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Introduction 

We consider the Volterra-Fredholm integral equation of the 

second kind with Exponential Kernel:  
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     Where T0  and f  is a given function. The elements 
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 is exponential kernel. For solving Volterra-

Fredholm integral equations, many methods with enough 

accuracy and efficiency have been used before by many 

researches [1,5,6,7,8,10,14]. The properties of Chebyshev or 

Legendre polynomials are used to reduce the system of Fredholm 

integral equations to a system of nonlinear algebraic equations 

[3,4,9]. Maleknejad and Fadaei Yami [12] solved the system of 

Volterra-Fredholm integral equations byAdomian decomposition 

method. In [13], Yalsinbas developed numerical solution of 

nonlinear Volterra- Fredholm integral equations by using Taylor 

polynomials. In [11],used continuous time collocation method 

for Volterra-Fredholm integral equations. Legendre wavelets 

also were applied for solving Volterra-Fredholm integral 

equations. In this paper,we use numerical technique based on 

trapezoidal rule, to reduce the Volterra-Fredholm integral 

equations to a system of Fredholm integral equations which will 

be solved using Legendre,Chebyshev collocation method (this 

technique is presented for the exponential kernel. The paper is 

organized as follows. In section 2 ,a system of Fredholm integral 

equations of the second kind is obtained from the Volterra-

Fredholm integral equation. In Sections 3 and 4,we present the 

Legendre and Chebychev collocation method to solve the system 

obtained with special choice of the nodes. In the remainder of the 

paper,we give a practical example to certify the validity of the 

proposed technique. 

 

 

 

 

System of Fredholm Integral Equations 

 We consider the Volterra-Fredholm integral equation of the 

second kind with exponential Kernel (1). First, if 0=t  the 

Volterra-Fredholm integral equations is reduced 

to: ,0)(=,0)( xfx . For ot  ,we apply trapezoidal method 

to solve the Volterra integral equations according to the variable 

 .For a given t ,we divide the interval of integration (0,t) in to 

m  equal subintervals, 

m
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 , where ttm = . 

Let   
jjjmm tjttt  =;=;==;=0;= 000
.  

Using the trapezoid rule,  
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where the double prime indicates that the first and last term 

to be halved, where  
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In all our approximation, the error assumed negligible, this 

help us to get a system of Fredholm Integral equations. Now, for 

mr 0  ,the Volterra-Fredholm integral equations become a 

system of Fredholm integral equations  
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and ,0)(=,0)( xfx  ,we get the system:  
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where the prime indicates that the first term to be halved.  
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An astitute computation gives  
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Now, our problem become:  
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Equations (4) represents a system of Fredholm integral 

equations of the second kind. In the next,we will present the 

well known techniques of Legendre and Chebychev 

collocation methods to solve the system of Fredholm integral 

equation with exponential kernel.  

Legendre Collocation Method 

Orthogonal polynomials are widely used in applications 

in mathematics, mathematical physics, engineering and 

computer science. One of the most common set of orthogonal 

polynomials is the Legendre polynomials. The Legendre 

polynomials 
nP  satisfy the recurrence formula:  
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               1=)(0 xP  
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We choice ][0,, nkxk   the zeros of the Legendre 

polynomial of degree equal 1n . Here, ],[ ba  used to 

indicate the interval of all integers between  a  and b . We 

determine a suitable interpolating elements 

njxj 0,1,...,=),(  , such that  
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 is the unique interpolating polynomial of degree n, which 

interpolates at the points nixi 0,1,...,=,  The elements 

njxj 0,1,...,=),(  are called the basic functions 

associated with the Legendre interpolation polynomial and 

they satisfy 
ijj x  =)(  Then we get an approximation of the 

exactly integral,let say:  
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 This type of approximation must be chosen so that the 

integral (6) can be evaluated (either explicitly or by an 

efficient numerical technique). The functions 

)(),...,(),( 1 xPxPxP no
 will be called interpolating elements. 

In this dissertation, the interpolating function 
n  will be 

assumed to be the interpolating polynomial  
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 where
jP are Legendre polynomials of degree nj,  is the 

number of Legendre polynomials, and 
j  are unknown 

parameters, to be determined. The coefficients
j  are 

obtained by multiplying both sides of Eq. (7) by nmPm ,  

(as weight functions), and integrating the resulting equation 

with respect to x  over the interval [-1,1] to obtain 
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 Here the integrand 
nmP  is a polynomial of degree 

nmn 2  then its integration in (8) can exactly be 

obtained from just 1n  point Gauss-Legendre method, by 

using the following formula  
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 Where njj 0,...,=,  are the 1)( n  point Gauss-

Legendre weights. The 1n  grid points )( ix  of Gauss 

Legendre integration in formula (9) giving us the exact 

integral of an integrand polynomial of degree nmn 2  

can be obtained as the zeros of the thn 1  degree Legendre 

polynomial. Then, given the 1n  grid point 
ix , we can get 

the corresponding weight 
i  of the i  point Gauss Legendre 

integration formula by solving the system of linear equations. 

Now, the interpolating polynomial 
n  can be written as:  
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 Using (5) and (10) we get  
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 Substituting 
n into Eq. (1) and collocating at the points 

ix , 

we obtain:  
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 To simplify the presentation let us define  
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 Then 1)(1)(  nna  linear system is obtained:  
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  is square matrix, 

t
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where t  indicate the transpose. Obviously,the system (14) has 

a unique solution if the determinant of the matrix AId   is 

nonzero, which also depends on the choice of collocation 

point. Substituting (11) into (13) we obtain  
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Chebyshev Collocation Method 

         Like Legendre methods, here we will use the Chebyshev 

polynomials 
nT  of the first kind. The polynomial 

1nT  has 

1n  zeros in the interval [-1,1],which are located at the 

points  
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                      (16) 

 The Chebyshev polynomials of the first kind of degree ,, nTn  

satisfy discrete orthogonality relationships on the grid of the 

1)( n  zeros of 
1nT (which are referred to as the Chebyshev 

nodes):  
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 For an arbitrary interval ],[ ba , we can find a mapping that 

transform ],[ ba  into [-1,+1]:  
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and the Chebyshev nodes defined by equation (16) are actually 

zeros of this Chebyshev polynomial. Based on the discrete 

orthogonality relationships of the Chebyshev polynomials, 

various methods of solving linear and nonlinear ordinary 

differential equations (The solution of linear ordinary 

differential systems ,with polynomial coefficients, can be 

approximated by a finite polynomial or a finite Chebyshev 

series. The computation can be performed so that the solution 

satisfies exactly a perturbed differential system,the 

perturbations being computed multiples of one or more 

Chebyshev polynomials) and integral differential 

equations,see [2] were devised at about the same time and 

were found to have considerable advantage over finite-

differences methods.Since then,these methods have become 

standard[15]. They rely on expanding out the unknown 

function in a large series of Chebyshev polynomials, 

truncating this series, substituting the approximation in the 

actual equation,and determining equations for the coefficients. 

In our approach we follow closely the procedures like 

Legendre method. Let us say,that similar procedures can be 

applied for a second grid given by the extrema’s of 
nT  as 

nodes. It is important to stress that our goal is not to 

approximate a function f  on the interval [-1,1],but rather to 

approximate the values of the function f  corresponding to a 

given discrete set of points like those given in equation (16). 

Here, let ),...,,,( 210 nTTTT  the interpolating elements. The 

equation (7) becomes  
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 Where the prime indicates that the first term is to be halved 

(which is convenient for obtaining a simple formula for all the 

coefficients 
j  ).The function 
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 Using (5) and (20) we get:  
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 Now,the same system like (14) is obtained with  
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The constants 2][0,),(),( nkixv ik  ,can be evaluated from 

the recurrence relation:  
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Numerical Experimentation  

We confirm our theoretical discussion with numerical 

example in order to achieve the validity, the accuracy. The 

computations, associated with the following example,is 

performed by MATLAB 7. 

Example: Here, we will apply the technique presented in 

previous section to a linear integral equation,in order to show 

that the method presented can be applied.We consider the 

equation (12) with : 

1=,=),(,)2(6=)( ||3 yxx eyxKeexxf   

The suggested method will be considered with 4=n ,and the 

approximate solution )(x  can be written in the following 

way  
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 Using the same technique presented in previous section and 

using Equation (12) we obtain  
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(23) represents linear system of 5  algebraic equations in the 

coefficients 0,...,4=, jj  which will be solved by the 

conjugate gradient method and we get the following 

coefficients:  
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Hence,the approximate solution of equation(23) is as follows:  
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Corresponding to exact solution 3=)( xx .  

 

 

 

 

Figure 1. Error between exact solution and the present 

method with n = 4. 

In theis example,we have considered only 4=n  terms 

in the expansion of the solution using Legendre 

polynomials,the Figure 1 gives the behavior of true (exact) 

and the approximate solution and the behavior of the error 

between them,we notice that the technique used is much more 

pertinent and can be considered as a profitable method to 

solve the linear integral equations.  

Conclusion 

     We solved Volterra-Fredholm integral equations by using 

Legendre and Chebyshev collocation methods. The properties 

of Chebyshev or Legendre polynomials are used to reduce the 

system of Fredholm integral equations to a system of 

nonlinear algebraic equations.The method presented in this 

paper based on the Legendre and Chebyshev polynomials  is 

suggested to find the numerical solution which will be 

compared to the analytic solution.The iterative method 

conjugate gradient method and Newton’s method are used to 

solve the linear and nonlinear system. Analyzing the 

numerical solution and the exact solution declare that the 

technique used is very effective and convenient. The approach 

used is tested with example to show that the accuracy 

improves with increasing n. Moreover,using the obtained 

numerical solution,we can affirm that the proposed method 

gives the solution in an great accordance with the analytic 

solution. In addition,one can investigate other type of a 

nonlinear Fredholm integro differential equation with singular 

kernel.This method may be applied to solve Volterra 

Fredholm integral equations with Other type of singular 

Kernels can be investigate using the same method.  
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