle V - S \rangle$ is connected, a contradiction. Therefore $d_{sm}(G) = 1$. if v is not a cut vertex, $\gamma_{sm}(G) \ge 2$ and v is in every split majority dominating set of G. Applying the same argument as above, we get a contradiction. Therefore $d_{sm}(G) = 1$.

Theorem 3.2

If every vertex of a graph is such that $d(v) > \left[\frac{p}{2}\right]$ then $d_{sm}(G) = 1$.

Proof

Suppose $\delta(G) > \left[\frac{p}{2}\right]$. Then every vertex is a majority dominating vertex. Let D be a minimum split majority dominating set of G. Then $\gamma_{sm}(G) \ge \delta(G)$. That is $|D| > \left[\frac{p}{2}\right]$. This implies that D contains at least one vertex more than $\left[\frac{p}{2}\right]$ vertices. Then $|V - D| < \left[\frac{p}{2}\right]$ implying that V-D is not a majority dominating set. Therefore there exists only one split majority dominating set fo G and hence $d_{sm}(G) = 1$.

Theorem 3.3

For any graph G, $1 \leq d_{sm}(G) \leq \left[\frac{p}{2}\right]^{+1}$

Proof

If G has a full degree vertex then the lower bound is attained. When $\delta(G) > \left[\frac{p}{2}\right]$ then $d_{sm}(G) = 1$. Consider a minimally connected graph G, namely a tree T. If T has exactly two end vertices then it is a path P_p. When $p \le 6$, then every intermediate vertex is a split majority dominating set of G. Therefore $d_{sm}(G) = 4 \le \left[\frac{p}{2} + 1\right]$. Suppose p > 7. Then $\gamma_{sm}(G) \ge 2$ but

 $d_{sm}(G) < \left[\frac{p}{2}\right]$ then only intermediate vertices constitute split majority dominating sets of G and $d_{sm}(G) < \left[\frac{p}{2}\right]$. Thus

$1 \le d_{sm}(G) \le \left|\frac{p}{2} + 1\right|$

Proposition 3.4

If G is any graph with diam(G) = 2 then $d_{sm}(G) = 1$.

Proof

Suppose G is a graph with diam(G) = 2. Let v be the center of the graph G. If D is the minimal split majority dominating set of a graph G and containing the vertex v then no other minimal split majority dominating set is obtained without v. Therefore there exists only one split majority dominating set of G. Thus $d_{sm}(G) = 1$.

Proposition 3.5

For a tree T with diam(T) = 3, $d_{sm}(G) = 2$.

Proof

Suppose T is a tree with diam(T) = 3. Since every tree has atleast two end vertices. If diam(T) = 3 then T is a double star $D_{r,s}$ or P_4 or pendants adjacent to intermediate vertices. If T is $D_{r,s}$ or P_4 , $d_{sm}(G) = 2$. If pendants are adjacent to intermediate vertices, $d_{sm}(G) = 2$.

Theorem 3.6

Let G = P_p be a path on p vertices, p > 4, $d_{sm}(P_p) = \frac{p}{\gamma_{sm}(G)}$ if and only if p = 8,10,15,20,25.+

Proof

Let $P_p = \{u_1, u_2, \dots, u_p\}$ be a path on p vertices and $\gamma_{sm}(P_p) = \left[\frac{p}{6}\right]$.

J.Joseline Manora and S.Veeramanikandan/ Elixir Appl. Math. 95 (2016) 41143-41147

Suppose p = 8,10,15,20,25. Then $\gamma_{sm}(G) = 2,2,3,4,5$. It is clear that $\gamma_{sm}(G)$ divides p. When $p = 8, d_{sm}(P_8) = 4$. When p = 6k + 2. Then $\frac{p}{\gamma_{sm}(G)} = 4$ if k = 1. Hence $d_M(P_8) = 4 = \frac{p}{\gamma_{sm}(G)}$. Therefore split majority domatic partition of P_8 is $\{\{u_1, u_5\}, \{u_2, u_6\}, \{u_3, u_7\}, \{u_4, u_8\}\}$. Let p = 10,15,20,25. Then $d_{sm}(P_p) = 5$. Let $p = 10, 15, 20, 25, \dots, a_{sm}(p)$ When p = 10, (i. e.) p = 6k + 4, then $\left| \frac{p}{\gamma_{sm}(G)} \right| = 5$ if k = 1. When p = 15, (i. e.) p = 6k + 3, then $\left| \frac{p}{\gamma_{sm}(G)} \right| = 5$ if k = 2. When p = 20, (i. e.) p = 6k + 2, then $\left| \frac{p}{\gamma_{sm}(G)} \right| = 5$ if k = 3. When p = 25, (i. e.) p = 6k + 1, then $\left| \frac{p}{\gamma_{sm}(G)} \right| = 5$ if k = 4. Therefore the split majority domatic partitions of $V(P_n)$ are $D_{1} = \left\{ u_{1}, u_{6}, \dots, u_{\left(\gamma_{sm(G)}-1\right) \left\lfloor \frac{p}{\gamma_{sm(G)}} \right\rfloor + 1} \right\}, D_{2} = \left\{ u_{2}, u_{7}, \dots, u_{\left(\gamma_{sm(G)}-1\right) \left\lfloor \frac{p}{\gamma_{sm(G)}} \right\rfloor + 2} \right\},$
$$\begin{split} D_{3} &= \left\{ u_{3}, u_{8}, \dots, u_{\left(\gamma_{sm(G)}-1\right) \left\lfloor \frac{p}{\gamma_{sm}(G)} \right\rfloor + 3} \right\}, \ D_{4} = \left\{ u_{4}, u_{9}, \dots, u_{\left(\gamma_{sm(G)}-1\right) \left\lfloor \frac{p}{\gamma_{sm}(G)} \right\rfloor + 4} \right\}, \\ D_{5} &= \left\{ u_{5}, u_{10}, \dots, u_{\left(\gamma_{sm(G)}-1\right) \left\lfloor \frac{p}{\gamma_{sm}(G)} \right\rfloor + 5} \right\}, \ \text{In all cases, } \frac{p}{\gamma_{sm}(G)} = 5 = d_{sm}\left(P_{p}\right) \text{ if } p = 8,10,15,20,25. \end{split}$$
Conversely let $d_{sm}(P_p) = \frac{p}{\gamma_{sm}(G)}$. Suppose $p \equiv 0 \pmod{6}$. Then $d_{sm}(P_p) =$ 5. But $d_{sm}(P_p) = \frac{p}{\gamma_{sm}(G)}$ implies that $d_{sm}(P_p) = 6$ which is a contradic-tion. Hence $p \neq 0 \pmod{6}$. Suppose $p \equiv 1, 2, 3, 4, 5 \pmod{6}$. Let $p = 6k + 1, 1 \le l \le 5$. Then $\gamma_{sm}(G) = \left[\frac{p}{6}\right] = k + 1$ and $\frac{p}{\gamma_{sm}(G)} = \frac{6k+1}{k+1} = m(say), m \neq 0. \text{ It implies that } k = \frac{m-1}{6-m}. \text{ If } m-1 > 0 \text{ and } 6-m > 0 \text{ then } l < m < 6.$ Take l = 1. Then m = 2,3,4,5. $k = \frac{m-1}{6-m}$. Then $k = \begin{cases} \frac{1}{4} if \ m = 2 \\ \frac{2}{3} if \ m = 3 \\ \frac{3}{2} if \ m = 4 \end{cases}$ Hence k = 4 is an integer if l = 1. Therefore for k = 4 and l = 1 implies p = 6k + 1 = 25. In a similar way, take

Therefore k = 4 is an integer if l = 1. Therefore for k = 4 and l = 1 implies p = 6k + 1 = 25. In a similar way, take l = 2. Then $m = 3,4,5 \cdot k = \frac{m-1}{6-m} = 1$ is an integer if m = 4 and k = 3 if m = 5. Therefore for k = 1 and l = 2 implies p = 6k + 1 = 8 and for k = 3 and l = 2 implies p = 6k + 1 = 20. Take l = 3. Then $m = 4,5 \cdot k = \frac{m-1}{6-m} = 2$ is an integer if m = 5. For k = 2 and l = 3 implies p = 6k + 1 = 15. Take l = 4. Then $m = 5 \cdot k = \frac{m-1}{6-m} = 1$ is an integer if m = 5. For k = 1 and l = 4 implies p = 6k + 1 = 10. Take l = 5. Then m = 5. Then there is no integer value for k. Hence, p = 8,10,15,20,25 if $d_{sm}(P_p) = \frac{p}{\gamma_{sm}(G)}$.

Theorem 3.7

Let $G = C_p$ be a cycle on p vertices, p > 4. Then $d_{sm}(C_p) = \frac{p}{\gamma_{sm}(G)}$ if and only if p = 8,10,15,20,25. or $p \equiv 0 \pmod{6}$.

Proof

41145

Let $C_p = \{u_1, u_2, \dots, u_p\}$ be a cycle on p vertices. Then $\gamma_{sm}(C_p) = \left[\frac{p}{6}\right]$. Suppose p = 8,10,15,20,25, then $\gamma_{sm}(G) = 2,2,3,4,5$ and suppose $p \equiv 0 \pmod{6}$ then $\gamma_{sm}(C_p) = \frac{6k}{6} = k$. It is clear that $\gamma_{sm}(G)$ divides p. When $p = 8, d_{sm}(P_8) = 4$. When p = 6k + 2, then $\frac{p}{\gamma_{sm}(G)} = 4$. If k = 1. Hence $d_{sm}(C_8) = 4 = \frac{p}{\gamma_{sm}(G)}$. Therefore a split majority domatic partition of C_8 is

 $\{\{u_1, u_5\}, \{u_2, u_6\}, \{u_3, u_7\}, \{u_4, u_8\}\}$ Let p = 10,15,20,25. Then $d_{sm}(C_p) = 5$. Let p = 10, 15, 20, 25. Then $a_{sm}(C_p) - 5$. When p = 10, (i. e.) p = 6k + 4, then $\left| \frac{p}{\gamma_{sm}(G)} \right| = 5$ if k = 1. When p = 15, (i. e.) p = 6k + 3, then $\left| \frac{p}{\gamma_{sm}(G)} \right| = 5$ if k = 2. When p = 20, (i. e.) p = 6k + 2, then $\left| \frac{p}{\gamma_{sm}(G)} \right| = 5$ if k = 3. When p = 25, (i. e.) p = 6k + 1, then $\left| \frac{p}{\gamma_{sm}(G)} \right| = 5$ if k = 4. Therefore the split majority domatic partitions of $V(C_p)$ are

$$D_{1} = \left\{ u_{1}, u_{6}, \dots, u_{\left(\gamma_{sm(G)}-1\right)\left\lfloor\frac{p}{\gamma_{sm}(G)}\right\rfloor + 1} \right\}, D_{2} = \left\{ u_{2}, u_{7}, \dots, u_{\left(\gamma_{sm(G)}-1\right)\left\lfloor\frac{p}{\gamma_{sm}(G)}\right\rfloor + 2} \right\}, D_{3} = \left\{ u_{3}, u_{8}, \dots, u_{\left(\gamma_{sm(G)}-1\right)\left\lfloor\frac{p}{\gamma_{sm}(G)}\right\rfloor + 3} \right\}, D_{4} = \left\{ u_{4}, u_{9}, \dots, u_{\left(\gamma_{sm(G)}-1\right)\left\lfloor\frac{p}{\gamma_{sm}(G)}\right\rfloor + 4} \right\},$$

 $D_{5} = \left\{ u_{5}, u_{10}, \dots, u_{\left(\gamma_{sm}(G)-1\right) \left\lfloor \frac{p}{\gamma_{sm}(G)} \right\rfloor + 5} \right\}.$ In all cases, $\frac{p}{\gamma_{sm}(G)} = 5 = d_{sm}(C_{p})$ if p = 8,10,15,20,25. Let $p \equiv 0 \pmod{6}$. Then $d_{sm}(C_{p}) = 6$. Let p = 6k. Then $\frac{p}{\gamma_{sm}(G)} = 6$ since $\gamma_{sm}(G) = \frac{p}{6} = k$. Therefore $\{D_{1}, D_{2}, D_{3}, D_{4}, D_{5}, D_{6}\}$ are the split majority domatic partitions of V(G) Hence $\frac{p}{\gamma_{sm}(G)} = 6 = d_{sm}(C_{p})$ if $p \equiv 0 \pmod{6}$. Conversely, let $d_{sm}(C_{p}) = -\frac{p}{2}$. Therefore

Conversely, let $d_{sm}(C_p) = \frac{p}{\gamma_{sm}(G)} = \frac{p}{\left\lceil \frac{p}{6} \right\rceil}$. Therefore $p = d_{sm}(C_p) \left\lceil \frac{p}{6} \right\rceil$. (i.e.) $\left\lceil \frac{p}{6} \right\rceil$ divides p. If $p \equiv 0 \pmod{6}$, then $p = 6k \text{ and } \left[\frac{p}{6}\right] = k.$ Thus $\left[\frac{p}{6}\right]$ divides p.

Suppose p = 6k + 1, $i \le l \le 5$. Applying the same argument in the converse part of the theorem, we obtain the values as p = 8,10,15,20,25.

Next, We discuss the split majority domatic number for complement of a graph G and Nordhaus-Gauddum type results.

Proposition 3.8

If G has a full degree vertex and all other vertices are of degree less than $\left[\frac{p}{2}\right]$ then $d_{sm}(\bar{G}) = p - 1$.

Proof

Suppose G has a full degree vertex and all other vertices are of degree less than p. Then G has an isolate and all other vertices are of degree greater than or equal to $\left[\frac{p}{r}2\right]$.

Then every vertex except the isolate constitutes a majority dominating set of \overline{G} . Since \overline{G} has an isolate v, every majority dominating set of \overline{G} is split majority dominating set of \overline{G} . Thus $d_{sm} = p - 1$.

Theorem 3.9

For any graph G, $d_{sm}(G) + d_{sm}(\overline{G}) \le p + 2$ and $d_{sm}(G) \cdot d_{sm}(\overline{G}) \le 2p$. Proof

If G has a full degree vertex v, then $d_{sm}(G) = 1$ and \overline{G} has an isolate v. Suppose $\delta(G) \ge \left\lfloor \frac{p}{2} \right\rfloor - 1$. Then there exists at least one vertex v in \overline{G} such that $d(v) < \left[\frac{p}{2}\right] - 1$. In this case, there exists a minimal split majority dominating set of \overline{G} with cardinality greater than or equal to two. Therefore $d_{sm}(\bar{G}) \leq p-1$ and $d_{sm}(G) + d_{sm}(\bar{G}) \leq p$. suppose G is a complete bipartite graph with m = n. Then \bar{G} has two components and each vertex v of \bar{G} constitutes a split majority dominating set of \bar{G} . Therefore $d_{sm}(\bar{G}) = p$ and d - sm(G) = 2. In this case, $d - sm(G) + d_{sm}(\bar{G}) \le p + 2$. We prove the another result in the similar fashion.

References

[1] Cockayne, E. J. and Hedetniemi, S. J., Towards a theory of domination in graphs, Networks 7 (1977), 247 - 261.9

[3] Joseline Manora, J.and Swaminathan, V. - Majority Dominating Sets - published in J A R J: vol. 3, No. 2, (75 - 82) 2006.

[5] Joseline Manora, J and Veeramanikandan, S. - The split majority domination number of a graph-Annals of Pure and Applied Mathematics, vol.9, No.1, 2015, 13-22.

^[2] Haynes.T.W., Hedetniemi S.T., Peter J. Slater - Fundamentals of Domination in Graphs, 1998 by Marcel Dekker, Inc., New york.

^[4] Joseline Manora, J.and Swaminathan, V. - Majority Domatic number of a Graph - published in GJPAM: vol. 6, No. 3, (275 -283) 2010.

41147 J.Joseline Manora and S.Veeramanikandan/ Elixir Appl. Math. 95 (2016) 41143-41147

[6] Joseline Manora, J and Veeramanikandan, S. - Some Results on Split Majority Dominating Set of a Graph-IJAER, Vol.10, No.15, 2015, 940-944.

[7] Kulli. V.R: Theory of Domination in Graphs Vishwa International Publications, ISBN: 81-900205-1-X (2010).

[8] Kulli, V.R and Janakiram, B - The split domination number of a graph-Graph Theory. Notes of New York., XXII, 16-19, 1997.