

K. Chockalingam et al./ Elixir Mech. Engg. 95 (2016) 40808-40832 Available online at www.elixirpublishers.com (Elixir International Journal)

Mechanical Engineering

Elixir Mech. Engg. 95 (2016) 40808-40832

Optimization Studies in CNC Wire Cut EDM: A Review

K. Chockalingam, Gopala Krishnan S and N. Jawahar

ABSTRACT

Department of Mechanical Engineering, Thiagarajar college of engineering, Madurai, Tamil Nadu, India.

ARTICLE INFO

Article history: Received: 21 April 2016; Received in revised form: 1 June 2016; Accepted: 6 June 2016;

Keywords

Wire cut electrical discharge machining (WEDM), Process optimization, Process parameters. CNC Wire cut electrical discharge machining (WEDM) has become an important nontraditional machining process which is used to manufacture intricate shapes with great accuracy and good surface roughness. Due to large number of process parameters and response characteristics, lots of researchers have attempted to model and optimize the process. This paper reviews the research trends in relation between different process parameters and different performance measures including Surface roughness (Ra),material removal rate (MRR), Dimensional deviation (DD), kerf width (KW) and wire wear ratio (WWR). In addition, this paper highlights different optimization methods and discusses their role in CNC WEDM process.

© 2016 Elixir All rights reserved.

Introduction

In recent times, industries which manufacture tools, dies, molds and metal-workings, are in need of materials which as high resistance, high wear and tear, hardness, strength and toughness. Hence development of new materials like titanium, Inconel, ceramics, zirconium, stainless steel, hastalloy, carbides, nitralloy and many other high strength temperature resistant alloys are widely used in automobile, aerospace, medical, defense, tool and die manufacturing industries. For such materials, machining by conventional process is difficult and sometimes impossible. Thus, non-conventional processes are applied instead of traditional methods for extremely hard and brittle materials. Non-traditional manufacturing processes are classified by their distinct machining mechanisms. One such non-conventional process is Wire cut electrical discharge machining (WEDM).

WEDM is a thermo-electrical process in which material is eroded by series of sparks between work piece and the wire electrode (tool). A continuously travelling wire electrode made thin copper, brass or tungsten of diameter 0.05-0.30 mm. Wire path is programmed by the user and controlled by the NC machine.

This paper mainly focuses on the major WEDM research activities, which include the process optimization governed by the various process parameters such as Pulse ON Time, Pulse OFF Time, Peak current, Wire tension, Wire feed rate, Servo voltage, dielectric fluid and Flushing Pressure. These process parameters have most influence on the performance measures like Material removal rate, Surface roughness, Wire wear rate, Kerf width and Dimensional deviation.

2. Process Parameter of WEDM

Figure 1 shows the Ishikawa cause and effect diagram to identify the process parameters that may affect the machining performance of WEDM machined parts.

2.1 Pulse on time (T_{ON})

The pulse on time (T_{ON}) represents the duration of time in micro seconds, μ s. During this time, Electrical discharge occurs between workpiece and the electrode wire. During this

time the voltage (VP), is applied across the electrodes. For getting long discharge, large value of ON time to be selected.

Figure 1. Ishikawa Cause and Effect Diagram for WEDM Process.

2.2 Pulse off time (T_{OFF})

The pulse off time (T_{OFF}) represents the duration of time in Micro Seconds, μ s. During this time no voltage is applied consequently no electric discharge between the workpiece and wire electrode takes place. Low value of discharge leads to wire breakage and due to this cutting efficiency also reduces.

2.3 Peak Current (IP)

The peak current is represented by IP and it is the maximum amount of current flowing through the circuit during pulse on time. It is measured in amperage. This parameter actually reveals how much power is used in WEDM. Higher value of peak current is required for roughing operations and cutting rate also increases with increase in peak current.

2.4 Servo voltage (SV)

This parameter actually controls the wire movement i.e. (advancing and retracting). So if SV is applied more, than gap between wire electrode and workpiece will be wider and hence

electric spark will be less and machining rate will be low. If SV is less, less gap is found, so electric sparks are more then automatically machining/cutting rate will be more.

2.5 Wire Tension (WT)

Wire tension controls how much the wire is to be stretched between upper and lower wire guides. This is a gram-equivalent load with which the continuously wire feed is kept under tension so that it remains straight between the wire guides. More the thickness of job more is the tension required. Improper setting of tension may result in the job inaccuracies as well as wire breakage.

2.6 Wire feed (WF)

Wire feed is the amount at which the wire-electrode travels along the wire guide path and it fed continuously between the wire guides.

2.7 Dielectric fluid

Dielectric fluid is indispensable parameter of WEDM. It is used to cool the wire and flush off the debris from the gap. Distilled water is the commonly used dielectric fluid for WEDM.

2.8 Flushing Pressure

Flushing Pressure is a selection of flushing input pressure of the dielectric. The flushing pressure range on this machine is either 1 (High) or 0 (low). High input pressure of water dielectric is necessary for cutting with higher values of pulse power and also while cutting the work piece of more thickness. Low input pressure is used for thin work piece and in trim cuts.

3. Performance measures of WEDM

Lot of researchers experimentally attempted to use the above different combinations of WEDM process parameters to enhance the performance measures (Material removal rate, Surface roughness, Spark gap, Kerf width, wire wear ratio, Dimensional deviation) of WEDM Hence selection of optimal machining parameters plays an important role for obtaining higher cutting speed, maximum material removal rate, minimum kerf width, lower dimensional deviation and minimum surface roughness.

3.1 Material Removal rate (MRR)

Material removal rate is a very important parameter which influences productivity of any process. As MRR increases, the economic benefits of using WEDM will be worthy for any firm. This factor depends upon number of input parameters which are related with WEDM. Lot of research had been done in past to maximize the MRR by different models and approaches. MRR is generally can be calculated using following equation:

$MRR=V_C \times b \times h m^3/sec$

Where,

V_C - cutting speed in m/sec

- b -width of the cut in m
- h -height of the workpiece in m
- **3.2 Surface Roughness (Ra)**

Surface roughness is also the very important parameter whose value is required to be minimized. To obtain good surface roughness, certain factors need to be controlled and these are electrical parameters, dielectric fluid, work piece material. Researchers suggest that with increase of discharge energy, roughness of machined surfaces also increases. As larger discharge energy will produce larger crater & hence larger value of surface roughness on the workpiece would be formed.

3.3 Kerf width (KW)

Kerf width represents the amount of material removed or wasted during machining. Dimensional accuracy of finished part is decided by kerf. It is calculated using the following relation:

Kerf width = 2{Sparking gap} + wire diameter 3.4 Dimensional deviation (DD)

Dimensional deviation is the geometrical error done in the machined workpiece. Researches had been done in past to minimize the dimensional deviation. Dimensional deviation is obtained by following equation:

$DD = \frac{Observed value - Actual value}{M} \times 100$

Actual value 3.5 Wire wear rate (WWR)

Researchers tried to minimize the wire wear ratio by different approaches, because this factor can help to decrease the wire rupture. Wire wear rate is obtained by following equation:

$$WWR = \frac{FWW - IWV}{WWR}$$

Where,

FWW=Final wire wear

IWW

IWW=Initial wire wear

4. Taxanomy of Optimization in Wire Cut Edm Process

The general goal of the optimization is to find a solution that represents the global maximum or minimum of a fitness function. Most of the problems in engineering, industry, and many other fields, involve the simultaneous optimization of several objectives.

4.1 Traditional Approach

Traditional methods are used to find the optimum solution of continuous & differentiable functions. These methods are analytical and provide a good understanding of the properties of the minimum & maximum points in a function. Some of the traditional methods are Taguchi orthogonal array, Response surface methodology and mathematical formulation.

Figure 2. Taxonomy of optimization in Wire cut EDM process.

4.2 Unconventional Approach

The unconventional approaches had been recognized as a prominent technique. Now a day's it is used to solve the problem of combinational issues of process parameters. Based on the literature in history, it is observed that unconventional techniques are used in literature by more in number such as Simulated Annealing algorithm (SAA), Tabu Search (TS), Particle Swarm Optimization (PSO), Sheep Flock Heredity Algorithm (SFHA), Music Based Harmony Algorithm (MBHA), Ant Colony Algorithm (ACO) and Glow Warm Algorithm (GWA).

4.3 Hybrid Approach

Hybrid methods attempt to combine the beneficial features of two or more algorithms, and can be powerful methods for solving challenging non convex optimization problems. Some of the optimizations done using hybrid methods are ANN-Genetic algorithm, ANFIS-ABC algorithm, Taguchi-grey relation method, ANN-Non dominated sorting algorithm and ANN-Particle swarm optimization.

The above approaches are further classified based on their objectives; single objective and multi-objective optimization.

4.4 Single Objective

In an optimization problem of modelling a physical system that involves only one objective, then the task of finding the optimal solution is called single optimization. In single-objective optimization, it is possible to determine between any given pair of solutions if one is better than the other. As a result, usually obtain a single optimal solution.

4.5 Multiple Objectives

In many cases, the objectives are different in nature, and they are conflict among them. These problems are called Multi-objective Optimization Problems.

Multi-objective optimization does not exist in a straight forward method to determine if a solution is better than other. The method most commonly adopted in multi objective optimization to compare solutions is the one called Pareto dominance relation which, leads to a set of alternatives with different trade-offs among the objectives. These set of solutions are termed as Pareto optimal solutions or nondominated solutions.

Therefore, in the multi-objective optimization process there are two distinguish tasks, namely: i) find a set of Pareto optimal solutions, and ii) choose the preferred solution out of this set. To do this, researchers have used two main approaches. The first is called the Multi-Criteria Decision Making (MCDM) approach which can be characterized by the use of mathematical programming techniques and a decision making method in an intertwined manner and the second one is Evolutionary Multi-objective Optimization (EMO). This approach is useful to solve multi objective optimization problems. Since evolutionary algorithms use a population based approach, they usually find an approximation of the whole Pareto front in one run.

5. Literature Review

Over the years, the WEDM has remained as a competitive and economical machining process. A significant amount of research has been done using the different methodologies for achieving the ultimate WEDM goals of optimizing the process parameters analytically with the complete elimination of the wire breakages. For better understanding, a detailed literature survey has been carried out by considering the effects of process parameters on the performance measures such as surface roughness, MRR, Kerf width, cutting speed, Wire wear ratio and Dimensional deviation, in various classes of work material.

Figure3. Various optimization researches carried out in WEDM.

Figure 3 shows the various types of optimization techniques to optimize the process parameters and their numbers. The literature review is classified into four sections. First and the second sections deal with work related to single and multi-objective using WEDM. Third section highlights WEDM carried out using unconventional optimization techniques. Finally, fourth section deals with hybrid optimization.

Summary

This paper reveals that a substantial amount of work on different aspects of machining with WEDM has been reported. On the basis of literature review, following inference have been identified:

Optimization of process parameters such as pulse on time, servo voltage, peak current, wire feed, wire tension, pulse off time, dielectric fluid, flushing pressure and table feed plays a vital role in obtaining different desired performance measures such as surface roughness, material removal rate, kerf width, spark gap, wire wear ratio and dimensional deviation. The technology charts or operator reference manuals are not providing optimal process parameters which are to be set in the machine. The values of optimal process parameter varies material to material that makes the system more complex in nature. Hence, there is a need to generate optimal sets of process parameters satisfying the number of performance measures. In recent days very few researchers have made an attempt on single objective optimization because the need becomes multi-objective such as maximum material removal rate and minimum surface roughness. Most of the researchers have carried out multi objective optimization using traditional optimization techniques such as Taguchi method, min-max method, response surface methodology (RSM), weighted method. Multi objective optimization of process parameters is needed to be done using some evolutionary optimization techniques such as Artificial bee optimization, Ant colony optimization, Genetic algorithm, Sheep flock algorithm, Biogeography based algorithm, Artificial neural network, Particle swarm optimization and Non-dominated sorting algorithm for better results. The above said algorithms were hybridized with Traditional or unconventional optimization techniques in order to increase the accuracy of the prediction of optimal process parameters. The hybridized algorithms utilized by different researchers are Taguchi-grey relation method, ANNalgorithm, ANFIS-ABC Genetic algorithm, ANN-Non dominated sorting algorithm and ANN-Particle swarm optimization.

Traditional approach Single-Objective traditional approach

S.No	Author &	Machine	Materials	Process	Performance	Methodology	Findings	Reference
	Year			Parameters	Measures			No.
1	Dain Thomas et al. (2015)	Sprintcut WEDM machine	Wire: Zinc coated brass wire Work piece: EN31 steel	*Pulse-on time *Pulse-off time *Wire tension *Peak current	*Material removal rate	Response surface methodology (RSM)	* From this work it is clear that major influence on MRR have been found to be pulse-on time and pulse-off time.	[22]
2	Giovanna Gautier (2015)	Not Mentioned	Wire: Brass wire Work piece: γ- titanium alloy	*Pulse-on time *Wire tension *Servo voltage	*Surface roughness	ANOVA and regression models	*It was found that lower values of T_{ON} , T_{OFF} and WT gives the highest Surface roughness.	[34]
3	Mohd Shahir Kasim et al. (2015)	Mitsubishi RA90 series CNC WEDM	Wire: Brass wire Work piece: Inconel 718	*Servo voltage *Wire feed rate *Current	*Surface roughness	Response surface methodology (RSM)	* Best Ra of 2.797μm (horizontal) and 2.806μm (vertical) by the combination of SV=42 v, WF=1.44mm/min and I=6A.	[53]
4	Baljit Singh et al. (2014)	Eco-cut CNC WEDM	Wire: Molybdenum wire Work piece: Titanium alloy	*Peak current *Pulse-off time *Servo voltage *Wire feed rate *Wire tension *Pulse-on time	*Material removal Rate	Taguchi approach	*Best MRR obtained when T _{ON} =120µs, T _{OFF} =55µs, WT=1300g, SV=80 v, WF=15mm/min and I=6A.	[15]
5	Brajesh Kumar Lodhi et al. (2014)	Electronica supercut 734 WEDM	Wire: Brass wire Work piece: AISI D3 steel	*Peak current *Pulse-off time *Wire tension *Pulse-on time	*Surface roughness	Taguchi approach	*Error associated with Surface roughness is 3.042% obtained when $T_{ON}=18\mu s$, $T_{OFF}=51\mu s$ and IP=180A.	[19]
6	Kashid DV et al. (2014)	Sprintcut Elpuls 40 A Dlx	Wire: Brass wire Work piece: EN9 steel	*Pulse-on time *Pulse-off time *Wire feed rate	*Material removal rate	Taguchi method	*It is found that the pulse-on time (T_{ON}) and pulse-off time (T_{OFF}) are the most influencing parameters for material removal rate.	[43]

7	Kumar K	Sprintcut 734	Wire:	*Pulse-on time	*Surface	Taguchi method	*Minimum surface roughness 1.257µm is	[45]
	et al. (2014)	CNC WEDM	Molybdenum wire Work piece: Al-Sic	*Pulse-off time *Wire speed *Wire feed	roughness		achieved when $T_{ON}{=}104~\mu s$, $T_{OFF}{=}42$ and WF=0.5m/min.	
8	Nandakumar C et al.	Electronica	Wire:	*Pulse-on time	*Surface	Taguchi method	*From this work the minimum surface	[60]
	(2014)	CNC WEDM	Zinc coated brass wire Work piece: Titanium Alloy	*Pulse-off time *Wire feed *wire feed rate	roughness	L18 orthogonal array	roughness of 1.8825 μ m is achieved when T _{ON} =5 μ s, T _{OFF} =8 μ s, WT=1000g and WF=3mm/min.	
			grade 5					
9	Parveen Kr Saini and Mukesh Verma (2014)	Elektra sprintcut734	Wire: Brass wire Work piece: Titanium alloy	*Gap voltage *Wire feed rate *Pulse time *Wire tension *Pulse width	*Material removal rate	Taguchi approach	* It is found that best MRR observed when $V_G=20v$, WF=4m/min, T=5 μ s, WT=0.5daN and PW=1.2 μ s.	[65]
10	Pratik A Patil et al. (2014)	Fine Sodick Mark Exedw	Wire: Brass wire Work piece: AISI D2 steel	*Pulse-on time *Wire tension *Peak current	*Material removal rate	Response Surface Methodology	*MRR increases as the peak current increases and MRR is influenced by the wire tension and pulse-on time.	[70]
11	Shinde VD et al. (2014)	Electronic Elcut CNC WEDM	Wire: Molybdenum wire Work piece: AISI D3 Tool steel	*Pulse-on time *Pulse-off time *Peak current *Wire speed	*Surface roughness	Taguchi approach	*The wire speed and pulse-on time shows strongest correlation to surface roughness as compared to current and pulse-off time	[100]
12	Singh H and Garg R (2009)	Electronica sprintcut CNC WEDM	Wire: Brass wire Work piece: H-11 die steel	*Pulse-on time *Pulse-off time *Gap voltage *Wire feed rate *Wire tension *Peak current	* Material removal rate	Taguchi approach	*It is found that MRR increases with increase in IP and T_{ON} while decreases with increase in T_{OFF} and SV	[101]
13	Rajesh Kumar et al. (2013)	omnicut CNC WEDM	Wire: Brass wire Work piece: EN24 steel	*Pulse-on time *Pulse-off time *Park gap voltage *Gap current	*Material removal rate	Taguchi method	*Best MRR of 28.25mm ³ /min observed when SV=30v, T_{ON} =125 μ s and T_{OFF} =40 μ s.	[74]
14	Shah CD et al. (2013)	DK-7720 CNC WEDM	Wire: Molybdenum wire Work piece: Inconel-600	*Wire speed *Peak current *Pulse-on time *Pulse-off time	*Material removal rate	Taguchi L18 orthogonal array	*Pulse-on time, Pulse-off time and peak current are the influencing parameter on material removal rate	[97]

15	Subrahmanyam SV	ELPULS 40A	Wire:	*Pulse-on time	*Surface	Taguchi L36	* It is found that Ra is 2.48µm obtained when	[105]
	and Sarcar MMM (2013)	CNC WEDM	Brass wire Workpiece: EN-31	*Pulse-off time *Peak current *Wire tension *Wire feed *Servo feed *Fluid pressure	roughness	orthogonal array	T _{ON} =128µs, T _{OFF} =53µs, WF=4 m/min, SV=20 v, WT=2 Kilograms and IP=230A.	
16	Abinash Kumar Swain et al. (2012)	Electra wirecut EDM	Wire: Brass wire Workpiece: Tungsten carbide	*Servo voltage *Spark on time *Spark off time *Capacitance	*Kerf width	Taguchi method	*Machining voltage is the most significant parameter for controlling the kerf width.	[2]
17	Basil Kuriachen et al. (2012)	Electronica ultracut	Wire: Brass wire Work piece: Titanium(grade 5)	*Pulse-on time *Pulse-off time *Voltage *Dielectric pressure	*Surface roughness	Mathematical model	*It is found that minimum surface roughness is obtained when $T_{on}=20\mu s$ and dielectric pressure=15 kgf/cm ³ .Prediction error obtained using this model is 7%.	[16]
18	Anish Kumar, Vinod Kumar and Jatinder Kumar (2012)	Electronica supercut 734 WEDM	Wire: Brass wire Work piece: Titanium	*Pulse-off time *Peak current *Pulse-on time *Wire feed *Wire tension	*Surface roughness	Response surface methodology	*It is found that Ra is 2.48 μ m obtained when T _{ON} =112 μ s, T _{OFF} =56 μ s, WF=7 m/min, SV=60 v, WT=980 grams and IP=120A.	[11]
19	Rajendran S and Marimuthu K (2012)	Electra Sprintcut 734	Wire: Brass wire Work piece: T90Mn2W50Cr45 Tool steel	*Pulse-on time *Pulse-off time *Peak current *Wire tension	*Material Removal Rate	Response surface methodology	*Pulse-on time is directly proportional to the material removal rate whereas wire tension is inversely proportional to the material removal rate.Material removal rate was optimized at 0.5 for the optimum value of peak current (200A) and wire tension of (7.5g).	[73]
20	Sivakiran S et al. (2012)	Omnicut CNC WEDM	Wire: Molybdenum wire Work piece: EN31 steel	*Pulse-on time *Pulse-off time *Bed speed *Current	* Material removal rate	Taguchi's _{L16} approach	* It is found that best MRR observed when $T_{ON}=24\mu s$, $T_{OFF}=6\mu s$, BS=35 and I=5A.	[102]
21	Abdulkareem S et al. (2011)	Mitsubishi WEDM	Wire: Brass wire Work piece: SUS 304 steel	*Pulse-on time *Pulse current *Gap voltage	*Surface roughness	Full factorial design	*Wet wire EDM gives better surface integrity compared to dry wire-EDM. *Increase of pulse current and gap voltage also contributes poor surface integrity	[1]
22	Islam M N et al. (2010)	Fanuc robocut machine	Wire: Brass wire Workpiece:	*Pulse duration *Wire speed *Wire tension * flow rate	*Dimensional accuracy	Taguchi L27 orthogonal array	*Wire tension is the greatest affecting parameter on dimensional accuracy characteristics like linear error, flatness error and perpendicularity error.	[39]

			Mild steel 1040	*Discharge				
				current				
23	Vishal Parashar et al. (2010)	Ezeecut plus WEDM	Wire: Brass wire	*Gap voltage *Pulse-on time	*Material removal rate	Regression analysis method	*From this results, material removal rate depends on gap voltage, pulse-on time and	[122]
				*Pulse-off time			pulse-off time.	
			Work piece:	*Wire feed				
			Stainless steel	*Flushing				
			304L	pressure				
24	Kanlayasiri K and	Sodick model	Wire:	*Pulse-peak	*Surface	Regression	*It is found that maximum prediction error of	[41]
	Boonmung S (2007)	A280	Brass wire	current	roughness	analysis	the model is less than 7% and the average	
				*Pulse-on time	-		percentage error of prediction is less than 3%.	
			Workpiece:	*Pulse-off time				
			DC53 cold die	*Wire tension				
			steel					

Multi-Objective Traditional Approach

S.NO	AUTHOR & VFAR	MACHINE	MATERIALS	PRO CESS PARAMETER	PERFORMANCE MEASURES	MEIHODOLOGY	FINDINGS	Reference No.
1	Alpesh M Patel and Vishal Achwal (2015)	Electronica 5535- R50 ZNC series CNC WEDM	Wire: Brass wire Work piece: Aluminum A1050A	*Discharge voltage *Wire feed *Wire tension *Discharge current	*Electrode wear rate *Material removal rate	Taguchi's L ₉ orthogonal approach	*It is found that maximum MRR of 0.041 gm/min and minimum EWR obtained when (V=35volt, WF=6m/min, WT=6N and IP=4A).	[7]
2	Amitava Mandal et al. (2015)	Elektra maxicut 734 CNC WEDM	Wire: Zinc coated Brass wire Work piece: Nimonic C-263 super alloy	*Pulse-on time *Pulse-off time *Servo voltage *Dielectric flow rate	*Cutting rate *Spark gap *wire wear ratio *surface roughness	Response surface methodology (RSM)	*It is found that maximum CR of 2.224 mm/min and minimum spark gap of 40 μ m obtained when (T _{ON} =1.35 μ s, T _{OFF} = 120 μ s, SV=35 volts and FR=4 liters/min), minimum Ra of 1.38 μ m obtained when (T _{ON} =0.95 μ s, T _{OFF} = 200 μ s, SV=75 volts and FR=8 liters/min) and the maximum WWR of 0.765 obtained when (T _{ON} =1.35 μ s, T _{OFF} = 120 μ s, SV=75 volts and FR=8 liters/min).	[9]
3	Bijender Singh et al. (2015)	Electronica sprintcut CNC WEDM	Wire: Brass wire Work piece: Stainless steel 410	*Pulse-on time *Pulse-off time *Wire tension *Wire feed	*M aterial removal rate *Surface roughness	Taguchi & regression analysis	*Maximum MRR of 4.2 mm ³ /sec obtained when $(T_{ON}=131\mu s, T_{OFF}=50\mu s, WF=4m/min and WT=11g)$ *Minimum Ra of 3.74µm obtained when $(T_{ON}=121\mu s, T_{OFF}=55\mu s, WF=5m/min and WT=9g)$.	[17]
4	Chengal Reddy V, Deepthi N and Jay akrishna N (2015)	Not Mentioned	Wire: Brass wire Work piece: Aluminium HE30	*Wire tension *Peak current *Pulse-off time *Pulse-on time	*M aterial removal rate *Surface roughness	Taguchi & regression analysis	*From the results it shows that GRA method is effective tool for optimization and optimal machining conditions obtained are $T_{ON}=112\mu s$, $T_{OFF}=61\mu s$, IP=11A and WT=780gm.	[20]
5	Dhruvh H Gajjar et al. (2015)	Electronica sprintcut CNC WEDM	Wire: Molybdenum Work piece:	*Pulse-on time *Pulse-off time *Servo voltage	*M aterial removal rate *Surface roughness	Response surface methodology (RSM)	*Best MRR, KW and Ra are obtained when T_{ON} =130µs, T_{OFF} =60µs and SV=30 volts.	[25]

			EN-31 tool steel		*Kerf width			
6	Dodun Oano et al. (2015)	Japax L250A CNC WEDM	Wire: Not Mentioned Work piece: Alloy ed steel205Cr115	*Wire speed *Pulse-off time *Pulse-on time *Wire tension.	*Cutting speed *Surface roughness *Wire wear ratio	Grey relation analysis (GRA) and Taguchi approach	* Best CS, WWR and Ra are obtained when T _{ON} =0.5µs, T _{OFF} =0.066µs and I=0.5A.	[27]
7	Ganesh Dongre et al. (2015)	Not Mentioned	Wire: Molybdenum Work piece: Silicon wafer	*Peak current *Duty cycle *Work piece height *Wire diameter	*Kerf loss *Slicing speed *Surface roughness	Response surface methodology (RSM) approach	*Optimization of kerf loss (50 μ m), slicing speed (2.5mm/min) is obtained when peak current=1A, Wire diameter=40 μ m and duty cycle=50%.	[31]
8	M ilton Peter J et al. (2015)	Ezeecut Plus EZ- 01 WEDM	Wire: Brass wire Work piece: Inconel 718	*Pulse-on time *Pulse-off time *Wire feed *Gap voltage	*M aterial removal rate *Surface roughness	Taguchi method	*Pulse-on time is the most significant parameter for material removal rate, while the gap voltage has the most influences on surface roughness.	[52]
9	Nagaraja R et al. (2015)	Not Mentioned	Wire: Not Mentioned Work piece: Bronze alumina alloy	*Pulse-on time *Pulse-off time *Wire feed	*M aterial removal rate *Surface roughness	Taguchi method	*To achieve the Ra and MRR are T _{ON} =10μs, T _{OFF} =5μs and WF=2m/min.	[57]
10	Naga Raju B et al. (2015)	Ultracut CNC WEDM ,	Wire: Not Mentioned Work piece: Aluminium MMC	*Pulse-on time *Pulse-off time *Peak current	*M aterial removal rate *Surface roughness	Response surface methodology (RSM)	* It is found that maximum MRR is 0.8790 mm ³ /min and the minimum Ra is 0.9640 μ m obtained when T _{ON} =100 μ s, T _{OFF} =55 μ s and IP=11.86A.	[58]
11	Nandakumar C et al. (2015)	Electronica CNC WEDM	Wire: Zinc coated brass Work piece: Titanium	*Pulse-on time *Pulse-off time *Wire feed	*M aterial removal rate *Surface roughness	Response surface methodology	*Maximum MRR of 0.6623g/min and the minimum Ra of 0.3734 μ m obtained when T _{ON} =3.4545 μ s, T _{OFF} =4.1761 μ s and WF=1m/min.	[59]
12	PrashantSinha et al. (2015)	Sprintcut WEDM machine	Wire: Zinc coated Brass wire Work piece: AISI D3 steel	*Servo voltage *Pulse-on time *Pulse-off time *Peak current	*M aterial removal rate *Surface roughness	Taguchi method	*It is found that servo voltage, pulse on time and peak current are significant factor for Material removal rate, while peak current and servo voltage for surface roughness.	[69]
13	Ramamurthy A et al. (2015)	Electrika CNC WEDM'	Wire: Not Mentioned Work piece: Titanium alloy	*Pulse-on time *Pulse-off time *Servo voltage *Wire material *Peak current	*M aterial removal rate *Surface roughness	Taguchi and grey relation analysis	*It is found that maximum MRR is 0.0025 mm ³ /min and the minimum Ra is 2.095 μ m obtained when T _{ON} =30 μ s, T _{OFF} =90 μ s, SV=80V and IP=4A.	[77]
14	Ramamurthy A et al. (2015)	Electrika CNC WEDM'	Wire: Not Mentioned	*Pulse-on time *Pulse-off time *Wire tension	*Material removal rate *Surface	Grey relation analysis and Taguchi	*Maximum MRR is 159.1574 mm ³ /min and the minimum Ra is 2.567 μ m obtained when T _{ON} =110 μ s, T _{OFF} =30 μ s and WT=7kg.	[78]

			Work piece:		roughness			
15			Titanium alloy	*D 1 (*	*0	C DI		[0.6]
15	et al. (2015)	Electronica elpuls 40A sprintcut WEDM	Wire: Brass wire Work piece: Tungsten carbide	*Pulse-on time *Pulse-off time *Peak current *Wire feed rate	*Cutting rate *Surface roughness	Grey Relation Analysis (GRA) and Taguchi approach	*GRA method is effective tool for optimization and optimal machining conditions obtained are $T_{ON}=18\mu s$, $T_{OFF}=40\mu s$, IP=200A and WF=7m/min.	[86]
16	Sivaraman B et al. (2015)	Maxicut WEDM	Wire: Brass wire Work piece: Titanium	*Pulse-on time *Pulse-off time *Gap voltage *Wire tension *Wire feed rate *Table feed	*Surface roughness *M aterial removal rate	Taguchi approach	*From the optimization, it is found that maximum MRR of 0.823 g/min and minimum Ra of 1.687 μ m obtained when (T _{ON} =5 μ s, T _{OFF} =7 μ s, GV=5 volts, WT= 900g, WF=7m/min and TF=6 mm/min	[104]
17	Suresh Babu S et al. (2015)	Ezeecut plus WEDM	Wire: Not Mentioned Work piece: Not Mentioned	*Pulse-on time *Pulse-off time *Peak current	*Surface roughness *Material removal rate	Taguchi's L_{18} orthogonal array	*Maximum MRR is obtained when $T_{ON}=36\mu s$, $T_{OFF}=6\mu s$ and IP=3A, and the minimum Ra is obtained when $T_{ON}=34\mu s$, $T_{OFF}=7\mu s$ and IP=1A.	[107]
18	Takalae AM et al. (2015)	Electronica Sprintcut 734 CNC WEDM	Wire: Not Mentioned Work piece: AISI 304 steel	*Pulse-on time *Peak current	*Surface roughness *Material removal rate	Taguchi method	*It is found that the pulse-on time and peak current increases with increase in MRR and surface roughness increases, as pulse-off time (T_{ON}) increases.	[110]
19	Vinod Kumar et al. (2015)	sprintcut WEDM	Wire: Zinc coated brass wire Work piece: Monel-400	*Discharge current *Pulse-on time *Pulse-off time *Servo voltage	*M aterial removal rate *Surface roughness	Response Surface M ethodology	*From the work it is clear that highest desirability of MRR and Ra is achieved by setting parameters like IP=103 A, T_{ON} =113 µs, T_{OFF} =37 µs and SV=50 V.	[121]
20	Vivek Aggarwal et al. (2015)	Elektra sprintcut 734'	Wire: Zinc coated brass wire Work piece: Inconel 718	*Wire tension *Pulse-on time *Pulse-off time *Wire feed *Servo voltage	*Cutting rate *Surface roughness	Response Surface Methodology	*From the work it is clear that highest CR 2.55 mm/min and lower surface roughness 2.54 μ m is obtained when T _{OFF} =14 μ s, WF=5.97g, SV=16v, WT=691.78g, T _{ON} =0.62 μ s and IP=210 A.	[123]
21	Amitesh Goswami and Jatinder Kumar (2014)	Electra- Elpuls 40A DLX CNC	Wire: Brass wire Work piece: Nimonic-80A	*Pulse-off time *Peak current *Pulse-on time *Wire feed *Wire tension	*M etal removal rate *Surface roughness	Taguchi L27orthogonal array.	*It is found that MRR and Ra increases with increase in pulse-on time and decreases with increase in pulse-off time.	[10]
22	Arjun Biloria and Rupinder Singh (2014)	Not Mentioned	Wire: Brass wire Work piece: EN31 steel	*Servo voltage *Discharge current *Wire tension	*Cutting width *M etal removal rate *Surface roughness	Taguchi L9 orthogonal array.	*It is found that IP has a greater influence on the MRR followed by voltage. *Wire tension had influence on MRR.	[13]
23	Dipti Ghanashyam Gonjari (2014)	Ezeecut plus CNC WEDM	Wire: Brass wire	*Pulse-on time *Pulse-off time	*Material removal rate	Taguchi's L ₉ orthogonal array	*It is found that MRR and Ra are mainly affected by Pulse-off time (T_{OFF}) and Sensitivity (S).	[26]

				*Wire Feed	*Surface			
			Work piece:	*Sensitivity	roughness			
			AISI D7 material	2	C			
24	Garg MP et al.(2014)	Electronica	Wire:	*Pulse on time	*Cutting speed	Response surface	*Cutting speed is found to increase with increase in T_{ON} and decrease	[32]
		sprintcut 734 CNC	Diffused brass wire	*Pulse off time	*Surface	methodology	in T _{OFF} and SV.	L- J
		WEDM		*Peak current	roughness			
			Work piece:	*Servo voltage	U			
			Titanium alloy	*Wire feed				
			5	*Wire tension				
25	Selvakumar G et al.	Electra supercut	Wire:	*Wire tension	*Cutting speed	Taguchi approach	*CS was independent on wire tension and Ra was independent on	[95]
	(2014)	734 series 2000	Brass wire	*Pulse-on time	*Surface		pulse-off time and wire tension.	L J
	` '	CNC WEDM		*Pulse-off time	roughness		L	
			Work piece:	*Peak current	8			
			5083 aluminum alloy					
26	Sivanaga Malleswara	Elcut 334	Wire:	*Power input	*Surface	Mathematical model	*From the work it is clear that the maximum error obtained in the	[103]
	Raouthor S and		Brass wire	*Job thickness	roughness		calculated values and experimental values are less than 2%.	
	Parameswara Rao Ch				*Material			
	VS (2014)		Work piece:		removal rate			
			18-4-1 grade HSS					
27	Vedansh Chaturvedi	Ultracut-2F	Wire:	*Servo feed rate	*Material	Taguchi method	*It is found that the optimum machining setting to achieve the Ra and	[118]
	and Anil Kumar		Brass wire	*Wire tension	removal rate	i ugusin method	MRR are WT = 1900 grams. FP = 1.5 kg/cm^2 . SF = 0.5 mm/min and	[110]
	Sharma (2014)			*Flushing	*Surface		WF=8.5 m/min.	
	~		Work niece:	pressure	roughness			
			OHNS steel	*Wire feed	8			
28	Vijay babu T	Electronica	Wire:	*Pulse-on time	*Material	Taguchi approach	*It is found that best Ra observed when $(T_{ON}=128\mu s, T_{ON}=48\mu s,$	[119]
	et al. (2014)	undercut CNC	Brass wire	*Pulse-on time	removal rate	0 11	SV=30v, $WT=6m/min$ and $IP=220A$) and best MRR observed when	
		WEDM		*Peak current	*Surface		$(T_{ov}=112 \mu s T_{ov}=60 \mu s SV=70 v WT=6m/min and IP=150 A)$	
			Work piece:	*Pire tension	roughness		$(10N-112\mu s, 10FF-00\mu s, s, s, s, v, v,$	
			Titanium	*Servo voltage	0			
				*Servo feed				
29	Adeel ikram et al.	Not Mentioned	Wire:	*Wire feed	*Surface	Taguchi L18	*It has been found that pulse-on time is the most significant factor	[4]
	(2013)		Brass wire	*Pulse-on time	roughness	orthogonal array	affecting the surface roughness, kerf and material removal rate.	
				*Pulse-off time	*Kerf width			
			Workpiece:	*Open voltage	*M aterial			
			Tool steel D2	*Wire tension	removal rate			
				*Servo voltage				
				*Pressure				
30	Danial Ghodsiyeh et	Sodick series	Wire:	*Pulse-on time	*Surface	Response surface	*It is found that the optimum response is obtained when $T_{ON}=6\mu s$,	[23]
	al. (2013)	AQ537L WEDM	Zinc-coated brass	*Pulse-off time	roughness	methodology	$T_{OFF}=8\mu s$, SV=50V and IP=16 A.	
			wire	*Peak current	*Sparking gap			
				*Servo voltage	*Wire lag			
			Work piece:		*Wire wear rate			
			Titanium alloy					
31	Durairaj M et al.	Not Mentioned	Wire:	*Pulse-on time	*Surface	Taguchi approach	*From the optimization, it is found that maximum MRR and min kerf	[28]
	(2013)		Brass wire	*Pulse-off time	roughness	and Grey relation	width can be achieved when $T_{ON}=4\mu s$, $T_{OFF}=4\mu s$, V=50V and	
				*Wire Feed	*Kerf width	analysis (GRA)	WF=2mm/min	
			Work piece:	*Servo voltage				

			Stainless steel 304					
32	Farnaz Nourbakhsh et al.(2013)	Charmilles WEDM	Wire: Brass wire Work piece: Titanium alloy	*Pulse width *Servo voltage *Wire speed *Peak current *Wire tension	*Cutting speed *wire rupture *Surface integrity	Taguchi L18 orthogonal array	* From the work it is clear that MRR increases with increase of peak current and pulse width. *Surface roughness was found increase with pulse width and decrease with pulse interval.	[30]
33	Geetha M et al. (2013)	5 axis-CNC WEDM	Wire: Brass wire Work piece: Stainless steel 304	*Pulse-off time *Pulse-on time *Wire tension *Water pressure	*M aterial removal rate *Surface roughness	Response surface methodology	*It is found that the multiple regression coefficients (R ²) for Ra and MRR were found to be 0.888 and 0.966.	[33]
34	Lokeshwara Rao T et al. (2013)	Elektra Sprintcut 734	Wire: Brass wire Work piece: Titanium Grade 5	*Pulse-on time *Pulse-off time *Peak current *Wire tension *Servo voltage	*M aterial removal rate *Surface roughness	Taguchi method	*The pulse time and peak current are the most influencing factor for performance Measures.	[47]
35	Meena KL et al. (2013)	Elektra opticut-434 CNC WEDM	Wire: Brass wire Work piece: (A1-6063)/silicon carbide (SiC)	*Pulse-on time *Pulse-off time *Servo voltage *Wire feed *Wire tension *Peak current	*Width of cut *Surface roughness *M aterial removal rate	Taguchi's L ₉ orthogonal approach	*From the optimization, it is found that maximum MRR can be achieved at high value of mesh size.	[51]
36	Neeraj Sharma et al. (2013)	Electronica sprintcut 734 CNC WEDM'	Wire: Brass wire Work piece: HSLA	*Pulse-on time *Pulse-off time *Peak current *Wire tension	*Cutting speed *Dimensional deviation	Response surface methodology	*From the work it is clear that for both CS and DD, T _{ON} is the most significant process parameter.	[62]
37	Rajy alakshmi G and Venkata Ramaiah P (2013)	ultracut-2F CNC WEDM	Wire: Brass wire Work piece: Inconel 825	* Pulse on time *Pulse off time *servo voltage *wire tension *flushing pressure *servo feed rate *wire feed	*M aterial removal rate *Surface roughness *Spark gap	Taguchi L36 orthogonal array	*It is found that the optimum machining setting to achieve the Ra and MRR are $T_{ON}=105\mu$ s, $T_{OFF}=50\mu$ s, $WT=9kg$ -f, FP= 15 kg/cm ² , SF= 1100 mm/min and WF=2 m/min.	[75]
38	Ravindranadh Bobbili et al. (2013)	Ultracut WEDM	Wire: Zinc coated brass wire Work piece: High armor steel.	*Pulse-on time *Pulse-off time *Peak current *Wire tension	*M aterial removal rate *Surface roughness	Taguchi method	* From the results it is observed that, the pulse time and servo voltage is the most influencing factor for performance measures.	[81]
39	Sanjeev KR Garg et al. (2013)	Robofil-290 CNC wire EDM	Wire: Diffused wire Work piece: Al/Zro ₂	*Pulse width * pulse time *Servo voltage *Wire feed rate, *Wire tension	*Cutting velocity *Surface roughness	Response surface methodology and grey relation techniques	*Grey relation analysis produce optimum percentage change in CV (5.85%) and Ra (13.37%). *Diffused wire electrode provides better results compared to brass wire electrode.	[88]

40	Taha A El-Taweel	CK-45 steel W-B301 S CNC	Wire: Brass wire	*Water pressure *Wire speed	*Material	Mathematical model	*From the work it is clear that MRR increases with increase of feeding speed duty factor and water pressure. The effect of wire	[109]
	Hewidy (2013)	WEDM	Diass wite	*Wire tension	*Tool wear rate		tension and wire speed on MRR is limited.	
			Work piece:	*Duty factor	*Surface			
			AISI 304 steel	*Feeding speed	roughness			
41	Yu Huang et al.	W-A530 WEDM	Wire:	*Pulse-on time	*Surface	Taguchi L18	*In this work comparison of rough and finish cutting is done based on	[124]
	(2013)		Brass wire	*Pulse-off time *Wire tension	roughness *Material	orthogonal array	the influencing parameters on surface roughness and material removal	
			Workpiece:	*Wire speed	removal rate			
			Tool steel YG15	*Water pressure				
40	A ' A I' / 1	M' L'L'EN	XX 7'	*Feed rate	*0 6			[10]
42	Aniza Alias et al. (2012)	Mitsubishi FX Series	Wire: Brass wire	*Feed rate *Current	*Surface	Not Mentioned	*Machine feed rate has proven to be the influencing parameter this work	[12]
	(2012)	Series	Diass with	*Wire speed	*Kerf width		work.	
			Work piece:	*Wire tension	*M aterial			
10			Titanium	*Voltage	removal rate			54.03
43	Boopath S and Sivakumar K (2012)	CNC-E3-MCJ WFDM	Wire: Brass wire	*Pulse-off time *Pulse-on time	*Surface	Taguchi approach	*It is found that pulse-on time, discharge current and gap voltage are	[18]
	Sivakumar ix (2012)		Diass with	*Gap voltage	*Material		improve the surface finish.	
			Work piece:	*Air pressure	removal rate			
		B 0 B 0 F W	M2 high speed steel	*Discharge current				50.17
44	Chockalingam	ROBOFIL 2000 CNC	Wire:	*ap voltage	*Material	Taguchi design	*Pulse-off time (T_{off}) is more significant factor for multiple	[21]
	\mathbf{K} et al. (2012)	WEDM	Diass wile	*Fluid pressure	*Surface roughness		performance measures.	
			Work piece:	*Wire tension	*Spark gap			
			AISI T-15 HSS steel	*Wire velocity	*Dimensional			
15	Cogworni A mitoch	Electronico	Winou	*Dulas off time	deviation	Tomahi mathad	*Investigation indicates that the outting an end and material removal	[25]
45	et al (2012)	Sprintcut	wire: Brass wire	*Pulse-on time	removal rate	I aguent method	*Investigation indicates that the cutting speed and material removal rate, both increases with increase in pulse-on time and peak current	[33]
	et ul. (2012)	CNC		*Peak current	*Cutting speed		while decreases with increase in pulse-off time and spark gap set	
		WEDM	Work piece:	*Spark gap set			voltage.	
10	Manai Malila et al	Not Montional	Nimonic 80A	voltage	*M = 4 = 1	Com hard Transhi	*Town the antimization it is found that make much summation the most	[50]
40	(2012)	Not Mentioned	Wire: Zinc coated Brass	*Pulse-on time *Duty factor	"Material removal rate	method	"From the optimization, it is found that pulse peak current is the most critical factor affecting FWR MRR & Duty factor is the least	[50]
	(2012)		wire	*Pulse peak	*Electrode wear		significant parameter.	
				current	rate			
			Work piece:		*Surface roughness			
47	Rizauddin Ramli et	HO-35F CNC	Wire:	*Open circuit	*Material	Taguchi method	*It is found that significant parameters contributed to the kerf width	[83]
.,	al. (2012)	WEDM	Brass wire	voltage	removal rate	- aguerra motilou	are OV (47%), T (20%) and WS (15%).	
				*Pulse duration	*Surface		*The average of kerf width from the three experiments was 0.255mm	
			Work piece:	*Dielectric	roughness		and from that, the error margin is only 1.53%, which satisfied our	
			1 001 steel grade D2	*Wire speed			uara.	
48	Selvakumar G et al.	Electra supercut	Wire:	*Wire tension	*Material	Taguchi L18	*Surface roughness and Material removal rate are influenced by pulse	[96]

	(2012)	734 series CNC	Brass wire	*Flushing height	removal rate	orthogonal array	on time and peak current.	
		WEDM		*Job thickness	*Surface	C ,		
			Workpiece:	*Corner angle	roughness		*Corner accuracy is influenced by flushing nozzle height, job height	
			Monel 400 alloy	*Pulse-on time	*Corner error		and corner angles.	
				*Pulse frequency				
				*Peak current				
				*Servo voltage				
49	Swati D Lahane et	Elektra CNC	Wire:	*Pulse-on time	*M aterial	Taguchi method	*It is found that maximum MRR and the minimum WWR obtained	[108]
	al. (2012)	WEDM'	Copper wire	*Pulse-off time	removal rate	weighted principle	when $(T_{ON}=7\mu s, T_{OFF}=8\mu s, WF=7m/min and UF=8kg/cm2)$.	
	`			*Wire feed	*Wire wear rate	component method		
			Work piece:	*Upper flush				
			HSS steel					
50	Aqueel shah et al.	G43S CHMER	Wire:	*Open voltage	*M aterial	Taguchi orthogonal	*It is found that material thickness is the influencing parameter on	[14]
	(2011)	EDM	Brass wire	*Pulse-on time	removal rate	L27 design	material removal rate and kerf width.	
				*Pulse-off time	*Kerf width			
			Workpiece:	*Servo voltage	*Surface		*To obtain a fine surface finish, the spark energy will have to be	
			Tungsten carbide	*Wire feed	roughness		reduced	
				*Wire tension				
				Dielectric pressure				
51	Sathishkumar D et	Electronica Ecocut	Wire:	*Pulse-on time	*Material	Taguchi L9	*It is inferred that the increase in volume percentage of SiC results in	[93]
	al.(2011)	4-axis CNC	Brass wire	*Pulse-off time	removal rate	orthogonal array	decrease of MRR and increase of Ra.	
		WEDM		*Gap voltage	*Surface			
			Workpiece:	*Wire feed	roughness			
			Al6063/SiC _p					
52	Kamal Jangra	Sprintcut CNC	Wire:	*Pulse-on time	*Cutting speed	Taguchi method and	*Using GRA, performance obtained are cutting speed (3.80 mm/min)	[40]
	et al. (2010)	WEDM	Zinc coated brass	*Pulse-off time	*Surface	Grey relation	and dimensional lag (0.008 mm). But surface roughness is poor and	
			wire	*Wire feed rate	roughness	analysis (GRA)	can be improved by increasing the weight in GRA.	
			Wenten terre	*Wire tension	*Dimensional lag			
			WORK piece:	*Peak current				
50	C D (1 1	D 1 C1 100 CNC	D5 tool steel	*D 1 1	*\	TT 1' (1 1 1		[0.4]
55	Saurav Datta and	KODOIII 100 CNC	wire:	*Pulse duration	*Material	Taguchi method and	*It is found that discharge current, pulse duration and wire speed are	[94]
	Siba Sankar Mohomotro (2010)	WEDM	Zinc coated copper	*Discharge current	removal rate	orey relation	roughness and Karf width	
	Manapatra (2010)		wire	*Wire an ead	*Surface	analysis (GRA)	roughness and Kerr width.	
			Workpiece	*Wire tension	*Korf width			
			D2 tool steel	*Flow rete	Ken width			
54	Poutere PC et al	Agiagut 220	Wire:	*Gan aurrent	*Surface	Gray relation	*In this paper it is absorved that MDD and SD are improved together	[95]
54	(2000)	WEDM	Brass wire	*Gap voltage	roughness	analysis	using the grav relation method	[02]
	(2009)		Diass wile	*Wire feed rate	*Material	anary SIS		
			Workpiece	*Duty factor	removal reta			
			AISI A7 die steel		Temoval fate			

55	Mahapatra SS and Amar Patnik (2006)	Robofil100	Wire: Brass wire Work piece: D2 tool steel	*Pulse duration *Discharge current *Pulse frequency *Flow rate *Wire tension *Wire speed	*Material removal rate *Surface finish	Taguchi method	* It is found that the predicted error of MRR is 4.062% and RF is 1.53%.	[48]
50	Bhattachary ya B (2006)	supercut-734 CNC WEDM	Work piece: Aluminium reinforced silicon carbide metal matrix composite	*Pulse-off time *Peak current *Wire feed *Wire tension *Servo voltage *Gap voltage	*Surface roughness *Gap current *Spark gap	orthogonal array	*Open gap voltage and pulse-on time are the influencing parameter for Material removal rate.	[49]
57	Ramakrishnan R and Karunamoorthy L (2006)	Robofil 290 5-axis CNC WEDM	Wire: Zinc coated brass wire Work piece: Tool steel	*Pulse-on time *Wire tension *Delay time *Wire feed *Current density	*M aterial removal rate *Surface roughness *Wire wear ratio	Taguchi L16 orthogonal array	*It is found that pulse-on time and ignition current density are the influencing parameters for surface roughness.	[76]
58	Hewidy MS et al. (2005)	Elektra Maxicut 434 CNC WEDM	Wire: Brass wire Work piece: Inconel 601	*Peak current *Duty factor *Wire tension *Water pressure	*Surface roughness *Material removal rate *Wire wear rate	Response surface methodology	*Material removal rate generally increases with increase in peak current and water pressure.Wear ratio increases with increase of peak current.	[36]
59	Sarkar S et al. (2005)	Electra supercut 734 Series 2000 CNC WEDM	Wire: Brass wire Workpiece: γ-titanium aluminide	*Pulse-on time *Pulse-off time *Peak current *Wire tension *Servo voltage *Flushing pressure	*Cutting speed *Surface finish *Dimensional deviation	Taguchi method	*Dimensional deviation and surface roughness are independent of pulse-on time	[91]
60	Ahmet Hascalyk and Ulas Caydas (2004)	Sodick A320D/EX21 WEDM	Wire: Brass wire Work piece: AISI D5 tool steel	*Pulse duration *Open voltage *Wire speed *Flushing pressure	*Surface roughness *Metallurgical structure	Not Mentioned	*Surface roughness increased when the pulse duration and open circuit voltage were increased	[5]
61	Liao Yu et al. (2004)	Not Mentioned	Wire: Not Mentioned Work piece: Inconel 718	*Pulse-on time *Pulse-off time *Arc on time *Arc off time *Servo voltage	*M achining speed *Surface roughness	Taguchi method	*It was observed that MRR increases with increase in discharge on time and servo voltage. *Surface roughness increased with rate of energy input.	[46]
62	Nihat Tosun et al. (2004)	Sodick A320D/EX21 WEDM	Wire: Brass wire Workpiece: AISI 4140 steel	*Open circuit voltage *Pulse duration *Wire speed *Flushing pressure	*Cutting Kerf *Material removal rate	Regression analysis method	 *Mathematical model has been generated between machining parameters and performance measures. *Open circuit voltage is the influencing parameter than pulse-on time. 	[63]

S.NO	AUTHOR & YEAR	MACHINE	MATERIALS	PROCESS PARAMETER	PERFORMANCE MEASURES	METHODOLOGY	FINDINGS	Reference No.
1	Piyush Pant et al. (2014)	Not Mentioned	Wire: Not Mentioned Work piece: D3 die steel	*Gap voltage *Wire feed rate *Pulse-on time	*Surface roughness	Artificial neural network (ANN) approach	*It is found that best Ra of 4.57 μ m observed when V _G =30v, WF=25m/min and T _{ON} =30 μ s.	[66]
2	Sankara Narayanan G et al. (2014)	Not Mentioned	Wire: Copper wire Work piece: Copper	*Spark-off time *Spark-on time *Current *Gap range *Feed rate *Spindle feed *Flushing pressure	*Material removal rate	Artificial neural network	* The optimal process parameters can be predicted out by using this model to increase the production rate	[89]
3	Krishna Prasad VS et al. (2013)	Ultracut CNC WEDM	Wire: Brass wire Work piece: Inconel 825	*Pulse-on time *Pulse-off time *Peak current *Wire tension *Servo voltage	*Surface roughness	Artificial neural network and Regression analysis	* Predicted values of surface roughness by ANN and regression analysis when compared, NN yields better average error of 5.5% than regression analysis of 16.04%.	[44]
4	Pragy a Shandily a et al. (2013)	Ecocut WEDM	Wire: Brass wire Work piece: SiC _P /6061A1 metal	*Servo voltage *Pulse-on time *Pulse-off time *Wire feed rate	*Cutting speed	Response surface methodology (RSM) and Artificial neural network (ANN) approach	*Maximum absolute percentage error of average cutting speed in the ANN prediction is 5.25%, while in RSM it is around 15.07%. *It is observed that the ANN model is three times better than RSM.	[68]
5	Vijay a Bhaskara Reddy et al. (2013)	Agiecut 220 WEDM	Wire: Zinc coated brass wire Work piece: WP7V steel	*Pulse duration *Open voltage *Wire speed *Dielectric *Flushing pressure	*Surface roughness	Artificial neural network	*In the prediction of surface roughness value the average errors for regression and neural network are found to be 13.97% and 6.07% respectively. It is observed that, Predicted values in neural network with two hidden layers are very close to the experimental results than regression.	[120]
6	Vamsi Krishna Pasam et al. (2010)	Robofil 310 CNC WEDM	Wire: Zinc coated brass wire Work piece: Titanium alloy	*Pulse current *Pulse duration *Pulse time *Servo speed *Servo voltage *Injection pressure *Wire speed *Wire tension	*Surface finish	Taguchi method and Genetic algorithm	*Mathematical model is obtained using regression analysis. *The developed model is optimized by genetic algorithm and surface roughness of 1.85µm is obtained with selected optimum parameters.	[115]
7	Esme U et al. (2009)	Acutex WEDM	Wire: Brass wire	*Pulse duration *Open circuit	*Surface roughness	Neural Network (NN) And Regression Analysis Model	*Prediction error value is 4.78% for NN and 7.17% for regression model thus NN yields better prediction	[29]

Unconventional approach Single-objective unconventional approach

		machine tool	Work piece:	voltage						
			AISI 4340 steel	*Wire speed						
				*Flushing						
				pressure						
				Mu	lti-Objective Unco	nventiona	al Approach			
S.NO	AUTHOR &	MACHINE	MATERIALS	PROCESS	PERFORMA	NCE	METHODOLOGY		FINDINGS	Reference
	YEAR			PARAMETER	R MEASURES					No.
1	Ravindranadh	Electronica	Wire:	*Pulse-on time	e *Material ren	noval	Buckingham pi theorer	n	*Rise in pulse-on time from 0.85µs to 1.25µs	[80]
	Bobbili et al.	machine tools	Brass wire	*Pulse-off time	e rate				causes improvement in MRR and minimize of	
	(2015)			*Peak current	*Surface rou	ghness			surface finish.	
			Work piece:	*Spark gap set						
			Aluminum all	oy voltage						
			7017							
2	Saeid Shakeri	Robofil 200	Wire:	*Pulse current	*Material ren	noval	Linear regression mode	el and	*Mean prediction error is 0773% for artificial	[87]
	et al. (2015)	WEDM	Zinc coated bi	rass *Pulse frequen	cy rate	1	teed forward backprop	agation	neural network and 2.547% for regression	
			wire	*Wire speed	*Surface rou	gnness	neural network		model	
			Work niece:	· servo speed						
			Cementation							
			allov steel							
3	M uthukumar V et	Electronica	Wire:	*Pulse-on time	*Material ren	noval	particle swarm optimiz	ation	*Best predicted MRR=0.03276g/min,	[56]
	al. (2014)	ecocut CNC	Not Mentione	d *Pulse-off time	e rate		algorithm		KW=0.2842mm and Ra=2.7694µm are	
		WEDM		*Wire feed	*Surface rou	ghness	0		obtained when $T_{ON}=6us$, $T_{OFF}=8us$, $GV=50v$	
			Work piece:	*Gap voltage	*Kerf width				and WF=10mm/min.	
			AISI D3 steel							
4	Nixon Kuruvila	CONCORD	Wire:	*pulse-on time	*Material ren	noval	Taguchi method an L1	6	*It is found that the pulse-on time increases	[64]
	and Ravindra	DK7720C	Molybdenum	*pulse-off time	e rate		orthogonal array with g	genetic	with increase in MRR and when T _{ON}	
	HV(2014)	WEDM	wire	*peak current	*Dimensiona	l error	algorithm		decreases good surface roughness is attained.	
		machine	Work nieses	* *bed-speed	*Surface rou	gnness			*Similarly smaller current is suggested for	
			Hot die steel	swittusting pre	ssure				better surface finish.	
5	Thella Babu Rao	CT 520A CN(Wire	*Particulate Si	ze *Wire wear	ratio	Non-dominated sorting	genetic	*In the proposed work evolutionary	[111]
5	and Gonala	WEDM	Not Mentione	ed *Volume of Si	C. *Surface rou	phness	algorithm-II	, genetic	algorithm NSGA-II was used to find the	[111]
	Krishna A (2014)		1,00,101,000,000	*Pulse-on time	*Material ren	noval	uigoritinii 11		optimal solutions.	
			Workpiece:	*Pulse-off time	e rate				*The optimal solution were confirmed by	
			Al7075/SiCp	Wire tension					taking SEM examinations.	
			metal matrix							
			composites							
6	Ugrasen G	Concord	Wire:	*Pulse-on time	*Accuracy		Multiple regression and	alysis	*By comparing the three theoretical methods	[113]
	et al. (2014)	DK7720C fou	r Molybdenum	*Pulse-off tim	e *Surface rou	ghness	(MRA), Group method	l data	tor estimation of machining performances, it	
		axes CNC	West '	*Peak current	* Volumetric	material	handling technique (GI	MDH), "la	was found that artificial neural network fitting	
		WEDM	WORK piece:	[∗] Bed speed	removal rate		Artificial neural netwo	ГК	runction has an edge over MIRA and GMDH	
			ENSI						*It is observed that neural network trained	
									with 70% of the data gives good prediction	
									results.	

7	Ugrasen G et al. (2014) Vates UK	Concord DK7720C four axes CNC WEDM Electronica-	Wire: Molybdenum Wire Work piece: Tungsten Carbide cobalt Wire:	*Pulse-on time *Pulse-off time *Peak current *Bed speed *Gap voltage	*Accuracy *Surface roughness *Volumetric material removal rate *Material removal	Back propagation feed forward neural network (BPNN) and Levenberg-Marquardt algorithm (LMA) Response surface methodology	*It is observed that neural network trained with 70% of the data in training set gives good prediction results. *It is found that predicted root mean square of	[114]
	et al. (2014)	Maxicut	Chromium coated Copper alloy wire Work piece: D2 die steel	*Flush rate *Pulse-on time *Pulse-off time *Wire feed *Wire tension	rate *Surface roughness	(RSM) and Artificial neural network	surface roughness using ANN is 1.90%, while in RSM is 9.322%. Thus it is concluded that ANN is best modelling tool for surface roughness than RSM	
9	Mohinder P Garg et al. (2012)	Electronica 4 axis sprintcut CNC WEDM	Wire: Brass wire Workpiece: Titanium alloy	*Pulse on time *Pulse off time *Peak current *Servo voltage *Wire feed *Wire tension	*Cutting speed *Surface roughness	Non-dominated sorting genetic algorithm-II	*From the validation it shows that the prediction results are very close to the experimental results	[54]
10	Rajarshi Mukherjee et al. (2012)	Elekita Maxi- cut 434 CNC WEDM	Wire: Brass wire Work piece: Inconel 601	*Pulse duration current *Pulse frequency *Wire speed *Wire tension *Dielectric flow rate	*Material removal rate *Surface roughness *Kerf width	Ant colony optimization Genetic algorithm Particle swarm optimization Sheep flock algorithm Artificial bee colony Biogeography- based optimization	*MRR of 0.173 g/min, KW of 0.208mm and Ra of 6.630mm obtained when pulse duration= 10.95ms, frequency=42.92KHz, wire speed=7.62m/min, wire tension=1161.72g and dielectric flow rate=1.32bars.	[72]
11	Abolfazl Golshan et al. (2011)	ONA R250 series 5-axis WEDM	Wire: Brass wire Work piece: Cold-work steel 2601	*Electrical current *Pulse-Off time *Gap voltage	*Surface roughness *Material removal rate	Non-Dominated Sorting Genetic Algorithm (NSGA-II)	*Surface roughness of $2.754(\mu m)$ and MRR of $6.698(mm^3/min)$ and after optimization using genetic algorithm, it is noticed that Ra reduced to value of $2.716(\mu m)$ while MRR increased to 11.0936 (mm ³ /min).	[3]
12	Kapil kumar and Sanjay Agarwal (2011)	Sprint-cut CNC Wire EDM	Wire: Zinc coated copper wire Work piece: M2 high speed steel	*Pulse-on time *Pulse-off time *Wire feed *Wire tension **Flushing pressure *Pulse peak current	*Surface roughness *Material removal rate	Taguchi method and non- dominated sorting genetic algorithm-II	*It is found that the material removal rate and surface finish is influenced by pulse peak current, pulse-on time, pulse-off time and wire feed. *The results also indicate that the material removal rate and surface roughness vary linearly.	[42]
13	Sarkar S et al. (2008)	Supercut 734 WEDM	Wire: Not Mentioned Work piece: Not Mentioned	*Pulse-on time *Peak current *Flow rate *Wire offset	*Surface roughness *Dimensional accuracy *Cutting speed	Response surface methodology (RSM) and it is optimized by desirability function approach and Pareto algorithm	*The developed Pareto optimization algorithm is superior compared to desirability function approach.	[92]

14	Dan Scott et al. (2007) Sarkar S et al. (2005)	ROBOFIL 100 CNC WEDM Electra Supercut 734 Series 2000 CNC	Wire: Not Mentioned Work piece: D2 tool steel Wire: Brass wire Work piece: γ-titanium	*Pulse duration *Discharge current *Pulse frequency *Wire tension *Wire speed *Pulse-on time *Pulse-off time *Peak current *Wire tension	*Surface roughne *Wire wear ratio *Spark gap *Cutting rate *Cutting speed *Wire offset	Explicit Enumeration And Dynamic Programming Feed-forward back-propag neural network	 Maximum MRR obtained when (T=1.35 μs, I=1.405 A, PF=0.725 kHz, WT=1.159 kg, FR=0.315 liters/min and WS=0.338 m/min). *Minimum Ra obtained when (T=0.36 μs, I=0.118 A,PF=0.119 kHz, WT=0.098 kg, FR=0.096 liters/min and WS=0.047 m/min). *Surface quality decreases as the cutting speed increases and the value of surface roughness is 2.44μm and a cutting speed is 2.65mm/min. 	[24]
		WEDM	aluminide	*Flow rate *Servo voltage				
			1	Serve voluge	Hybrid app	roach	1	<u> </u>
					single-objective hy	brid approach		
S.NO	AUTHOR &	MACHINE	MATERIALS	PROCESS	PERFORMANCI	E METHODOLOGY	FINDINGS	Reference
1	YEAR		117'	PARAMETER	MEAS URES			No.
1	Neeraj Sharma et al. (2014)	Electronica sprintcut 734 CNC	Wire: Brass wire	*Pulse-on time *Pulse-off time	*Overcut	coupled with Genetic algorith	gy $^{\circ}$ I ne optimum response characteristics overcut is 9.9922 um obtained when $T_{ov}=117$ us	[0]]
	et ul. (2014)	WEDM'	Diass whe	*Peak current		(GA)	$T_{OFF}=50 \text{ us. IP}=180 \text{ A}, \text{ SV}=49 \text{ V} \text{ and WT}=6 \text{ g}$	
			Work piece:	*Wire tension				
_	_		HSLA	*Gap voltage				
2	Pragya Shandilya et al	Ecocut WEDM	Wire: Diffused brase	*Servo voltage *Pulse-on time	*Kerf width	ANN integrated with genetic	*M aximum percentage absolute error between the experimental value and ANN predicted	[67]
	(2014)		wire	*Pulse-off time			value is 5.34%, while 2.39% with genetic	
	``´			*Wire feed			algorithm.	
			Work piece:					
			Aluminium					
3	Shandilya A	Ecocut WEDM	Wire:	*Servo voltage	*Surface roughnes	ss Response surface methodolog	*The maximum percentage absolute error	[99]
5	et al. (2012)	Lessen HEDIN	Diffused brass	*Pulse-on time	Surface roughild	with	between the experimental value and GA	[]
			wire	*Pulse-off time		genetic algorithm	predicted value is 3.5%.	
			X7 1 ·	*Wire feed rate				
			work piece: SiC _p / 6061 A1					
			MMC					
μ	I		-	Mu	ılti-Objecti ve Hybr	rid Approach		1
S.NO	AUTHOR &	MACHINE	MATERIALS	PROCESS	PERFORMANCE	MEIHODOLOGY	FINDINGS	Reference
	YEAR			PARAMETER 1	MEASURES			No.
1 1	Ravindranadh	Electronica	Wire	*Pulse_on time *	Material removal	Taguchi method counled with	*Ontimum response characteristics such as GC Ra and	1701

	YEAR			PARAMETER	MEASURES			No.
1	Ravindranadh	Electronica	Wire:	*Pulse-on time	*Material removal	Taguchi method coupled with	*Optimum response characteristics such as GC, Ra and	[79]
	Bobbili et al.	CNC WEDM'	Not Mentioned	*Pulse-off time	rate	grey relation analysis	MRR are improved with 6% error by employing GRA.	
	(2015)			*Peak current	*Surface roughness			
			Work piece:	*Spark gap set	*Gap current			
			Ballistic grade	voltage				
			aluminum alloy					

							-	
2	Zhen Zhang et al. (2015)	5-axis CNC WEDM'	Wire: Not Mentioned Work piece: Not Mentioned	*Pulse-on time *Pulse current *Water pressure *Wire feed rate	*White layer thickness *Surface crack density *Surface roughness	Back propagation neural network (BPNN) integrated with genetic algorithm	*From the optimization, it is found that minimum Ra obtained when $(T_{ON}=8.09\mu s, I=2.05A, WP=2.42kg/cm^2$ and WF=0.55mm/min), minimum WLT obtained when $(T_{ON}=9.08\mu s, I=3.29 A, WP=6.79kg/cm^2 and$ WF=0.78mm/min) and the minimum SCD of obtained when $(T_{ON}=8.76\mu s, I=2.24 A, WP=4.36kg/cm^2 and WF=0.$ 39mm/min).	[125]
3	Varun A et al. (2014)	Ultracut WEDM	Wire: Not Mentioned Work piece: EN353 steel	*Pulse-on time *Pulse-off time *Servo voltage *Peak current	*Material removal rate *Surface roughness *Kerf widh	Grey relational analysis (GRA) coupled with Genetic algorithm (GA)	*From the optimization, it is found that maximum MRR= $8.522 \text{ mm}^3/\text{min}$, minimum Ra= $1.19 \mu \text{m}$ and KW= 0.33mm obtained when T _{ON} = $109 \mu \text{s}$, T _{OFF} = $52 \mu \text{s}$, SV= 13ν and IP= 12A .	[116]
4	Ali Vazini Shayan et al. (2013)	Tehran ekram CNC AW-500	Wire: Not Mentioned Work piece: tungsten carbide	*Pulse-on time *Pulse-off time *Gap set voltage *Discharge current *Wire tension	*Current velocity *Surface roughness *oversize	Back propagation neural network with Particle swarm optimization	*Results indicated that BPNN-PSO has superiority in finding optimal solutions rather than mathematical model.	[6]
5	Probir Saha et al. (2013)	Electra Maxicut-523 CNC WEDM	Wire: Brass wire Work piece: Titanium Carbide reinforced manganese steel	*Pulse-on time *Pulse-off time *Gap voltage *Wire feed rate	*Cutting speed *Kerf width	Hybridization of a radial basis function network (RBFN) and non-dominated sorting genetic algorithm (NSGA-II)	*Increase in the average gap voltage lead to the decrease of cutting speed but increase of kerf width * It was found that the proposed technique is superior to the weighted sum method.	[71]
6	Resa Kashiry Fard et al. (2013)	Tehran ekram CNC AW-500 WEDM	Wire: Brass wire Workpiece: Al-SiC metal matrix composite	*Pulse-on time *Pulse-off time *Gap voltage *Discharge current *Wire feed *Wire tension	*Cutting velocity *Surface roughness	ANFIS-ABC technique	 *It is found that pulse-on time and discharge current were found to be the significant parameters. *Optimal results were obtained through ANFIS-ABC technique. 	[82]
7	Subramanyam SV et al. (2013)	Sprintcut ELPULS 40A DLX CNC WEDM	Wire: Zinc coated copper wire Work piece: H13 die steel	**Spark gap voltage *Pulse-on time *Pulse-off time *Peak current *Wire tension *Wire feed rate *Flushing pressure	*Material removal rate *Surface roughness	Grey-Taguchi method	*Study is made to establish mathematical models to find the optimal values for SR and MRR.	[105]
8	Amini H et al. (2011)	R250 High- precision 5-axis CNC WEDM	Wire: Not Mentioned Work piece: Titanium diboride	*Wire feed *Power *Voltage *Servo *Time off	*Surface roughness *Material removal rate	Artificial neural network and Genetic algorithm	*MaterialRemoval rate increases and surface roughness increases with increase in the power and voltage. *GA helps to predict the optimal parametric setting for WEDM, which is 94% accurate.	[8]

9	Rong Tai Yang et	CW-430F CNC WEDM'	Wire: Brass wire	*Pulse-on time *Pulse-off time	*Material removal	Response surface methodology (RSM) and back-propagation	*BPNN/SAA approach produced better quality than the RSM method	[84]
	ul. (2011)	W EDIN	Work niece:	*Servo voltage	*Surface roughness	neural network (BPNN)		
			Pure tungsten	*Wire feed rate	*Corner deviation	integrated simulated annealing		
			0.00	*Wire tension		algorithm		
				*Flushing				
				pressure				
10	Hsien-Ching	CW-430F	Wire:	*Pulse time	*Cutting velocity	Integration of back-propagation	*From the results it shows that BPNN/SAA method is	[38]
	Chen	WEDM	Brass wire	*Servo voltage	*Surface roughness	neural network (BPNN) and	effective tool for optimization of WEDM	
	et al. (2010)		Work piece:	*Wire feed rate		simulated annealing algorithm	Process parameters.	
			Pure tungsten	*Wire tension		(SAA)		
				*Water pressure				
11	Muthu Kumar V	Electronica	Wire:	*Gap voltage	*Material removal	Grey-Taguchi method	*It is found that material removal rate shows an increased	[55]
	et al.(2010)	Ecocut CNC	Brass	*Pulse-on time	rate		from 0.05351 g/min to 0.05765 g/min, the surface	
		Wedm	Workpiece:	*Pulse-off time	*Surface roughness		roughness shows a reduced value of 3.31 µm to 3.10 µm and	
			Incoloy 800	*Wire feed	*Kerf width		kerf width reduces from 0.324 to 0.296mm	
12	T zeng C-J	CW-430F	Wire:	*Pulse-on time	*Surface roughness	Back propagation neural network	*The predicted value from RSM model for MRR is 0.2532	[112]
	et al. (2010)	WEDM	Brass wire	*Pulse-off time	*Material removal	integrated with genetic algorithm	g/min and Ra is 1.3625 µm, while in BPNN/GA for MRR	
			Work piece:	*Servo voltage	rate	and Response surface	is 0.2731 g/min and Ra is 1.3197 µm. Thus the proposed	
			Pure tungsten	*Wire feed rate		methodology	BPNN/GA approach gives better prediction than RSM	
				*Wire tension			method.	
				*Water pressure				
13	Shajan kuriakose	Robofil 310	Wire:	*Pulse-on time	*Cutting velocity	Non-dominated sorting genetic	*In this paper it is found that hybridization will increase	[98]
	and Shunmugam	WEDM	Zinc coated brass	*Pulse-off time	*Surface finish	algorithm	production rate considerably by reducing the machining	
	M S (2005)		wire	*Wire speed			time.	
			Workpiece:	*Wire tension				
			Titanium alloy	*Servo voltage				
				*Injection				
1.4	TI STOT	No. Mandana	XX7	pressure	*14.4.1.1.1.1.1.1		*T 11 (1	[27]
14	Huang J.T & Liao	Not Mentioned	wire:	*Pulse-on time	* Material removal	aguent coupled with grey	* I able feed rate and I on have the main influence in MRR.	[3/]
	1.5 (2003)		Brass wire	*Pulse-off time	rate	relational analysis	*Ton have similiant influence on C and Da	
			Worknisse	* wire velocity	* Gap widin		Tom has a significant influence on G and Ka.	
			SKD11 allow	*Wire tension	· Surface roughness			
1			SKD11 alloy	w ne tension			1	

Conclusion

From the literature review it is found that material removal rate is mostly influenced by pulse on time and pulse off time. The surface roughness is predominantly depends on pulse on time and servo voltage. Machining voltage and pulse duration determines the Kerf width, and dimensional deviation is influenced by pulse duration and wire tension.

Future Work

From this paper it is understood that there is a need for increasing the accuracy of the prediction of optimal process parameter, which may be solved by hybridization for developing an expert system to provide optimal process parameters to achieve desired performance measures for different materials in CNC wire cut EDM.

Reference

1. Abdulkareem S, Khan AA and Zain ZM. Effect of machining parameters on surface roughness during wet and dry wire-EDM of stainless steel. Journal of Applied Sciences. 2011; ISSN 1812-5654.

2. Abinash Kumar Swain, Siddhartha Ray and Nirmal Kumar Mandal. Study on Kerfwidth in wire-EDM based on taguchi method. Applied Mechanics and Materials.2012; Vol. 110-116, PP 1808-1816.

3. Abolfazl Golshan, Soheil Gohari and Amran Ayob. Computational intelligence in optimization of wire electrical discharge machining of cold-work steel 2601. International Journal of Mechanical Engineering.2011; 04.

4. Adeel Ikram, Nadeem Ahmad Mufti, Muhammad Qaiser Saleem and Ahmed Raza Khan. Parametric for surface roughness, kerf and MRR in wire electrical discharge machining (WEDM) using taguchi design of experiment. Journal of mechanical science and technology. 2013; 27(7), 2133-2141.

5. Ahmet Hascalyk and Ulas Caydas. Experimental study of wire electrical discharge machining of AISI D5 tool steel. Journal of Materials Proceeding Technology.2004; Vol. 148:362-367.

6. Ali Vazini Shayan, Reza Azar Afza and Reza Teimouri. Parametric study along with selection of optimal solutions in dry wirecut machining of cemented tungsten carbide (WC-CO). Journal of Manufacturing Processes.2013.

7. Alpesh M Patel and Vishal Achwal. Optimization of parameters for Wedm machine for productivity improvement. IOSR Journal of Mechanical and Civil Engineering.2015; Vol. 9, Issue No 5.

8. Amini H, Soleymani Yazdi MR and Dehghan GH. Optimization of process parameters in wire electrical discharge machining of TiB_2 nanocomposite ceramic. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture.2011.

9. Amitava Mandal, Amit Rai Dixit, Alok Kumar Das and Niladri Mandal. Modelling and optimization of machining nimonic C-263 super alloy using Multi-cut strategy in WEDM. Materials and Manufacturing Process.2015.

10. Amitesh Goswami and Jatinder Kumar. Optimization in wire-cut EDM of nimonic-80A using Taguchi's approach and utility concept. Engineering Science and Technology, an International Journal.2014; 17: 236-246.

11. Anish Kumar, Vinod Kumar and Jatinder Kumar. Prediction of surface roughness in wire electric discharge machining WEDM process based on response surface methodology. International Journal of Engineering and Technology.2012; Vol. 2, No. 4.

12. Aniza Alias, Bulan Abdullah and Norliana Mohd Abbas. Influence of machine feed rate in WEDM of titanium Ti-6Al-4V with constant current (6A) using brass wire. Procedia Engineering.2012; 41: 1806-1811.

13. Arjun Biloria and Rupinder Singh. Optimizing the parameters influence the performance of wire cut EDM machining. International Journal of current Engineering and Technology.2014; Vol.4, No. 5.

14. Aqueel shah, Nadeem A. Mufti, Dinesh Rakwal and Eberhard Bamberg. Material removal rate, kerf and surface roughness of tungsten carbide machined with wire electrical discharge machining. Journal of Materials Engineering and Performance.2011; Vol. 20: 71-76.

15. Baljit Singh, Pabla BS, Manju Saroha. Investigating the effect of process parameters on MRR in WEDM using molybdenum wire. International Journal of Engineering, Business and Enterprise Applications.2014; ISSN 2279-0039.

16. Basil Kuriachen, Josephkunju Paul and Jose Mathew. Modelling of wire electrical discharge machining parameters using titanium alloy (Ti-6AL-4V). International Journal of Emerging Technology and Advanced Engineering.2012; Vol. 2, Issue 4.

17. Bijender Singh. Optimization of process parameter on performance measure of WEDM of SS 410. International Journal of Enhanced Research in science Technology & Engineering.2015; PP: 296-304.

18. Boopathi S and Sivakumar K. Experimental investigation and parameter optimization of near-dry wire-cut electrical discharge machining using multi-objective evolutionary algorithm. International Journal of Advanced Manufacturing Technology.2012.

19. Brajesh Kumar Lodhi and Sanjay Agarwal. Optimization of machining parameters in WEDM of AISI D3 steel using Taguchi technique. Procedia CIRP.2014; PP: 194-199.

20. Chengal Reddy V, Deepthi N and Jayakrishna N.Multiple response optimization of wire EDM on aluminium HE30 by using grey relational analysis. Materials today Proceedings.2015; Vol. 2, PP: 2548-2554.

21. Chockalingam K, Jawahar N, Jeyaraj KL, Kesavasubramanian C and Bharathwaj RG. Optimization of CNC wire EDM process parameters and establishment polynomial process model for multiple performance measures. Elixir Mech. Engg.2012; 50: 10420-10433.

22. Dain Thomas, Rajeev Kumar, Singh GK, Prasanth Sinha, Sachin Mishra. Modelling of process parameters in coated wire electric discharge machining through response surface methodology. Materials today Proceedings.2015; Vol. 2, PP: 1642-1648.

23. Danial Ghodsiyeh, Abolfazl Golshan and Izman S. Multiobjective process optimization of wire electrical discharge machining based on response surface methodology. J Braz. Soc. Mech. Sci. Eng.2013.

24. Dan Scott, Sreedhar Boyina and Rajurkar KP. Analysis and optimization of parameter combinations in wire electrical discharge machining. International Journal of Production Research.2007; PP: 2189-2207.

25. Dhruvh H Gajjar and Prof. Jayesh V Desi. Optimization of MRR, surface roughness and kerf width in wire EDM using molybdenum wire. International Journal for Research in Education.2015; ISSN: 2320-091X.

26. Dipti Ghanashyam Gonjari. Investigation of effect of WEDM process parameters on performance measures of tool steel grade AISI D7. IRACST- Engineering Science and Technology: An International Journal.2014; Vol.4, No.5.

27. Dodun Oano, Metricaru Vasile, Slatineanu Laurentiu and Coteata Margareta. Optimization of the wire electrical discharge machining process using grey relational analysis and taguchi method. Key Engineering Materials.2015; PP: 651-653.

28. Durairaj M, Sudharsun D and Swamynathan N. Analysis of process parameters in wire EDM with stainless steel using single objective taguchi method and multi objective grey relational grade. International Conference on Design and Manufacturing.2013; 64: 868-877.

29. Esme U, Sagbas A and Kahraman F. Prediction of surface roughness in wire electrical discharge machining using design of experiments and neural networks. Iranian Journal of Science & Technology.2009; PP: 231-240.

30. Farnaz Nourbakhsh, Rajurkar KP, Malshe AP and Jain cao. Wire electro-discharge machining of titanium alloy. Procedia CIRP Conference on Biomanufacturing.2013; PP: 13-18.

31. Ganesh Dongre, Sagar Zaware, Uday Dabade and Suhas S Joshi. Multi-objective optimization for silicon wafer slicing using wire-EDM process. Materials Science in Semiconductor Processing.2015; 30: 793-806.

32. Garg MP, Ajai Jain and Gian Bhushan. Multi-objective Optimization of Process Parameters in Wire Electric Discharge Machining of Ti-6-2-4-2 alloy. Arab J Sci Eng.2014; 39:1465-1476.

33. Geetha M, Bezawada Sreeinivasulu, Harinath Gowd G. Modelling & analysis of performance measures of wire EDM of SS304. International Journal of Innovative Technology and Exploring Engineering.2013; Vol. 3, Issue-4.

34. Giovanna Gautier, Paolo C, Priarone, Stefania Rizzuti, Luca Settineri and Vincenzo Tebaldo. A contribution on the modelling of wire electrical discharge machining of a γ -TiAl alloy. Procedia CIRP.2015; 31: 203-208.

35. Goswami Amitesh and Kumar Jatinder. An investigation into the machining characteristics of Nimonic 80A using CNC wire-EDM. International Journal of Advanced Engineering Technology.2012; ISSN: 0976-3945.

36. Hewidy MS, El-Taweel TA and El-Safty MF. Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. Journal of Materials Processing Technology.2005; 169: 328-336.

37. Huang JT and Liao YS. Optimization of machining parameters of Wire-EDM based on grey relational and statistical analyses. International Journal of Production Research. 2003; Vol. 41, No. 8, 1707-1720.

38. Hsien-Ching Chen, Jen-Chang Lin, Yung-Kuang Yang and Chih-Hung Tsai. Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert System with Application.2010; 37: 7147-7153.

39. Islam MN, Rafai NH and Subramanian SS. An investigation into dimensional accuracy achievable in wire-cut electrical discharge machining. Proceedings of the world congress on Engineering.2010; Vol. III, ISSN: 2078-0966.

40. Kamal Jangra, Ajai Jain and Sandeep Grover. Optimization of multiple-machining characteristics in wire electrical discharge machining of punching die using grey relational analysis. Journal of Scientific & Industrial Research.2010; PP: 606-612.

41. Kanlayasiri, K. and Boonmung S. Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: Design of experiments and regression model. J. Mater. Processes Technol.2007; 192-193: 459-464.

42. Kapil Kumar and Sanjay Agarwal. Multi-objective parametric optimization on machining with wire electric discharge machining. International Journal of Advance Manufacturing Technology.2011; 62:617-633.

43. Kashid DV, Bhatwadekar SG, Sangale SB and Kubade PR. Investigation of effect of process parameters on material removal rate in wire-cut electrical discharge machining of steel grade EN9. International Journal of Emerging Engineering Research and Technology.2014; PP: 31-35.

44. Krishna Prasad VS, Rajyalakshmi G and Venkata Ramaiah P. Simulation and modelling of performance characteristic of wire cut EDM on Inconel 825 using multiple regression and ANN. International Conference on Mathematical Computer Engineering.2013; PP: 147-155.

45. Kumar K and Ravikumar R. Modeling and optimization of wire EDM process. International Journal of Modern Engineering Research.2014; PP: 1645-1648.

46. Liao Yu and Yu Yp. Study of specific discharge energy in WEDM and its application. International Journal of Machine tool Manufacturing.2004; Vol. 44: 1373-1380.

47. Lokeshwara Rao T and Selvaraj N. Optimization of WEDM process parameters on titanium alloy using taguchi method. International Journal of Modern Engineering Research. 2013; PP: 2281-2286.

48. Mahapatra SS and Amar Patnaik. Parametric optimization of wire electrical discharge machining process using Taguchi method. Journal of the Brazilian Society of Mechanical Science & Engineering.2006; Vol. XXVIII, No.4.

49. Manna A and Bhattacharyya B. Taguchi and gauss elimination method: A dual response approach for parametric optimization of CNC wire cut EDM of PRAISiCMMC. International Journal of Manufacturing Technology.2006; 28:67-75.

50. Manoj Malik, Rakesh Kumar Yadav, Nitesh Kumar, Deepak Sharma and Manoj. Optimization of process parameters of wire EDM using zinc-coated brass wire. International Journal of Advanced Technology & Engineering Research.2012; Vol. 2, Issue No. 4.

51. Meena KL, Manna A, Banwait SS and Jaswanti. Parametric effects during nonconventional machining of PR-AL-SiC-MMC, S by CNC wire cut EDM. International Journal of Engineering and Innovative Technology.2013; Vol. 3, Issue No. 1.

52. Milton Peter J, Arjun ST, Praywin J, Manoj M and Parameash L. Optimization of multiple process parameters of wire electrical discharge machining on Inconel 718 using taguchi method. International Conference on Recent Advances in Engineering, Science & Technology.2015; ISSN: 2394-3777.

53. Mohd Shahir Kasim, Nor Fakhriah Zakaria and Che Hasan Che Haron. Modelling and optimization of cutting parameter during wire-EDM of Inconel 718 using response surface methodology. ResearchGate.2015; 274375364.

54. Mohinder P Garg, Ajai Jain and Gian Bhushan. Modelling and multi-objective optimization of process parameters of wire electrical discharge machining using non-dominated sorting genetic algorithm-II. Proceedings of the Institution of Mechanical Engineerings, Part B: Journal of Engineering Manufacture.2012.

55. Muthukumar V, Suresh Babu, Venkatasamy R and Raajenthiren M. Optimization of the WEDM parameters on Machining Incoloy800 Super alloy with Multiple Quality Characteristics. International Journal of Engineering Science and Technology.2010; Vol. 2(6):1538-1547.

56. Muthukumar V, Suresh Babu, Venkatasamy R and Senthil Kumar N. An accelerated particle swarm optimization algorithm on parametric optimization of WEDM of die-steel. J. Inst. Eng. India Ser. C.2014.

57. Nagaraja R, Chandrasekaran K and Shenbhgaraj S. Optimization of parameter for metal matrix composite in wire EDM. International Journal of Engineering Sciences & Research Technology.2015; ISSN: 2277-9655.

58. Naga Raju B, Raju Roy B, Rajesh S and Ramji K. Optimization of machining parameters for cutting AMMC's on wire cut EDM using RSM. International Journal of Engineering Trends and Technology.2015; ISSN: 2231-5381.

59. Nandakumar C, Mohan B, Senthilkumar C and Vickram K. Modelling and optimization of WEDM of titanium. Applied Mechanics and Materials.2015; PP: 873-877.

60. Nanadakumar C, Mohan B and Srisathirapathy S. Optimization of process parameters of titanium alloy grade 5 using cnc wire-cut EDM. Advanced Materials Research.2014; Vol. 984-985 PP: 56-61.

61. Neeraj Sharma, Rajesh Khanna and Rahul Dev Gupta. WEDM process variables investigation for HSLA by response surface methodology and genetic algorithm. Engineering Science and Technology. An International Journal.2014; PP: 1-7.

62. Neeraj Sharma, Rajesh Khanna, Rahul Dev Gupta and Renu Sharma. Modeling and multiresponse optimization on WEDM for HSLA by RSM. International Journal of Advanced Manufacturing Technology.2013; 67:2269-2281.

63. Nihat Tosun, Can Cogun and Gul Tosun. A study on kerf and Material removal rate in wire electrical discharge machining based on taguchi method. Journal of Materials Processing Technology.2004; Vol. 152:316-322.

64. Nixon Kuruvila and Ravindra HV. Parametric influence and optimization of wire EDM of hot die steel. Machining Science and Technology.2014; PP: 15:47-75.

65. Parveen Kr Saini and Mukesh Verma. Experimental investigation of wire-EDM process parameters on MRR of Ti-6al-4v alloy. International Journal of Innovative Technology and Exploring Engineering\.2014; Vol. 4, Issue No. 5.

66. Piyush Pant, Navneet K Pandey, Rajesha S and Gaurav Jain. Experimental study of surface roughness in WEDM process and ANN modelling. International Journal of Engineering and Advanced Technology. 2014; ISSN: 2249-8958.

67. Pragya Shandilya and Abhishek Tiwari. Artificial neural network modelling and optimization using genetic algorithm of machining process. Journal of Automation and Control Engineering.2014.

68. Pragya Shandilya, Jain PK and Jain NK. RSM and ANN modelling approaches for predicting average cutting speed during WEDM of $SiC_p/6061$ Al MMC. Procedia Engineering.2013; 64: 767-774.

69. PrashantSinha, Rajeev Kumar, Singh GK and Dain Thomas. Multi-Objective Optimization of wire EDM of AISI

D3 tool steel using Orthogonal Array with principal component analysis. Materials today: proceedings.2015; 2:3778-3787.

70. Pratik A Patil and Waghmare CA. Optimization of process parameters in wire-EDM using response surface methodology. Proceedings of 10th IRF International Conference.2014; ISBN: 978-93-84209-23-0.

71. Probir Saha, Debashis Tarafdar, Surijya K Pal, Partha Saha, Ashok K Srivastava and Karabi Das. Multi-objective optimization in wire-electro discharge machining of TiC reinforced composite through neuro-genetic technique. Applied Soft Computing.2013; PP: 2065-2074.

72. Rajarshi Mukherjee, Shankar Chakraborty and Suman Samanta. Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms. Applied Soft Computing.2012; 12: 2506-2516.

73. Rajendran S and Marimuthu K. Mathematical modelling of material removal rate of T90 Mn2W50Cr45 tool steel in wire electrical discharge machine. International Journal of Mechanical and Materials Engineering.2012; 3: 203-208.

74. Rajesh Kumar, KrishanKant, Varun Gandhi and Mohit Bector. Performance study of wire cut electric discharge machining process by using taguchi's parameter design approach. International Journal of Engineering Inventions.2013; PP: 38-47.

75. Rajyalakshmi G and Venkata Ramaiah P. Multiple process parameter optimization of wire electrical discharge machining on Inconel 825 using Taguchi grey relational analysis. International Journal Advanced Manufacturing Technology.2013; DOI 10.1007/s0o170-013-5081-z.

76. Ramakrishnan R and Karunamoorthy L. Multi response optimization of wire EDM operations using robust design of experiments. International Journal of Advance Manufacturing technology.2006; 29: 105-112.

77. Ramamurthy A, Sivaramakrishnan R, Venugopal S and Muthuramalingam T. Application of Taguchi-grey relational methodology for multiple optimal performance measures in WEDM process. Applied Mechanics and Materials.2015; PP: 861-866.

78. Ramamurthy A, Sivaramakrishnan R, Venugopal S and Muthuramalingam T. Multi-response optimization of wire-EDM process parameters of titanium alloy using taguchi method and grey relational analysis. Applied Mechanics and Materials.2015; PP: 245-249.

79. Ravindranadh Bobbili, Madhu V and Gogia AK. Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials. Engineering Science and Technology, an International Journal.2015; PP: 1-5.

80. Ravindranadh Bobbili, Madhu V and Gogia AK. Multi response optimization of wire-EDM process parameters of ballistic grade aluminium alloy. Engineering Science and Technology. An International Journal.2015; PP: 1-7.

81. Ravindranadh Bobbili, Madhu V and Gogia AK. Effect of wire-EDM machining parameters on surface roughness and material removal rate of high strength armor steel. Materials and Manufacturing processes.2013; Vol. 28: PP 364-368.

82. Reza Kashiry Fard, Reza Azar Afza and Reza Teimouri. Experimental investigation, intelligent modelling and multicharacteristics optimization of dry WEDM process of Al-SiC metal matrix composite. Journal of Manufacturing Process.2013; Vol. 15:483-494. 83. Rizauddin Ramli, Roazam Ahmad and Jaharah Abd Ghani. Kerf width optimization in wire-cut electrical discharge machine by using Taguchi method. Jurnal Teknologi.2012; ISSN: 0127-9696.

84. Rong Tai Yang, Chorng Jyh Tzeng, Yung Kuang Yang and Ming Hua Hsieh. Optimization of wire electrical discharge machining process parameters for cutting tungsten. International Advance Manufacturing Technology.2011; 60: 135-147.

85. Routara BC, Nanda BK and Patra DR. Parametric optimization of CNC wirecut EDM using grey relational analysis. International Conference on Mechanical Engineering.2009.

86. Sachin Dev Barman and Ajay Suryavanshi. Multi objective optimization for wire EDM of WC-CO composite using GRA with entropy measurement. ELK Asia Pacific Journals.2015; ISBN: 978-81-930411-4-7.

87. Saeid Shakeri, Aazam Ghassemi and Mohsen Hassani. Investigation of material removal rate and surface roughness in wire electrical discharge machining process for cementation alloy steel using artificial neural network. International Advance Manufacturing Technology.2015.

88. Sanjeev KR Garg, Alakesh Manna and Ajai Jain. Multiobjective optimization of machining characteristics during wire electrical discharge machining of Al/ZrO₂-particulate reinforced metal matrix composite. Journal of Engg. Research.2013; PP: 145-160.

89. Sankara Narayanan G and Vasudevan D. A mathematical model for wire cut electrical discharge machine parameters using artificial neural network. Advanced Materials Research.2014; PP: 9-14.

90. Sarkar S, Mitra S and Bhattacharyya B. Parametric optimization of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model. International Advance Manufacturing Technology.2005; 27: 501-508.

91. Sarkar S, Mitra S and Bhattacharyya B. Parametric analysis and optimization of wire electrical discharge machining of δ -titanium aluminide alloy. Journal of Materials Processing Technology.2005; Vol. 159: 286-294.

92. Sarkar S, Sekh M, Mitra S and Bhattacharyya B. Modeling and optimization of wire electrical discharge machining of γ -TiAl in trim cutting operation. Journal of Materials Processing Technology.2008; 205: 376-387.

93. Sathishkumar D, Kanthababu M, Vajjiravelu, Anburaj R, Thirumalai Sundarrajan and Arul H. Investigation of wire electrical discharge machining characteristics of Al/6063/SiC_p composites. International Journal of Advance Manufacturing Technology.2011; Vol. 56: 975-986.

94. Saurav Datta and Siba Sankar Mahapatra. Modelling, simulation and parametric optimization of wire EDM process using response surface methodology coupled with grey-Taguchi technique. International Journal of Engineering, Science and Technology.2010; Vol. 2, No. 5, PP 162-183.

95. Selvakumar G, Sornalatha G, Sarkar S and Mitra S. Experimentation investigation and multi-objective optimization of wire electrical discharge machining of 5083 aluminum alloy. Transactions of Nonferrous Metals Society of china.2014; PP: 373-379.

96. Selvakumar G, Soumya Sarkar and Souren Mitra. Experimental investigation on die corner accuracy for wire electrical discharge machining of monel 400 alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture.2012; Vol. 226:1694.

97. Shah CD, Mevada JR and Khatri BC. Optimization of process parameter of wire electrical discharge machine by response surface methodology on Inconel-600. International Journal of Emerging Technology and Advanced Engineering.2013; Vol. 3, Issue 4.

98. Shajan Kuriakose and Shanmugam MS. Multi-objective optimization of wire-electro discharge machining process by Non-Dominated Sorting Genetic Algorithm. Journal of materials processing technology.2005; 170:133-141.

99. Shandilya A Pragya and Jain PK. Genetic algorithm based optimization during wire electric discharge machining of metal matrix composite. Proceedings of 23rd International DAAAM Symposium.2012; ISSN: 2304-1382.

100. Shinde VD and Anand S Shivade. Parametric optimization of surface roughness in wire electric discharge machining using Taguchi method. International Journal of Recent Technology and Engineering.2014; ISSN: 2277-3878.

101. Singh H and Garg R. Effect of process parameters on material removal rate in WEDM. Journal of Achievements in Materials and Manufacturing Engineering. 2009; Vol. 32, Issue. 1.

102. Sivakiran S, Bhaskar Reddy C and Eswara Reddy C. Effect of process parameters on MRR in wire electrical discharge machining of EN31 steel. International Journal of Engineering Research and Applications.2012; PP: 1221-1226.

103. Sivanaga Malleswara Raouthor S and Parameswara Rao Ch VS. Optimization and influence of process parameters for machining with WEDM. International Journal of Innovative Research in Science, Engineering and Technology.2014; Vol. 3, Issue 1.

104. Sivaraman B, Eswaramoorthy C and Shanmugham EP. Optimal control parameters of machining in CNC wire-cut EDM for titanium. International Journal of Applied Sciences and Engineering Research.2015; ISSN 2277-9442.

105. Subramanyam SV and Sarcar MMM. Evaluation of optimal parameters for machining with wire cut EDM using Grey-Taguchi method. International Journal of Scientific and publication. 2013; Vol. 3, Issue 3.

106. Subramanyam SV and Sarcar MMM. Statistical Analysis of Wire Electrical Discharge Machining on surface finish. International Journal of Engineering Research & Technology.2013; Vol. 2, Issue 3, ISSN: 2278-0181.

107. Suresh Babu S and Veeraraju P. A research on machining parameters on surface roughness and MRR of titanium (Ti-6AL-4V) alloy by WEDM using brass & molybdenum electrode. International Journal & Magazine of Engineering, Technology, Management and Research.2015; PP: 8-20.

108. Swati D Lahane, Manik K Rodge and Sunil B Sharma. Multi-response optimization of wire-EDM process using principle component analysis. IOSR Journal of Engineering.2012; Vol. 2, Issue No. 8.

109. Taha A El-Taweel and Ahmed M Hewidy. Parametric study and optimization of WEDM parameters for CK-45 steel. International Journal of Engineering Practical Research.2013; Vol. 2, Issue No. 4.

110. Takalae AM, Kumbhar MS, Pawar TD, Bagawan UI, Momin AA and Naik PA. Experimental investigation on machining characteristics in wire electrical discharge machine of stainless steel 304. International Journal of Engineering Technology, Management and Applied Sciences.2015; ISSN: 2349-4476.

111. Thella Babu Rao and Gopala Krishna A. Selection of optimal process parameters in WEDM while machining Al7075/SiC_p metal matrix composites. International Journal of Advance Manufacturing Technology.2014.

112. Tzeng C-J, Yang YK, Hsieh M-H and Jeng M-C. Optimization of wire electrical discharge machining of pure tungsten using neural network and response surface methodology. Proceedings of the Institution of Mechanical Engineers.2010; 225:841.

113. Ugrasen G, Ravindra HV, Naveen Prakash GV and Keshavamurthy R. Estimation of machining performances using MRA, GMDH and Artificial Neural Network in Wire EDM of EN-31. Procedia Materials Science.2014; 6: 1788-1797.

114. Ugrasen G, Ravindra HV, Naveen Prakash GV and Keshavamurthy R. Process optimization and estimation of machining performances using artificial neural network in wire EDM. Procedia Materials Science.2014; 6: 1752-1760.

115. Vamsi Krishna Pasam, Surendra Babu Battula, Madar Valli P and Swapna M. Optimizing surface finish in WEDM using the Taguchi parameter design method. Journal of the Braz. Soc. Of Mech. Sci. & Engineering.2010; Vol. 32, No. 2:107-113.

116. Varun A and Nasina Venkaiah. Simultaneous optimization of WEDM responses using grey relational analysis coupled with genetic algorithm while machining EN 353. International Advance Manufacturing Technology.2014.

117. Vates UK, Singh NK and Singh RV. Modelling of process parameters on D2 steel using wire electrical discharge machining with combined approach of RSM and ANN. International Journal of Science & Engineering Research.2014; ISSN: 2229-5518.

118. Vedansh Chaturvedi and Anil Kumar Sharma. Parametric optimization of CNC wire cut EDM for OHNS steel using moora methodology. Proceedings of 10th IRF International Conference.2014; ISBN: 978-93-84209-56-8. 119. Vijaybabu T, Ravishankar DV, Eshwara Prasad and Koorapati. Parametric optimization of wire electrical discharge machining process using taguchi method. International Journal of Engineering and Science.2014; 3: 52-58.

120. Vijaya Bhaskara Reddy, Vikram Kumar R and Hemachandra Reddy. Modelling of surface roughness in wire electrical discharge machining using artificial neural networks. Int. J. Mech. & Rob. Res.2013; ISSN: 2278-0149.

121. Vinod Kumar, Vikas Kumar and Kamal Kumar Jangra. An experimental analysis and optimization of machining rate and surface characterisics in WEDM of Monel-400 using RSM and desirability approach. J Ind Eng Int.2015; DOI 10.1007/s40092-015-0103-0.

122. Vishal Parashar, Rehman A, Bhagoria JL and Puri YM. Statistical and regression analysis of material removal rate for wire cut electro discharge machining of SS 304L using design of experiments. International Journal of Engineering Science and Technology.2010; Vol. 2(5):1021-1028.

123. Vivek Aggarwal, Sehijpal Singh Khangura and Garg RK. Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology. International Journal of Advance Manufacturing Technology.2015.

124. Yu Huang, Wuyi Ming, Jianwen Guo, Zhen Zhang, Guangdou Liu, Mingzhen Li and Guojun Zhang. Optimization of cutting conditions of YG15 on rough and finish cutting in WEDM based on statistical analyses. International Journal of Advance Manufacturing Technology.2013.

125. Zhen Zhang, Wuyi Ming, Hao Huang, Zhi Chen, Zhong Xu and Yu Huang. Optimization of process parameters on surface integrity in wire electrical discharge machining of tungsten tool YG15. International Journal of Advance Manufacturing Technology.2015.