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1. Introduction
The concept of fuzzy set theory was first introduced by Zadeh [10] in 1965. The soft set theory was introduced by

Molodostov [6] in 1999 using parameters. The combination of fuzzy set theory and soft set theory led Maji etal., [4] in 2001 to
introduce fuzzy soft set theory. In [8], a new notion for fuzzy soft norm and fuzzy soft metric are defined and using the notion
developed, fuzzy soft contraction, weakly compatible, S-contraction, R -weakly commuting and occasionally weakly commuting

are defined in this paper. Some fixed point theorems are proved relating to these concepts.

2. Preliminaries
Definition 2.1
Let X by a vector space over a field K(K=R) and the parameter set E be the real number set R . Let (F,E) be asoft

set over X. The soft set (F,E) is said to be a soft vector and denoted by % if there is exactly one e e E, such that F(e)={x}
for some xe X and F(e')=¢, V&' eE/{e}.
The set of all soft vectors over X will be denoted by SV()~<) . The set SV()~<) is called a soft vector space.
Definition 2.2
Let SV()~() be a soft vector space. Then a mapping || . | : SV()~() — R (E) is said to be a soft normon SV(X) |
satisfies the following conditions:
1) |%]20 forall SV(X) and
IR0 < 5% ~0o
2) |F%[ =|F[%| forall %, ESV(X) forevery soft scalar
3) %+ Vel = [Rel+15e ] forall %5 ESV(X)
The soft vector space SV/(X) with a softnorm | . | on X is said to be a soft normed linear space and is denoted by (X[ . ).

Definition 2.3
Let X be a linear space over the field F (real or complex) and * is a continuous t-norm. A fuzzy subset N on XxR , R -
set of all real numbers is called a fuzzy norm on X if and only if for x,ye Xand ceF

1) VteR with t<0,N(xt)=0
2) VteR with t>0,N(xt)=1if and only if x=0
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3) VteR with t>O,N(cx,t)=N(x,|t—|] if c20
c

4) Vs, teR, xyeX;N(x+y,t+s)>N(xt)*N(y,s)

5) N(x,.) is a continuous nondecreasing function of R and lim N(x,t):l
X—0

The triplet (X, N,*) will be referred to as a fuzzy normed linear space.

3. Fuzzy soft normed linear space
Definition 3.1

Let X be an absolute soft linear space over the scalar field K. Suppose * is a continuous t-norm, ]R’\(A*) is the set of all

nonnegative soft real numbers and SSP(X) denote the set of all soft points on X . A fuzzy subset T on SSP( X) x R( A*) is
called a fuzzy soft norm on X if and only if for %, Ve éSSP(f() and k EK (where k is a soft scalar) the following

conditions hold
1) F(xe, ) ovi eR(A*) with £<0

2) r(ie,f)=1vfé1&(A*) with £ 3 0if and only if % =0y
J if IZ;tf)VféR(A*), £30

8 T(%® % {08)5 (%, )*T (%), V8T ER(A"), %, Jer P (X)

5 T(%e,.) is acontinuous nondecreasing function of R(A*) and lim I'(%,{) =1

[l
The triplet ()~(F*) will be referred to as a fuzzy soft normed linear space.

Definition 3.2
Let (5(1“*) be a fuzzy soft normed linear space and £ S0 be a soft real number. We define an open ball, a closed ball

and a sphere with centre at %_and radius a as follows
B()"(el,a,f):{y &SSP(X): (% —Ye,.T) 51~ a}
E(xel,a,f):{yez éSSP()“() T(%, — e, )51~ }
S(%, @) ={¥e, 2SSP(X): (%, - ~1-af

SFS(B(Xel,a,f)), SFS(E(Xel,a,t)) and SFS(S()?el,a,f)) are called a fuzzy soft open ball, a fuzzy soft closed ball and a

fuzzy soft sphere respectively with centre %e at and radius « .
Definition 3.3
A mapping A:SSP(X)xSSP(X)xR(A*)—>[0,1] is said to be a fuzzy soft metric on the soft set X if A satisfies the

following conditions
1) A% Je,.f)=0, forall {20
2)  A(%,Ye,.f)=1, forall {50 ifand onlyif %, =7,
A%, 9o, €)= A(5e, %o, )
4 A(Xel'zf: )EA(Xe1 Ve, )*A(ye 1 Ze, )forall t,§30
5) A(Xelyyezy-)i(O,oo)e[O,l] is continuous
The soft set X with a fuzzy soft metric A is called a fuzzy soft metric space and denoted by (>~(,A, *)

'_"l

3)
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Definition 3.4

Let be a sequence {)”(2]} of soft vectors in a fuzzy soft normed linear space (5(1“*) . Then the sequence converges to )?g
]

with respect to fuzzy soft norm [ if F(ng —ng ,f)él—a for every n>n, and «<(0,1] where n, is a positive integer

and £30.

Or
lim F()”(Q_ —Xg_,f)zl, as f >
n—oo J J

Similarly if nIim A(f(gj ,xgj ,f):l, as £ — oo then {xgj} is a convergent sequence in fuzzy soft metric space (>~(,A, *)
—>00
Definition 3.5

A sequence {zg } in a fuzzy soft normed linear space ()N(,F, *) is said to be a Cauchy sequence with respect to the fuzzy soft
]

norm T if F()”(QV —)”(Q,f)él—aforevery n,m>ng and & (0,1] where ng is a positive integerand £ 50 .
J ]
Or
lim 1“()”(2_ _xg"_,f)=1, as f — o
n,m—oo J J

Similarly if n"_inooA()N(gj ,ng ’f) =1 as T — 00 ey {ng} is a Cauchy sequence in fuzzy soft metric space(X’Av*) .
Definition 3.6

Let SSP()~() and SSP(\?) be set of all soft points on soft normed linear spaces X and Y respectively also let E and E' be
the corresponding parameter sets. The map from the soft point%, on X to the soft pointT()Ze) on Y is denoted as
T:SSP(X)—>SSP(Y).
Definition 3.7

Let ()N(,l", *) be a fuzzy soft normed linear space. B()?el,a,f):{yez éSSP(f():F()?el —yez,f)il—a} is said to be a fuzzy

soft closed ball centered at e, of radius o with respect to T if and only if any sequence {Y(en} in E()?el,a,f) converges to
e, €B(%, o).
Definition 3.8

Let ()~(,F, *) be a fuzzy soft normed linear space. The mapping T : SSP(X) —>SSP(5() is said to be fuzzy soft contraction if
there exists ¢ (0,1] such that T satisfies cI'(T (%), T(¥e').f)2T(%e, e'. ).
Definition 3.9

Let ()~(,A, *) be a fuzzy soft metric space and T,S:SSP()~() —>SSP()~() . Themap T is called S—contraction if there exists
a €(0,1] such that A(T(%), T(Ve').f) £ A(S(%e ). S(Fer ). T) forall %, Jer €SSP(X) holds.
Definition 3.10

Let T and Sbe self mappings on SSP(X). If T(%)=S(% )= for some %, in SSP(X), then X is called coincidence

point of and W' is called point of coincidence of T and S.
Definition 3.11
A pair of maps{T,S} is called weakly compatible pair if they commute at coincidence point

T(%)=S(%) = TS(%)=ST(%).
Definition 3.12
A pair of self mappings {T,S} on SSP( 5() of a fuzzy soft metric space ()~(,A, *) is said to be R-weakly commuting if there

exists some R >0 such that A(TS(%),ST(%).{) > A(T(%).S(%). &)

A(T(5) T3 024(T5) 05 )
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4. Fixed Point Theorems on Fuzzy Soft Normed Linear Space
Theorem 4.1

Suppose (5(1"*) is a fuzzy Banach space. LetT:SSP(f()—>SSP()~() be a fuzzy soft contractive mapping on
B()?el,a,f)with contraction constant ¢ e(0,1] and cl“()?e,Tup(N ),f)él—a . Then there exists a sequence{xen} in SSP(X)

such thatl“(f(e,)?en ,f)él—a .

Proof
Assume

e, =T(>?eo)

e, =T(% ) =T(7(R,))=T*(%,)

e, =T(%,,)=T" (%)

By the given condition, for any point >”<eo éSSP(f()
cr(f(eo,T(zeo),f)él—a
l“(f(eo,T(Y(eo),f) él_?“
I (%, %, f)21-a @)
This implies

%e, €B(%, )

Vi

l-«a

ASSUTE %o, e, Ko, %o EB(%, a0 f)

To claim that %o éE(~ L f)
(5. 1) -er {5 75 )1
EF()?eO,Xel,f) Since T is afuzzy soft contraction map
S1-a By (1)
I (%, %, f)él_Taél—a
I(%, %, f)51-a @
o (%, %, t):cF(T(Xel) T()?ez),f)
ST(%, %, £
>l-a By (2)
T (%, %, f)él_T"‘él—a
I (%, %, f)>1-a
Similarly
(%, %, f)>1-a
r(xe e f)31-a

This shows Xe éﬁ(ieo,a,f) and this implies {)?en} converges to Xe .

Uniqueness of Xg is true directly from the prooflimit of a sequence in a fuzzy soft normed linear space if exists is unique.
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Theorem 4.2
Let (5(,1“, *) be a fuzzy soft normed linear space. Let A,B:SSP( ) SSP( ) be a self map satisfying the condition: there
exists a e (0,.1) such that T'(B(%q )-B(¥e, ) T)51-T=T(A(%q )-A(Te, ). 4f) 51~ ®

forall %, e, éSSP(f()and forall £30
Also A is a B- contraction. Then
1) Forany real number &> 0 there exists k, (¢)e N such that A(Y‘el)—)A(yez)

2) A and B have unique common fixed point.

Proof (1)

Choose f =1, for every ¢ <(0,1) there exists k, =k, (&) such that forall k >k, and forevery % , Ve, éSSP(f()
F(B()"(el)—B(yez),1)SO:>F(A(>?el)—A(yez),5)51—3 @)
It easy to show the same for f =1+ ¢ and for any real number &>0.

T(B(%, )-B(Ye, ) 1+2)51-(1+2) = T(A(%, )-A(%, ) A(1+2)) S1-2(1+¢) &)
Since A is a B- contraction

That is

T(A(%)-A(5e, )-£) 2o T(B(%, )-B(%, ) 1)
Since a (0,1], take o =1.
From (3)

T(A(%, )-A(Te, ) 2(1+2)) 2T (B(%, )~ B(Te, ). 2(1+2))

Therefore (3) implies
T(B(%,)-B(Te, ) 2(1+2)) ST (A(% )-A(Te, ), A(1+2)) S1-A(L+¢)
r(B(% )-B(%, ). A(1+2)|51-A(1+2)

Again by condition (1), the above implies

T(A(% )-A(%, ). 4 (1+2))51-2% (1+2) @)
As k—>o0

F(A(iel) A(e, ) e )51

Hence A( ) ( )

Proof (2)

Suppose Zej is a fixed point of A and Zek is a fixed pointof B, where Zej,Zek éSSP(f().

That is

A(Zej):iej and B(Z, ) =7 ©)
By condition (1)
F(B(Zej)—B(Zek),f)il—f:F(A(Ze_
r(B(2, )2, f)51-T =T (2
Using (4)

r(2e, ~A(%, ) 2% (1+2)) 51-2% (1+e)

F(Zej —A(Zek ),5)51—8 as k>0
This implies
A(Zek): Ze,
Hence by (5) the fixed points of Aand B are same.
Theorem 4.3
Let (5(1“*) be a complete fuzzy soft normed linear space and let T,S:SSP()?)—)SSP( ) be a pair of continuous self
mappings satisfying the following conditions
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F(T()”(e)—T(ye/),f)§1—1+1F(S(>”<e)—8(ye/),%) €
andtmr(T”(&_ )—S"()”(el_o),t”)zlas n— oo (3

forall %, e €SSP(X), {50 and 1€(0,1).

Then T and S have aunique common fixed point. Note that S is a fuzzy soft contraction mapping.
Proof

Fix %, &SSP(X)

o

o0
Such that choose {Xej —Tn(y‘e )}
n=1

Let m=n+1, where neN
By induction,
If n=1

r{ie, %, €)=r((5, )-7(%, )

:1-/1+/1r(>~<e e, tz)
21-A+A[1-2+ A(1-4) ]
=1-2+A(1-2)+ 22 (1-2)
T(%, %, /T3 1-2+2(1-2)+ 22 (1-2)
Similarly,
T(fe, %, f)31A+2(1-2)+ 22 (1-2) +. 4 2" (1-4)

:(1-,1)[1+1+12+...+/1"]

kel

=1-2"1 51 a5 now

lim F()"(e_ —%e. ,f):l as N—oo
t—o0 Im I

Hence {)?ej }is a Cauchy sequence.

Suppose Y(ej —>>?ej
By continuity of T
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T"% > T% =% {Since T is aself mapping}
o ] ]
Therefore %X, is a fixed pointof T .
J

Similarly for agiven X, &SSP(X), it is easy to prove that S" (ie ) converges to ¥
lo lo J
Now to prove that %, = Vo .
J J
Let H(T) be the setofall fixed points of T and H(S) be the set of all fixed points of S.

Since %, & H(T) and Ve, & H(S)
H(T)=¢ and H(S)=¢

Consider,
()‘(e )_ lim 1“(Tnxe —S'”)‘(e ,f)
-0 fo
-1 as nN—ow

r(xej e, ,t)_l

Xe, ~ Ve, =0

Xei - yel

This implies,
T and S have a unique common fixed point.
Theorem 4.4

Let (XA, *) be a complete fuzzy soft metric space and let A be a self mapping of SSP(X) also let S be a continuous self

mapping of SSP( ) Let the palr A S} be R—weakly commuting and

D S(%)=Al%)
2)  A(AR,ATe,of ) S 1| min{A(S%e, A, T), A (ST, AR, ), A (A%, A, )} ]
for all Xg, Ver eSSP( ) and for all £ >0 where r:[0,1]—[0,1] is a continuous function such that r(f)>f foreach 0<f <1

and r(f) 1for f=1.Then A and S have unique common fixed point in SSP( )
Proof

Define two sequences {)”(en} and {ye;} in SSP(X) as S%, =A%
Applying condition (2), we get

A(Axe2n+1 AXe qt>>r[mm{ (Sie2n+1'A)?e2n’f)’A(SXEZnA’AXeZml ) (Axe2n+1 AXe )}:|

A(ye Ve, ,qt)i [min{A(Vegnrye;n,f): (Ye Ve )A(Ve;nﬂaye;n,f)}]
_r[mm{l A(ye Vel ) (yem1 Ve f)}]
|: (ye2n+1’ye£n’f):|

>A(ye Ve, f)

2n+1

= v ’
2n yeZn

A(Se,,, Ve, - 0F ) 5%, e, )
This implies Yor =Yg forall n>0.
Hence {ye;n } is a constant sequence and therefore it is a Cauchy sequence in SSP()~<) .
By completeness of X, {ye;} converges to vej in S(Y(E).
Using condition (1), {yeh} also converges to \7ej in A()?E).
Given {A,S} is R-weakly commuting
A(ASXEZnH ’SAXEZnu ’f) > A(A)~(‘92n+1 ’Sie2n+1 ! %)
Since SXe,,.; TVes, + AReyyy = Yebna
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v r v U i S v ’ v U i
A(Ayezn ’Sy92n+1 1 ) 2 A(y62n+1 ! yeZn ! R)
On taking limit n—o ,we get
A(Avej S, ,f) -1
Avej :Svej

Now to show that Avej :SVeJ_ =V

€j
A(Asxem,Axezn,qf)ér[min{ ( %e, . A%, . f),A(SZXeZM,AS)?ezm,f),A(ASY(eZM,A)?em,f)”
A (AT Teg, ) = 1| min{ (e,  Teg, ). A(Ses, « ATes, ). AT e )}
As limit N — o
A(Avej,vej,qf)ér[min{ (5%, .%,.). (svej,Avej,f),A(Avej,vej,f)H
:r_min{A(Sv ©).A(S%, 5%, £) (svej,vej,f)”

- [ min{ s 5 ) 6{57, 5, )

A(svej,vej £ } [ ATe, T f} {since SV, =AY, }

A(ATe, %, aF ) 51 [ (Avej,Vej,f)]SA(AVej,Vej,f)
A(ATe, T, T)5 A AT, 7, T

This implies
A\7ej = \7e]_

-
I

Hence Vej is the common fixed pointof A and S.

Now to show that the uniqueness
Suppose there is another fixed point Zg, #Ve . Then
J

A(AT Az, )5 r[min {A(SVEJ_ AZg, )5 (ST, AT, . €), A (AT, AZ, t)ﬂ
A(ve Ze | qt)é [mln{A(}ej,Zek,f),A(”ej,”ej,f),A(~ej,~ek,f)}]
= min{
2 :[ A%, }
A(ve,ze qf) A9 f)

A(Vej e, ,qt)S A(VeJ e ,f)

Andso Ve =Z, which is a contradiction to our assumption.
J

A

<1

Vi

Therefore Vej =Zg .
Hence, A and S have unique common fixed pointin SSP(X).

Theorem 4.5
Let ()~(,A, *) be a complete fuzzy soft metric space and let A be a self mapping of SSP(X) also let S be a continuous self

mapping of SSP()~(). Let the pair {A,S} be R-weakly commuting and

D) S(%)=Al%)
) A(A% A¥e,[) S r[ min{A(S%e, AT, T), A(SRe, AR, T), A (A%, AT, T)} |
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for all %g,Je &SSP(X) and forall £ >0 where r:[0,1] —[0,1] is a continuous function such that r(f)>f foreach 0<f <1

and r(f)=1for f=1.Then A and S have unique common fixed pointin SSP(X).
Proof
Define two sequences

{%, | and {5 | in SSP(X) s S%, A%, = Te,
Applying condition (2)
(A%, A, [mln %o, A%, £).A(S%, A% T)A(SR, SR t)}}
[ min f) A(%e, 3¢, 0} |
RSO
Jrla (5,5, )], it A%, Ve;n’f)2A Ve, Ve, f)
r[A Ve, Ty, oE)] i A(ym Jer, . f)
1 (g (5, ) 0 (5., )3 {5 .

24(%,
( €ni’ ye ! ) |:A( eZn+1 )] > A<y92n+1’ ye;n 'f)

This implies A( Ve ~) A(ye Ve )Whlch is a contradiction.

IVt

(yezm,ye ) r{ min ye ,ye , ), (ye Ver

A(Ye/

2n+l 2n

Therefore A(yegm,ye;n, [ e, + Vel | ]> A(ye Ve, o ) 1)
(yem,ye , )> A(ye ye;H,f) which implies {A(ye;nﬂ,ye;n ,f), n> 0} is an increasing sequence of positive real numbers in

[0,1] and therefore tends to a limit | <1.

If 1<1then on taking limit n—oco in (1) I>r(l)>1, which is a contradiction.

Therefore |1 =1.

For every ne N, using analogous arguments we can show that {A(y V! ) n> O} is a sequence of positive real numbers

2n+2 2n+l

n [0,1] which tends to a limit 1=1.

2n-1

Therefore, for every ne N, A(ye Vel )>A(ye Ye! ~) and

lim A(ye ,ye ) las h—>ow,
t—w

Also forany integer m
A(ye;7ye;+m7f)§A(y Ve s m)*A(ye Ve, r;) ---*A(ye'aye;ma%)

n

As N—> o

lim A(e, er £)511%.51=1
oo

lim A(ye/,ye/ ,f):l
t—)OO n n+m
Hence {ye;} is a Cauchy sequence in SSP(X) and by completeness of X, {ye;} converges to {Vej} in S()"(e). Using condition

1) {ye;} also converges to {\78]} in A(%).
Given {A,S} is R-weakly commuting
A(AS%, , SA%, T)SA(A%, S, L)
Since S%, Ve A%, =Ve |

A(ATe, S%e,, €) 3 ATy, Ve,

On taking limit n— oo,

A(AT,, 87 T)5 A, 0, &) =1

A(Avej % ,f):l

AT =S
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To show that
AV =SV, =V
J J J

Suppose AV. #Vp ,thenthereexsts £ >0 such that A(Ave_ Ve ,f)%l
] ] ] )

A(ASKs, A% )3 r[min {A(s2 Ry A, ), A(5%%, | ASTe, | E),6(S%%, /5%, t)}]

A(ATe, e, ) 5 | min{A(%e,  Te, . £). A(STe,, ATe, ). (S, 5e, ) |

2n-1

As N — o
A(Av, % §)3 r[min{A(SVej e, €).A(STe, AT, ), A (ST, %, t)}]
Since
SVeJ :AVeJ
A(A\7e_ ,Ve_,f)ér[min{A(AVev,Vev,f),A(AVe_,Ave_,f),A(AVev,Vev,f)ﬂ
] ] J J ] ] J J
:r[min{A(Ave_ Ve ,f),l,A(AVeV o, f)ﬂ
] ] J J
A(Ave_ ,ve_,f)ér[A(Ave_ ,Ve_,f)}SA(AVeV,Ve_ ,f)
] J J J J J
This implies, A(Ave, Ve ,f)SA(A\?eV Ve ,f) which is a contradiction.
J J J J
Therefore, A(Ave_,ve_,f)zl and this implies AVy =V, .
J J J J

Hence ¥, is the common fixed pointof A and S.
]

To show that the uniqueness
Suppose there is another fixed point Zek #Vy . Then
J
A(AT, AZe, )2 r[min{A(sve,,Azek,f),A(sve AT £),A(ST% ,szek,f)}}
] J J J J
A(Ve, 26, T) 5 r[min{A(Vej o, T).A(Ve, Ve, T) A (Ve 2, f)}}

[ min{a (3, 20, €)1 2]

A(Vej,zek,t) >A(\79j,Zek,t)
Andso Ve =Z, which is a contradiction to our assumption.
J
Therefore Vej =7 .
Hence A and S have unique common fixed pointin SSP(X).

Theorem 4.6
Let (X,A, *) be a complete fuzzy soft metric space and let A, B,S, T be self mappings of SSP()?). Let the pairs {A,S} and

{B,T}be owc satisfying the condition if there exists ¢ <(0,1) and &, #>0, a+f>1 such that for all %, Je €SSP(X) and
>0, A(A%, B, ot ) = oA (SR, T, T) + Bmin{A(S%e, A%, ), A(BYer, Ve, T), A(Ber, S%e. T)}
Then A,B,S,T have unique common fixed pointin SSP(X).

Proof
Given the pairs {A,S} and {B, T} be owc. Therefore for all %, er éSSP(f()

AXg =SXg and BYe =TYe' @
Therefore the given condition

A(A%, B, of ) = A (S%e, THer, ) + Smin {A(S%e, A%, T), A(BYer, THe ), A(Bfer, S%. T )}

becomes
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A(A%e, Bfjer, of ) 2 oA (A%, B, T) + Bmin {A(A%e, A%, ), A(BYe, BYer, T), A(Bfer, A%, T)}
A(A%g,Be,0f ) = aA (A%, BT, )+ Amin {11, A (B, A%, T )}
A(AXe, B, qf ) = aA (A%, By, )+ BA (B, A, )

(o + B)A (A%, BYe.T)

Ve IVt

Since a+ 4 >1

A(A%e Bl Gf) = (o + B)A(A%, Bfle ) > A(A%, B f)
A(AXe, B, 0f ) > A(AXg, BYr, T)

This implies A%, =B

By (1), ARe=S% =B =T

Suppose Zej is the common fixed point of A and S and Zek is the common fixed point of B and TUIIO . Then AZeJ_ =SZ, =12,

i i

and BZp =TZ, =7, .
A2, 2, 0F ) = A(Ae, BZe, |

INEARAN: éaA(AZej,BZek,f)+ﬂmin{A(AZej,AZej,f),A(BZek,BZek,f),A<BZek,AZej,f)}

j k

Since a+4>1

A(zej e ,f) s (a+ﬂ)A(fek e ,f) s A(Zek e ,t)

J
This implies Zej =7

Therefore A,B,S, T have unique common fixed pointin SSP(X).
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