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ABSTRACT

Legendre and Chebyshev collocation methods are presented to solve numerically the
\oltterra-Fredholm integral equations with exponential kernel. We transform the
\olterra Fredholm integral equations to a system of Fredholm integral equations of the
second kind,a system Fredholm integral equation with exponential kernel is obtained and
will be solved using Legendre and Chebyshev polynomials. This lead to a system of

algebraic equations with Legendre or Chebychev coeffcients. Thus, by solving the matrix
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equation, Legendre and Chebychev coefficients are obtained.A numerical example is
included to certify the validity and applicability of the proposed technique.
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Introduction
We consider the Volterra-Fredholm integral equation of the
second kind with BExponential Kernel:

p )~ [] & (y e = £x)
(x,t) e[-1,1]x[0,T]

Where Q<T and f is agiven function. The elements

@)

K(X,Y) :e\X—y\ is exponential kernel. For solving Volterra-

Fredholm integral equations, many methods with enough
accuracy and efficiency have been used before by many
researches [1,5,6,7,8,10,14]. The properties of Chebyshev or
Legendre polynomials are used to reduce the system of Fredholm
integral equations to a system of nonlinear algebraic equations
[3,4,9]. Maleknejad and Fadaei Yami [12] solved the system of
Volterra-Fredholm integral equations byAdomian decomposition
method. In [13], Yalsinbas developed numerical solution of
nonlinear Volterra- Fredholm integral equations by using Taylor
polynomials. In [11],used continuous time collocation method
for \olterra-Fredholm integral equations. Legendre wavelets
also were applied for solving Volterra-Fredholm integral
equations. In this paper,we use numerical technique based on
trapezoidal rule, to reduce the \olterra-Fredholm integral
equations to a system of Fredholm integral equations which will
be solved using Legendre,Chebyshev collocation method (this
technique is presented for the exponential kernel. The paper is
organized as follows. In section 2 ,a system of Fredholm integral
equations of the second kind is obtained from the \olterra-
Fredholm integral equation. In Sections 3 and 4,we present the
Legendre and Chebychev collocation method to solve the system
obtained with special choice of the nodes. In the remainder of the
paper,we give a practical example to certify the validity of the
proposed technique.
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System of Fredholm Integral Equations

We consider the Volterra-Fredholm integral equation of the
second kind with exponential Kemel (1). First, if t =(Q the
Volterra-Fredholm integral equations is reduced
tOiw(x,O) = f(x,0). For t # 0 ,we apply trapezoidal method

to solve the Volterra integral equations according to the variable
T .For a given {,we divide the interval of integration (0,t) in to
M equal subintervals, t,—0 where t =t.

m
=t, =tr; = jor;t; =¢;-

Let T, = O’to =TT
Using the trapezoid rule,

I;fle‘xfy‘l//(y, 7)dyd 7z ~ &Z'f_lle‘xfy‘l//(y, 7;)dy
i=0

where the double prime indicates that the first and last term
to be halved, where

5 = 7;,-0
J
In all our approximation, the error assumed negligible, this

help us to get a system of Fredholm Integral equations. Now, for
0<r <m .the Volterra-Fredholm integral equations become a

systemof Fredholm integral equations
o ~

w(t) =) [ € y(y,z)dy = f(xt,)
j=0

and y(x,0) = f(x,0) we get the system:
w(x,0) = f(x,0)

OT 1 |x_
w(x,t) == [ "y (y.t)dy =

)

t-0

T <t,j=>1t=t =1

m m

©)

OoTt 1 |x-
fOot) + - [y (y,0)dy
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ot (1 |x
v(ut) =5 [ vy )y =

OT (1 |x 1 1
FOot)+ - [ w(y.0)dy +ar [ € My, t)dy

OT L1 |x_
(< tn) = [ ey (y, to)dy =

m-—1' 1 _
f(x,t,)+ &Zj&e‘x Yy (y, z;)dy
j=0
where the prime indicates that the first term to be halved.

Denote: f(xt)= "), w(y,7,) =" (y),n=0,.,m
Putting

Fr()=f" Z j ey (y)dy

An astitute computatlon glves

F™(x) = £ +2Z( 1)(F1(0) -y ()

HED™ % [0 (y)ay

Now, ourproblem become:
V"= [y ()dy = P00 = 1.
(X’O) - f (X!O)

Equations (4) represents a system of Fredholm integral
equations of the second kind. In the next,we will present the
well known techniques of Legendre and Chebychev
collocation methods to solve the system of Fredholm integral
equation with exponential kernel.

Legendre Collocation Method

Orthogonal polynomials are widely used in applications
in  mathematics, mathematical physics, engineering and
computer science. One of the most common set of orthogonal
polynomials is the Legendre polynomials. The Legendre
polynomials |:>n satisfy the recurrence formula:

@

(n+1)P., () =@2n+1)xP,(x) —nP,_,(x),ne N
R(x) =1
R(x) =X

We choice X,k €[0,n] the zeros of the Legendre

polynomial of degree equal n+1. Here,[a,b] used to

indicate the interval of all integers between @ and p. We
determine a suitable interpolating elements

$;(x), j =0,1,...,n , such that

ACEDYIACD

is the unique interpolating polynomial of degree n, which
interpolates at the points X,,i=01,..,n The elements

©)
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called the basic functions

$;(x),j=01,.,n are

associated with the Legendre interpolation polynomial and

they satisfy #.(X) = 5 Then we get an approximation of the
J 1

exactly integral let say:

1,G) = [ K(x ), (v)dy

This type of approximation must be chosen so that the
integral (6) can be evaluated (either explicitly or by an
efficient numerical technique). The functions

P.(X), P.(X),..., P,(X) will be called interpolating elements.
0 ) 1*y
In this dissertation, the interpolating function % will be
n

©)

assumed to be the interpolating polynomial
n

v, () =D BP,(X)
i=0

where |:>j are Legendre polynomials of degree j,n is the

)

number of Legendre polynomials, and ﬂj are unknown
parameters, to be determined. The coefﬁcientSﬂj are
obtained by multiplying both sides of Eq. (7) by P,m<n

(as weight functions), and integrating the resulting equation
with respect toX over the interval [-1,1] to obtain

J‘_llpm(x)'/’n(x)dx = i‘ﬁj J‘_llpm(x) P, (x)dx = A, _2m2+1

Therefore,

B =22 b (0w, ()X

Here the integrand P, is a polynomial of degree

©)

n+m<2n then its integration in (8) can exactly be
obtained from just n 41 point Gauss-Legendre method, by
using the following formula

2m+1y ©)
ﬂm = 2 ij pm (X])V/(XJ)
j=0
Where a)j,j:O’ .,n are the (n+1) point Gauss-

Legendre weights. The n+1 grid points (Xi) of Gauss

Legendre integration in formula (9) giving us the exact
integral of an integrand polynomial of degree n+m<2n

can be obtained as the zeros of the , 1t degree Legendre
polynomial. Then, given the n+1 grid point X, » We can get
the corresponding weight o, of the | point Gauss Legendre

integration formula by solving the system of linear equations.
Now, the interpolating polynomial w, can be written as:

09 = 2T 200 G )P0

(10)
- Z[ Z ML (%) P (I (X))

Using (5) and (10) we get
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5,00= 0,3 (T Py (,)Pa (0).§ =

(11)
Substituting v, into Eg. (1) and collocating at the points X,
we obtain:
n 1 .
v (%)= 2w ) KO, Vg ()dy = £(x),i=0
=0
12)
To simplify the presentation let us define
(13)

a,; = [ KO, Y)g;(y)dy

Then a(n+1)x(n+1) linear systemis obtained:
(1d— Ay =F (14)
Where A= (ai’j)(i’j) e[o, n]2 is  square

W= (%) (%)) 9 F = (F (), (X))
where t indicate the transpose. Obviously,the system (14) has
a unique solution if the determinant of the matrix |d — A is

nonzero, which also depends on the choice of collocation
point. Substituting (11) into (13) we obtain

,2[2“1 (6, (%)] (15)

where U, (Xi), @i, k) <[[o, n]]z are defined

u,(x) = ['e'p, (y)ay

Chebyshev Collocation Method
Like Legendre methods, here we will use the Chebyshev
polynomials Tn of the first kind. The polynomial Tn+1 has

matrix,

n4+1 zeros in the interval [-1,1],which are located at the
points
2k +1 (16)
= cos( 7z) k €[[0,n]]
2n+

The Chebyshev polynomlals of the first kind of degree nT,

satisfy discrete orthogonality relationships on the grid of the
(n+1) zeros of Tn+l (which are referred to as the Chebyshev

nodes):
17)
0 NECND
ZT(xk)T (x)=4n+1 ,i=j=0.
n+1 . .
— ,i=]=0.

For an arbitrary interval [a,b], we can find a mapping that
transform [a, b] into [-1,+1]:

_b-a b+a_ b-a 2k +1 b+a
Y, = X, + = cos( )+ ,
2 2 2 2n+2 2

k [[0,n]]

and the Chebyshev nodes defined by equation (16) are actually
zeros of this Chebyshev polynomial. Based on the discrete
orthogonality relationships of the Chebyshev polynomials,
various methods of solving linear and nonlinear ordinary
differential equations (The solution of linear ordinary
differential systems ,with polynomial coefficients, can be
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approximated by a finite polynomial or a finite Chebyshev
series. The computation can be performed so that the solution
satisfies exactly a perturbed differential systemthe
perturbations being computed multiples of one or more
Chebyshev  polynomials) and integral  differential
equations,see [2] were devised at about the same time and
were found to have considerable advantage over finite-
differences methods.Since then,these methods have become
standard[15]. They rely on expanding out the unknown
function in a large series of Chebyshev polynomials,
truncating this series, substituting the approximation in the
actual equation,and determining equations for the coefficients.
In our approach we follow closely the procedures like
Legendre method. Let us say,that similar procedures can be
applied for a second grid given by the extrema’s of T as

nodes. It is important to stress that our goal is not to
approximate a function f on the interval [-1,1],but rather to

approximate the values of the function f corresponding to a

given discrete set of points like those given in equation (16).
Here, let (T T) the interpolating elements. The
o Iy

equation (7) becomes

v, (X) = Zﬂ,T, (x)

Where the prlme indicates that the first term is to be halved

(which is convenient for obtaining a simple formula for all the

coefficients ﬂj ).-The function v interpolates ¥ at the
n

(18)

n+1 Chebyshev nodes, we have at these nodes
W(Xk) :l/,n(xk).Hence, using the discrete orthogonality

relation (17) we get

2 N T ) (201 (19)
ﬂj _me:(;V/(Xk) j(Xk)! J=04..,n
V(0= AT,
- iiiw(xk )T, ()T, ()
(20)
— 1(ZT, (X)T; Ny ()
Using (5) and (20) we get:
(21)
¢ (x) = ZT, (X)T;(X)

Now,the same system like (14) is obtained with
2
a . =—— >V (x)T (X
i,] n+1j§0 k( |) k( J)
Where V, (Xi)1 (i, k) €[[O, n]]2 are defined

Vi (%) = J.,lle‘Xiiy‘Tk (y)dy
The constants v, (Xi), (i k) c [O, n]2 ,can be evaluated from

the recurrence relation:

(L4~ (6) = 253 (%) + (L= — WV, (X))
m+1 m-1
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2 1] m 1]
oz (@=x)e =D (E+x)e 1) -
(1-()")
(m? —1)(m* - 4)
Numerical Experimentation
We confirm our theoretical discussion with numerical
example in order to achieve the validity, the accuracy. The
computations, associated with the following example,is
performed by MATLAB 7.
Example: Here, we will apply the technique presented in
previous section to a linear integral equation,in order to show
that the method presented can be applied.We consider the
equation (12) with :
f(x)=x*—(6-2e)e*,K(x,y)=e"" 6r =1
The suggested method will be considered with n = 4 .and the
approximate solution #(x) can be written in the following

way
¢,(x) = Z_‘ﬁj P, (x)

Using the same technique presented in previous section and
using Equation (12) we obtain

(22)

4 « h (23)
2 AP ()= (¢ — (6 2e)e” _E_(F(y0)+

" m-1

F(Yn)+2D F(y,))=0,j=01234

Where Fz;/l) — e(y+Xi)Z‘;:0ﬁj PJ- (y) and the nodes
Yy = Y +,i=01,...,n,y, =0 and el , équation

n
(23) represents linear system of 5 algebraic equations in the

coefficients B, j=0,..,4 which will be solved by the

conjugate gradient method and we get the following
coefficients:

B, =—0.0048, B, = 0.5955, 3, = —0.0015,

Hence,the approximate solution of equation(23) is as follows:

#(x) = —0.0048P, (x) + 0.5955P, (X) —

0.0015P, (x) + 0.3998P, (x) — 0.0001P, ().
Corresponding to exact solution ¢(X) =x3.

1.2
Exact solution
Approximate soiution

0.8

a6
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Figure 1. Error between exact solution and the present
method with n =4,

In theis example,we have considered only N =4 terms
in the expansion of the solution using Legendre
polynomials,the Figure 1 gives the behavior of true (exact)
and the approximate solution and the behavior of the error
between them,we notice that the technique used is much more
pertinent and can be considered as a profitable method to
solve the linear integral equations.

Conclusion

We solved Volterra-Fredholm integral equations by using
Legendre and Chebyshev collocation methods. The properties
of Chebyshev or Legendre polynomials are used to reduce the
system of Fredholm integral equations to a system of
nonlinear algebraic equations.The method presented in this
paper based on the Legendre and Chebyshev polynomials is
suggested to find the numerical solution which will be
compared to the analytic solution.The iterative method
conjugate gradient method and Newton’s method are used to
solve the linear and nonlinear system. Analyzing the
numerical solution and the exact solution declare that the
technique used is very effective and convenient. The approach
used is tested with example to show that the accuracy
improves with increasing n. Moreover,using the obtained
numerical solution,we can affirm that the proposed method
gives the solution in an great accordance with the analytic
solution. In addition,one can investigate other type of a
nonlinear Fredholm integro differential equation with singular
kernel. This method may be applied to solve Volterra
Fredholm integral equations with Other type of singular
Kernels can be investigate using the same method.
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