Available online at www.elixirpublishers.com (Elixir International Journal)
Applied Mathematics
Elixir Appl. Math. 95 (2016) 41143-41147

The Split Majority Domatic Number of a Graph

J.Joseline Manora ${ }^{1}$ and S.Veeramanikandan ${ }^{2}$

Department of Mathematics, T.B.M.L. College, Porayar-609 307, India.

ARTICLE INFO

Article history:

Received: 25 April 2016;
Received in revised form: 17 June 2016;
Accepted: 22 June 2016;

Keywords

Set,
$\underline{\text { Split Majority Dominating set. }}$

Abstract

Let $G=(V, E)$ be any simple finite graph. A subset D of $V(G)$ is said to be Split Majority Dominating set of G if $\mid N[D] \| \geq\left\lceil\frac{p}{2}\right\rceil$ and the induced subgraph $\langle V-D\rangle$ is disconnected. A split majority dominating set D is said to be minimal if there exists a vertex v of V such that $\mathrm{D}-\{\mathrm{v}\}$ is not a split majority dominating set of G. The Split Majority Domatic Number denoted by $d_{s m}(G)$ is the maximum number of disjoint minimal split majority dominating sets obtained for a graph G. In this article, we have initiated the study of this concept.

Introduction

Let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ be any simple finit graph with $|V(G)|=p$ and $|E(G)|=q$. With usual notations, the degree of a vertex v, the maximum and the minimum degree of a graph G are denoted by $d(v), \Delta(G)$ and $\delta(G)$ respectively.

A set $D \subseteq V(G)$ is said to be a dominating set [2] of G if for every vertex v in V-D there exists atleast one vertex u in D such that u and v are adjacent in G. A Dominating set D is said to be minimal if for some vertex v of $G, D-\{v\}$ is not a dominating set. The minimum cardinality of a minimal dominating set is called the domination number of G and it is denoted by $\gamma(G)$.

A set $D \subseteq V(G)$ is said to be a majority dominating set [3] of G if atleast half of the vertices of G are either in D or adjacent to the vertices of D. i:e) $|N[D]| \geq\left\lceil\frac{y}{2}\right]$. A majority Dominating set D is said to be minimal if for some vertex v of G, $D-\{v\}$ is not a majority dominating set. The minimum cardinality of a minimal majority dominating set is called the ma-jority domination number of G and it is denoted by $\mathrm{M}(\mathrm{G})$.This parameter was defined by Swaminathan and Joseline Manora.

A Dominating set $D \subset \mathrm{~V}(G)$ is said to be a split dominating set[8] if the induced subgraph $\langle\mathrm{V}-\mathrm{D}\rangle$ is disconnected. with usual inferences, the minimum cardinality of minimal split dominating set is denoted by s (G).This parameter was intoduced by kulli and Janakiram.

A subset D of $V(G)$ is said to be Split Majority Dominating set[5] of G if $|N[D]| \geq\left[\frac{p}{2}\right]$ and the induced subgraph $\langle V-D\rangle$ is disconnected. As usual, the minimum cardinaliy of minimal split majority dominating set is called split majority domination number of a graph denoted by $\gamma_{G m}(G)$. This parameter was defined and studied by Joseline Manora and Veeramanikandan.

A partition Δ of its vertex set $\mathrm{V}(\mathrm{G})$ is called a domatic partition of G if each class of Δ is a dominating set in G. The maximum number of classes of a domatic partition of G is called the domatic number of G and is dentoed by $d(G)$. The domatic number was introduced by Cockayne and Hedetniemi. In a similar fashion, a majority domatic partition of a graph G was introduced and each class of it is a majority dominating set in G . The maximum number of classes of a majority domatic partition of G is called the majority domatic number [4] and is denoted by $d_{M}(G)$. This parameter was introduced by Swaminathan and Joseline Manora.

2 Split Majority Domatic Number of a Graph

In this section, we define Split Majority Domatic Number of a graph G and this number $d_{s m}(G)$ is determined for some families of graphs.

Definition 2.1

Let \Re be the family of all disjoint minimal split majority dominating sets of G. The split majority domatic number of a graph G is defined to be the maximum number of disjoint minimal split majority dominating sets of G and it is denoted by $d_{s m m}(G)$.

Remark 2.2

In this article, we consider only the family of disjoint minimal split majority dominating sets of G rather than the partition of vertices of G . The reason is that there are some vertices that are not the elements of any minimal split majority dominating set D of G since the definition of split majority dominating set is violated when these vertices are included in any set D .

E-mail address: joseline_manora@yahoo.co.in
$2.1 d_{s m}(G)$ for some families of graphs

1. For $G=\overline{K_{p}}$, a totally disconnected graph.
$\mathrm{d}_{\mathrm{sm}}\left(\overline{K_{p}}\right)=\left\{\begin{array}{l}1 \text { if } p \text { is odd } \\ 2 \text { if } p \text { is even }\end{array}\right.$
2. If G is a star $K_{1, p-1} p \geq 3$. Then $d_{\mathrm{dm}}(G)=1$.
3. Suppose G being double star $D_{\gamma, g} p=r+s+2$. Then $d_{\mathrm{gm}}(G)=2$.
4. For $G=C_{p} p \geq 3$. Then $d_{\operatorname{dm}}(G)=3$.
5. If G is a complete biparpite graph $K_{m, n}, m \leq n, d_{m m}(G)=2$.
6. Let G be a petersen graph. Then $d_{\mathrm{gm}}(G)=2$.
7. Suppose G is a fan $F_{p}, p \geq 4$. Then $d_{g m}(G)=1$.

3 Main Results on $d_{s m}(G)$.
Theorem 3.1
If G has a full degree vertex, $d_{s m}(G)=1$.
Proof
Suppose G has a full degree vertex v . If v is a cut vertex then $D=\{v\}$ is a split majority dominating set of G . Assume that there exists another split majority dominating set S of G. Then S must contain v. If not, $\langle V-S\rangle$ is connected, a contradiction. Therefore $d_{s m}(G)=1$. if v is not a cut vertex, $\gamma_{s m}(G) \geq 2$ and v is in every split majority dominating set of G. Applying the same argument as above, we get a contradiction. Therefore $\mathrm{d}_{\mathrm{sm}}(\mathrm{G})=1$.

Theorem 3.2

If every vertex of a graph is such that $d(v)>\left\lceil\frac{p}{2}\right\rceil$ then $d_{g m}(G)=1$.

Proof

Suppose $\delta(G)>\left\lceil\frac{p}{2}\right\rceil$. Then every vertex is a majority dominating vertex. Let D be a minimum split majority dominating set of G. Then $\gamma_{s m}(G) \geq \delta(G)$. That is $\|D\|>\left\lceil\frac{\gamma}{2}\right\rceil$. This implies that D contains atleast one vertex more than $\left\lceil\frac{\rho}{2}\right\rceil$ vertices. Then
$|V-D|<\left\lceil\frac{p}{2}\right\rceil$ implying that V-D is not a majority dominating set. Therefore there exists only one split majority dominating set fo G and hence $d_{s m}(G)=1$.

Theorem 3.3

For any graph G, $1 \leq d_{s m}(G) \leq\left[\left.\frac{p}{2}\right|^{+1}\right.$

Proof

If G has a full degree vertex then the lower bound is attained. When $\delta(G)>\left[\frac{p}{2}\right]$ then $d_{s m}(G)=1$. Consider a minimally connected graph G, namely a tree T. If T has exactly two end vertices then it is a path P_{p}. When $p \leq 6$, then every intermediate vertex is a split majority dominating set of G. Therefore $d_{s m}(G)=4 \leq\left[\frac{p}{2}+1\right.$. Suppose $\mathrm{p}>7$. Then $\gamma_{\mathrm{gm}}(G) \geq 2$ but $d_{s m}(G)<\left\lceil\frac{p}{2}\right\rceil$ then only intermediate vertices constitute split majority dominating sets of G and $d_{s m}(G)<\left\lceil\frac{p}{[} 2\right\rceil$. Thus $1 \leq d_{s m}(G) \leq\left[\frac{p}{2}+1\right.$.

Proposition 3.4

If G is any graph with $\operatorname{diam}(G)=2$ then $d_{s m}(G)=1$.
Proof
Suppose G is a graph with $\operatorname{diam}(G)=2$. Let v be the center of the graph G . If D is the minimal split majority dominating set of a graph G and containing the vertex v then no other minimal split majority dominating set is obtained without v . Therefore there exists only one split majority dominating set of G . Thus $d_{s m}(G)=1$.

Proposition 3.5

For a tree T with $\operatorname{diam}(T)=3, d_{s m}(G)=2$.

Proof

Suppose T is a tree with $\operatorname{diam}(T)=3$. Since every tree has atleast two end vertices. If $\operatorname{diam}(T)=3$ then T is a double star $D_{r, s}$ or P_{4} or pendants adjacent to intermediate vertices. If T is $D_{r, s}$ or $\mathrm{P}_{4}, d_{s m}(G)=2$. If pendants are adjacent to intermediate vertices, $d_{g m}(G)=2$.

Theorem 3.6

Let $\mathrm{G}=\mathrm{P}_{\mathrm{p}}$ be a path on p vertices, $\mathrm{p}>4, d_{\mathrm{sm}}\left(P_{p}\right)=\frac{p}{\gamma_{\mathrm{gm}}(G)}$ if and only if $p=8,10,15,20,25 .+$
Proof
Let $P_{p}=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ be a path on p vertices and $\gamma_{\gamma_{m}}\left(P_{p}\right)=\left\lceil\frac{p}{6}\right\rceil$.

Suppose $p=8,10,15,20,25$. Then $\gamma_{\mathrm{sm}}(G)=2,2,3,4,5$. It is clear that $\gamma_{\mathrm{sm}}(G)$ divides p . When $p=8, d_{s m}\left(P_{8}\right)=4$. When $\mathrm{p}=6 \mathrm{k}+2$. Then $\frac{p}{\gamma_{\mathrm{sm}}(G)}=4$ if $\mathrm{k}=1$. Hence $d_{M}\left(P_{8}\right)=4=\frac{p}{\gamma_{\mathrm{sm}}(G)}$. Therefore split majority domatic partition of P_{8} is $\left\{\left\{u_{1}, u_{5}\right\},\left\{u_{2}, u_{6}\right\},\left\{u_{3}, u_{7}\right\},\left\{u_{4}, u_{8}\right\}\right\}$.
Let $p=10,15,20,25$.Then $d_{s m}\left(P_{p}\right)=5$.
When $\mathrm{p}=10$, (i. e.) $p=6 k+4$, then $\left\lfloor\frac{p}{\gamma_{s m}(G)}\right\rfloor=5$ if $\mathrm{k}=1$.
When $\mathrm{p}=15$, (i. e.) $p=6 k+3$, then $\left\lfloor\frac{p}{\gamma_{\mathrm{sm}}(G)}\right\rfloor=5$ if $\mathrm{k}=2$.
When $\mathrm{p}=20$, (i. e.) $p=6 k+2$, then $\left\lfloor\left.\frac{p}{\gamma_{G m}(G)} \right\rvert\,=5\right.$ if $\mathrm{k}=3$.
When $\mathrm{p}=25$, (i. e.) $p=6 k+1$, then $\left\lfloor\left.\frac{p}{\gamma_{\mathrm{sm}}(G)} \right\rvert\,=5\right.$ if $\mathrm{k}=4$.
Therefore the split majority domatic partitions of $V\left(P_{p}\right)$ are
$D_{1}=\left\{u_{1}, u_{6}, \ldots, u_{\left(y_{\mathrm{am}(G)}-1\right)}\left|\frac{p}{\gamma_{\mathrm{gm}}(G)}\right|+1\right\}, D_{2}=\left\{u_{2}, u_{7, \ldots,}, u_{\left(\gamma_{\mathrm{gm}(G)}-1\right)}\left|\frac{p}{\gamma_{\mathrm{sm}}(G)}\right|+2\right\}$
$\left.D_{3}=\left\{u_{3}, u_{8, \ldots,},\left.u_{\left(\gamma_{\mathrm{sm}(G)}-1\right)}\right|_{\gamma_{\mathrm{sm}}[G]} \mid+3\right\}, D_{4}=\left\{u_{4}, u_{9, \ldots,}, u_{\left(\gamma_{\mathrm{gm}(G)}-1\right)} \|_{\gamma \mathrm{sm}(\mathrm{P})}\right]+4\right\}$
$D_{5}=\left\{u_{5}, u_{10, \ldots,}, u_{\left(y_{\operatorname{sm}(G)}-1\right)}\left|\frac{p}{\gamma_{s m}(G)}\right|+5\right\} \quad$ In all cases, $\frac{p}{\gamma_{\operatorname{sm}}(G)}=5=d_{s m}\left(P_{p}\right)$ if $p=8,10,15,20,25$.
Conversely let $d_{s m}\left(P_{p}\right)=\frac{p}{\gamma_{\mathrm{sm}}(G)^{2}}$ Suppose $p \equiv 0(\bmod 6)$. Then $d_{s m}\left(P_{p}\right)=$
5. But $d_{s m}\left(P_{p}\right)=\frac{p}{y_{\mathrm{sm}}(G)^{x}}$ implies that $d_{s m}\left(P_{p}\right)=6$ which is a contradic-tion. Hence $p \neq 0$ (mod 6).

Suppose $p \equiv 1,2,3,4,5(\bmod 6)$. Let $p=6 k+1,1 \leq l \leq 5$. Then $\gamma_{s m}(G)=\left\lceil\frac{p}{6}\right\rceil=k+1$ and
$\frac{p}{y_{\mathrm{sm}}(G)}=\frac{6 k+1}{k+1}=m(s a y), m \neq 0$. It implies that $k=\frac{m-1}{6-m}$. If $m-1>0$ and $6-m>0$ then $l<m<6$.
Take $l=1$. Then $m=2,3,4,5 . k=\frac{m-1}{6-m}$. Then
$k=\left\{\begin{array}{l}\frac{1}{4} \text { if } m=2 \\ \frac{2}{3} \text { if } m=3 \\ \frac{3}{2} \text { if } m=4 \\ \text { if } m=5 .\end{array}\right.$
Hence $k=4$ is an integer if $l=1$. Therefore for $k=4$ and $l=1$ implies $p=6 k+1=25$. In a similar way, take $l=2$. Then $m=3,4,5 \cdot k=\frac{m-1}{6-m}=1$ is an integer if $m=4$ and $k=3$ if $m=5$. Therefore for $k=1$ and $l=2$ implies $p=6 k+1=8$ and for $k=3$ and $l=2$ implies $p=6 k+1=20$.
Take $l=3$. Then $m=4,5 \cdot k=\frac{m-1}{6-m}=2$ is an integer if $m=5$. For $k=2$ and $l=3$ implies $p=6 k+1=15$.
Take $l=4$. Then $m=5 \cdot k=\frac{m-1}{6-m}=1$ is an integer if $m=5$. For $k=1$ and $l=4$ implies $p=6 k+1=10$.
Take $l=5$. Then $m=5$. Then there is no integer value for k. Hence, $p=8,10,15,20,25$ if $d_{s m}\left(P_{p}\right)=\frac{p}{\gamma_{\mathrm{sm}}(G)}$.

Theorem 3.7

Let $G=C_{p}$ be a cycle on p vertices, $\mathrm{p}>4$. Then $d_{s m}\left(C_{p}\right)=\frac{p}{\gamma_{s m}(G)}$ if and only if $p=8,10,15,20,25$, or $p \equiv 0(\bmod 6)$.

Proof

Let $C_{p}=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ be a cycle on p vertices. Then $\gamma_{s m}\left(C_{p}\right)=\left\lceil\frac{p}{6}\right\rceil$. Suppose $p=8,10,15,20,25$, then $\gamma_{s m}(G)=2,2,3,4,5$ and suppose $p \equiv 0(\bmod 6)$ then $\gamma_{s m}\left(C_{p}\right)=\frac{6 k}{6}=k$. It is clear that $\gamma_{S m}(G)$ divides p. When $p=8, d_{s m}\left(P_{8}\right)=4$. When $p=6 k+2$, then $\frac{p}{\gamma_{\mathrm{sm}}(G)}=4$.
If $k=1$. Hence $d_{s m}\left(C_{8}\right)=4=\frac{p}{\gamma_{\mathrm{gm}}(G)}$. Therefore a split majority domatic partition of C_{8} is
$\left\{\left\{u_{1}, u_{5}\right\},\left\{u_{2}, u_{6}\right\},\left\{u_{3}, u_{7}\right\},\left\{u_{4}, u_{8}\right\}\right\}$.
Let $p=10,15,20,25$. Then $d_{s m}\left(C_{p}\right)=5$.
When $p=10$, (i. e.) $p=6 k+4$, then $\left\lfloor\frac{p}{\gamma_{s m}(G)}\right\rfloor=5^{\text {if } k=1}$.
When $p=15$, (i. e.) $p=6 k+3$, then $\left[\frac{p}{\gamma_{s m}(G)}\right]=5^{\text {if } k=2 \text {. }}$
When $p=20$, (i. e.) $p=6 k+2$, then $\left[\left.\frac{p}{\gamma_{\mathrm{gm}}(G)} \right\rvert\,=5\right.$ if $k=3$.
When $p=25$, (i. e.) $p=6 k+1$, then $\left[\frac{p}{\gamma_{\mathrm{gm}}(G)}\right]=5$ if $k=4$. Therefore the split majority domatic partitions of $V\left(C_{p}\right)$ are
$D_{1}=\left\{u_{1}, u_{G, \ldots,}, u_{\left(\gamma_{\mathrm{sm}(G)}-1\right)}\left|\frac{p}{\gamma_{\mathrm{Gm}}(G)}\right|+1\right\}, D_{2}=\left\{u_{2}, u_{7, \ldots,}, u_{\left(\gamma_{\mathrm{sm}(G)}-1\right)}\left|\frac{p}{\gamma_{\mathrm{Gm}}(G)}\right|+2\right\}$
$D_{3}=\left\{u_{3}, u_{8, \ldots,}, u_{\left(y_{\mathrm{sm}(G)}-1\right)}\left|\frac{p}{\gamma_{\mathrm{gm}}(G)}\right|+3\right\}, D_{4}=\left\{u_{4,}, u_{9, \ldots,} u_{\left(\gamma_{\mathrm{sm}(G)}-1\right)} \|_{\gamma_{\mathrm{sm}}[G]} \mid+4\right\}$
$D_{5}=\left\{u_{5}, u_{10, \ldots,} u_{\left(\gamma_{\mathrm{gm}(G)}-1\right)}\left|\frac{p}{\gamma_{\mathrm{gm}}(G)}\right|+5\right\}$.
In all cases, $\frac{p}{\gamma_{\mathrm{sm}}(G)}=5=d_{s m}\left(C_{p}\right)$ if $p=8,10,15,20,25$. Let $p \equiv 0(\bmod 6)$. Then $d_{s m}\left(C_{p}\right)=6$. Let $p=6 k$,
Then $\frac{p}{\gamma_{\mathrm{sm}}(G)}=6$ since $\gamma_{s m}(G)=\frac{p}{6}=k_{\text {. }}$. Therefore $\left\{D_{1}, D_{2}, D_{3}, D_{4}, D_{5}, D_{6}\right\}$ are the split majority domatic partitions of
$\mathrm{V}(\mathrm{G})$ Hence $\frac{p}{\gamma_{\mathrm{sm}}(G)}=6=d_{s m}\left(C_{p}\right)$ if $p \equiv 0(\mathrm{mod} 6)$.
Conversely, let $d_{s m}\left(C_{p}\right)=\frac{p}{\gamma_{G m}(G)}=\frac{p}{\left\lceil\frac{Y}{6}\right\rceil^{*}}$ Therefore $p=d_{s m}\left(C_{p}\right)\left\lceil\frac{p}{6}\right\rceil$. (i.e.) $\left\lceil\frac{p}{6}\right\rceil$ divides p. If $p \equiv 0(m o d 6)$, then
$p=6 k$ and $\left[\frac{y}{6}\right]=k$. Thus $\left[\frac{y}{6}\right\rceil$ divides p.
Suppose $p=6 k+1, i \leq l \leq 5$. Applying the same argument in the converse part of the theorem, we obtain the values as $p=8,10,15,20,25$.

Next, We discuss the split majority domatic number for complement of a graph G and Nordhaus-Gauddum type results.

Proposition 3.8

If G has a full degree vertex and all other vertices are of degree less than $\left[\frac{p}{2}\right\rceil$ then $d_{s m}(\bar{G})=p-1$.

Proof

Suppose G has a full degree vertex and all other vertices are of degree less than $\left[\frac{9}{2}\right.$. Then G has an isolate and all other vertices are of degree greater than or equal to $\left[\frac{p}{[} 2\right]$.
Then every vertex except the isolate constitutes a majority dominating set of \bar{G}. Since \bar{G} has an isolate v, every majority dominating set of \bar{G} is split majority dominating set of \bar{G}. Thus $d_{s m}=p-1$.

Theorem 3.9

For any graph $G, d_{s m}(G)+d_{s m}(\bar{G}) \leq p+2$ and $d_{s m}(G) \cdot d_{s m}(\bar{G}) \leq 2 p$.

Proof

If G has a full degree vertex v, then $d_{s m}(G)=1$ and \bar{G} has an isolate v. Suppose $\delta(G) \geq\left\lceil\frac{p}{2}\right\rceil-1$. Then there exists atleast one vertex v in \bar{G} such that $d(v)<\left\lceil\frac{p}{2}\right\rceil-1$. In this case, there exists a minimal split majority dominating set of \bar{G} with cardinality greater than or equal to two. Therefore $d_{s m}(\bar{G}) \leq p-1$ and $d_{s m}(G)+d_{s m}(\bar{G}) \leq p$. suppose G is a complete bipartite graph with $\mathrm{m}=\mathrm{n}$. Then \bar{G} has two components and each vertex v of \bar{G} constitutes a split majority dominating set of \bar{G}. Therefore $d_{s m}(\bar{G})=p$ and $d-\operatorname{sm}(G)=2$. In this case, $d-s m(G)+d_{s m}(\bar{G}) \leq p+2$. We prove the another result in the similar fashion.

References

[1] Cockayne, E. J. and Hedetniemi, S. J., Towards a theory of domination in graphs, Networks 7 (1977), 247-261.9
[2] Haynes.T.W., Hedetniemi S.T, Peter J. Slater - Fundamentals of Domination in Graphs, 1998 by Marcel Dekker, Inc., New york.
[3] Joseline Manora, J.and Swaminathan, V. - Majority Dominating Sets - published in J A R J: vol. 3, No. 2, (75-82) 2006.
[4] Joseline Manora, J.and Swaminathan, V. - Majority Domatic number of a Graph - published in GJPAM: vol. 6, No. 3, (275283) 2010.
[5] Joseline Manora, J and Veeramanikandan, S. - The split majority domination number of a graph-Annals of Pure and Applied Mathematics, vol.9,No.1, 2015, 13-22.
[6] Joseline Manora, J and Veeramanikandan, S. - Some Results on Split Majority Dominating Set of a Graph-IJAER, Vol.10, No.15, 2015, 940-944.
[7] Kulli. V.R: Theory of Domination in Graphs Vishwa International Publications, ISBN: 81-900205-1-X (2010).
[8] Kulli, V.R and Janakiram, B -The split domination number of a graph-Graph Theory. Notes of New York., XXII, 16-19, 1997.

