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Introduction 

Past five decades researchers have extensively paying attention on the peristaltic pumping of Newtonian and non -Newtonian 

fluids. In particular, the study of peristaltic flow has generated a lot of interest and hence good literature is curren tly available on 

the subject. A thorough understanding of peristalsis is of great interest, due to its natural property of many biological sys tems 

having smooth muscle tubes which transports biofluids through its propulsive movements. It is found in the mo vement of food 

bolus through oesophagus, transport of urine from kidney to the bladder through the urethra, the movement of spermatozoa in t he 

ducts afferents of the male reproductive tract, circulation of blood in the small blood vessels, the movement of chyme in the 

gastro-intestinal tract, intra-uterine fluid motion, movements of ovum in the female fallopian tube are only some examples of 

peristaltic fluid flow.  

LATHAM [1] made initial effort regarding peristaltic mechanism of viscous fluids. The primary mathematical models of 

peristalsis obtained by a train of sinusoidal waves in an infinitely long symmetric channel or tube were introduced by Fung and 

Yih [2] and Shapiro et al. [3]. After these studies, numerous numerical, analytical and experimental at tempts have been made to 

understand peristaltic action in different situations for non-Newtonian/Newtonian fluid flows. Afterward, few relevant interested 

discussions can be seen via attempts such as Brown and Hung [4] and Hayat et al.[5 & 6], Takabatake and Ayukawa [7& 8], 

Srivastava and Srivastava [9, 10&11], Siddiqui and Schwarz [12], Ramachandra and Usha[13],Elshehawey and Sobh [14], Sobh 

[15], Abd El Naby et al.[16], J.B. Shukla et al.[17],  T. Hayat et al.[18],  M.H. Haroun [19], T. Hayat et al.[20], Ravikumar et al. 

[21, 22 & 23].  

Heat transfer and mass transfer are natural processes which occur quite often in the field of power engineering, refrigeratio n 

and air conditioning, chemical engineering, metallurgical engineering etc. They are also widely  used in porous industries. Heat 

transfer is the transition of thermal energy from a region of higher temperature to a region of lower temperature. The transfer of 

thermal energy continues until the object and its surroundings reach the state of thermal eq uilibrium. The energy transfer by heat 

flow cannot be measured directly. But the concept has physical meaning because it is related to the measurable quantity calle d 

temperature. Vajravelu et al. [24] have been investigated on heat transfer characteristics  on peristaltic flow in a porous annulus. In 

another research paper, Nadeem et al. [25] examined an influence of heat transfer in peristalsis with variable viscos ity. Very 

recently, Sk Abzal [26] examined on an influence of heat transfer on magnetohydrodynamic peristaltic blood flow with porous 

medium through a coaxial vertical asymmetric tapered channel - an analysis of blood flow study. An interested investigation 

discussed by Abbasi Fahad Munir et al. [27] on Peristaltic flow in an asymmetric channel with convective boundary conditions 

and Joule heating. In another attempt, K. Venugopal Reddy et al. [28] gave on Velocity slip and joule heating effects on MHD 

peristaltic flow in a porous medium. Influence of convective conditions in radiative peristaltic flow of pseudo plastic nanofluid in 

a tapered asymmetric channel by T. Hayat et al. [29]. Shehzad SA et al. [30] discussed on MHD mixed convective peristaltic 

motion of nanofluid with Joule heating and thermophoresis effects . 
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ABS TRACT 

The main objective of present investigation is to introduce the magnetohydrodynamic 

peristaltic transport with porous medium through a coaxial asymmetric vertical tapered 

channel and Joule heating with radiation. Effects of sundry parameters on the temperature 

and heat transfer coefficient at the wall y = h1 are studied through graphs. It is noted that 

the temperature increases when increase in Radiation parameter (N), Prandtl number (Pr), 

heat source/sink parameter (γ), Brinkman number (Br), Hartmann number (M), non-

uniform parameter (K1) and non-dimensional amplitude (ε) in entire tapered channel. 

Further, we observe that the heat transfer coefficient decreases when non -uniform 

parameter (K1) is assigned higher values.                                                                                   
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2. Formulation of the problem 

Consider the peristaltic transport of a viscous fluid through an asymmetric vertical tapered channel through the porous 

medium. Asymmetry in the flow is due to the propagation of peristaltic waves of different amplitudes and phase on the channel  

walls. We assume that the fluid is subject to a constant transverse magnetic field B0. The flow is generated by sinusoidal wave 

trains propagating with steady speed c along the tapered asymmetric channel walls. 

The geometry of the wall surface is defined as  
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Where b is the half-width of the channel, d is   the wave amplitude, 𝑐 is the phase speed of the wave and m   1m  is the 

non-uniform parameter, 𝜆 is the wavelength, t is the time and X is the direction of wave propagation. The phase difference 𝜙 

varies in the range 0 ≤ ϕ ≤ π, ϕ = 0 corresponds to symmetric channel with waves  out of phase and further b, d  and ϕ satisfy the 

following conditions for the divergent channel at the inlet    
bd )

2
(cos
  

It is assumed that the left wall of the channel is maintained at temperature T0, while the right wall has temperature T1. 

The equations governing the motion for the present problem prescribed by\ 

0 yx vu                                                                                                                                                                                    (3) 
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u and v are the velocity components in the corresponding coordinates, k1 is the permeability of the porous medium,  is the 

density of the fluid, p is the fluid pressure, k  is the thermal conductivity,   is the coefficient of the viscosity, Q0 is the constant 

heat addition/absorption, Cp is the specific heat at constant pressure, σ is the electrical conductivity and T is the temperature of the 

fluid. 

The relative boundary conditions are 
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The radioactive heat flux (Cogley et al. [31]) is given by  
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                                                                                                                                                                        (7) 

here   is the mean radiation absorption coefficient. 

Introducing a wave frame (x, y) moving with velocity c away from the fixed frame (X, Y) by the transformation 

x = X-ct, y = Y, u = U-c, v = V and p(x) = P(X, t)                                                                                                                              (8) 

Introducing the following non-dimensional quantities : 
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where 

b

d


is the non-dimensional amplitude of channel ,




b


is the wave number,

b

m
k





1

 is the non - uniform parameter 

, Re is the Reynolds number, M is the Hartman number ,

2b

k
K 

Permeability parameter,Pr is the Prandtl number, Ec is the Eckert 

number, γ is the heat source/sink parameter, Br ( = EcPr) is the Brinkman number, and 2N  is the radiation parameter. 

3. Solution of the problem 

 In view of the above transformations (8) and non-dimensional variables (9), equations (3-6) are reduced to the following non-

dimensional form after dropping the bars, 
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Applying long wave length approximation and neglecting the wave number along with low-Reynolds numbers. Equations (10-12) 

become 
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The relative boundary conditions in dimensionless form are given by 

u = -1, θ = 0 at       txxkhy 2sin1 11
                                                                                                           (16) 

u = -1, θ = 1 at   txxkhy   2sin1 12
                                                                                                                    (17)                                                                 

The solutions of velocity and temperature with subject to boundary conditions (16) and (17) are given by  
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The coefficients of the heat transfer Zh1 and Zh2 at the walls y = h1 and y = h2 respectively, are given by 

xyhZh 11                                                                                                                                                                                      (20)                     

xyhZh 22                                                                                                                                                                                     (21) 

The solutions of the coefficient of heat transfer at y = h1 and y = h2 are given by  
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The volumetric flow rate in the wave frame is defined by 
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The pressure gradient obtained from equation (23) and we can expressed as   
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  The instantaneous flux Q (x, t) in the laboratory frame is given by 
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The average volume flow rate over one wave period (T=λ/ c) of the peristaltic wave is defined as  
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From the equations (25) and (27), the pressure gradient can be expressed as         
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4. Numerical Solution and Discussion of the Problem 

Fig. 1 depicts the variation in temperature profile for the variation in the radiation parameter N. It shows that the temperature 

increases when the radiation parameter increases.  The variation in temperature profile with different values of Prandtl numb er Pr 

(Pr = 1, 1.5, 2) is shown in Fig.2. We observe that the increasing the values of Prandt l number, temperature profile gradually 

increases in the entire tapered channel. An influence of various values of heat source/sink parameter γ (γ = 0.1, 0.2, 0.3) o n 

temperature profile as shown in Fig.3. It has been inferred that the value of θ increases with heat source/sink parameter increase. 

The increase of Brinkman number Br (Br = 0.1, 0.3, 0.5) on the temperature distribution is shown through Fig. 4.We notice fro m 

the graph that θ increases with increasing Brinkman number Br. Fig.5 depicts that the temperature profiles θ for various values of 

Hartmann number M (M = 1, 2, 3) with fixed values of other parameters N = 0.5, Br = 0.3, Pr = 1, k1= 0.1, γ = 0.5, Da = 0.5, γ = 

0.1, x =0.6, t =0. 4, ε = 0.2,   = π/6.Indeed, the temperature (θ) increases with increase in Hartmann number. Variation non-

uniform parameter K1 (K1 = 0.1, 0.2, 0.3) with temperature (θ) has been presented in Fig.6. This figure indicates that an increase 

in K1, the temperature increases in entire flow channel. An influence of non-dimensional amplitude ε (ε = 0.2, 0.3, 0.4) on the 

temperature distribution is shown through Fig. 7. We notice that θ increases with an increase in ε. 

Hence, we conclude that from Fig.1-7, the temperature profiles are almost parabolic in behaviour. 

 

Figure (1). The variation of temperature (θ) with different values N with Pr = 1, Br = 0.3, 

γ = 0.1, k1= 0.1, Da = 0.6, M = 1, x = 0.6, t =0. 4, ε = 0.2,  = π/4. 

 

Figure 2. The variation of temperature (θ) with different values of Pr with N = 0.5, Br = 0.3, 

γ = 0.3, k1= 0.1, Da = 0.6, M = 1, x = 0.6, t =0. 4, ε = 0.2,  = π/4. 
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Figure 3. The variation of temperature (θ) with different values γ with Pr = 1, Br = 0.3, 

N = 0.5, k1= 0.1, Da = 0.6, M = 1, x = 0.6, t =0. 4, ε = 0.2,  = π/4. 

     

Figure 4 .The variation of temperature (θ) with different values of Br with Pr = 1, γ = 0.1,  

N = 0.5, k1= 0.1, Da = 0.6, M = 1, x = 0.6, t =0. 4, ε = 0.2,  = π/4. 

 

Figure 5. The variation of temperature (θ) with different values of M with Pr = 1, γ = 0.1,  

Br = 0.3, N = 0.5, k1= 0.1, Da = 0.6, x = 0.6, t =0. 4, ε = 0.2,  = π/4. 

    

Figure 6. The variation of temperature (θ) with different values of k 1with Pr = 1, γ = 0.1,  

Br = 0.3, M = 1, N = 0.5, Da = 0.6, x = 0.6, t =0. 4, ε = 0.2,  = π/4. 
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Figure 7. The variation of temperature (θ) with different values of ε with Pr = 1, γ = 0.1, Br = 0.3, 

M = 1, k1= 0.1, N = 0.5, Da = 0.6, x = 0.6, t =0. 4,  = π/4. 

The results presented in Figures 8 - 14 indicates the behavior of radiation parameter (N), Prandtl number (Pr), porous medium 

(Da), , Magnetic field (M), Brinkman number (Br) and heat source/sink parameter (γ).on the heat transfer coefficient (Z) at y  =h1 . 

These figures reveals that the oscillatory behavior of heat transfer which may be due to the phenomenon of peristalsis. Fig.  8 

illustrates the variation in heat transfer coefficient at the wall y = h 1 for different values of radiation parameter N (N = 0.5, 0.7, 

0.9). We observe that as the values of radiation parameter increases the heat transfer coefficient decreases in the po rtion of the 

channel x ε [0, 0.54] and then it is increases in other portion  of the channel x ε [0.54, 1] with fixed other parameters. In fluence of 

Prandtl number Pr (Pr = 1, 1.5, 2) on heat transfer coefficient at the wall y =h 1 as shown in Fig. 9. This figure indicates the heat 

transfer coefficient decreases in the portion of the tapered channel x ε [0, 0.54] and then it is increases in the rest of th e tapered 

channel x ε [0.54, 1] with fixed other parameters. Fig. 10 depicts that the temperature distrib ution (θ) for various values of heat 

source/sink parameter γ (γ = 0.1, 0.2, 0.3). We notice from this graph that the heat transfer coefficient decreases in x ε [0, 0.54] 

and then it is increases in another portion of the channel x ε [0.54, 1] with fixed other parameters. However, from Fig. 11 we 

observe that the heat transfer coefficient decreases in the portion of the channel x ε [0, 0.54] and then it is increases in the rest of 

the channel x ε [0.54, 1] with various values of Br (Br = 0.1, 0.2, 0.3) with fixed other parameters. In Fig. 12, dispersion of 

magnetic field M (M = 1, 2, 3) on the heat transfer coefficient at the wall y = h 1 is shown and it is implies that the heat transfer 

coefficient decreases in the portion of the vertical tapered channel x ε [0, 0.54] and then it is increases in another portion of the 

vertical tapered the channel x ε [0.54, 1] with fixed other parameters. An important result presented in Fig. 13 that the var iation in 

non-uniform parameter K1 (K1 = 0.1, 0.2, 0.3) on the heat transfer coefficient. It may be noted from this figure the heat transfer 

coefficient decreases in an entire vertical tapered channel x ε [0, 1].Influence of non -dimensional amplitude (ε) on heat transfer 

coefficient at the wall y = h1 as shown in figure 14.It was notice that the heat transfer coefficient decreases in the portion of the 

vertical tapered channel x ε [0, 0.54] and then increases in another portion of the vertical tapered the channel x ε [0.54, 1] with 

fixed other parameters. 

Therefore, we notice that due to peristalsis, the heat transfer coefficient is in oscillatory behavior. 

 

Figure 8. Effect of N on heat transfer coefficient at the wall y = h1 with fixed Pr = 1, 

Br = 0.3, γ = 0.1, k1= 0.1, Da = 0.6, M = 1, x = 0.6, t =0. 4, ε = 0.2,  = π/4. 

 

Figure 9. Effect of Pr on heat transfer coefficient at the wall y = h1 with fixed N = 0.5,  

Br = 0.3, γ = 0.3, k1= 0.1, Da = 0.6, M = 1, x = 0.6, t =0. 4, ε = 0.2,  = π/4. 
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Figure 10. Effect of γ on heat transfer coefficient at the wall y = h
1
 with fixed Pr = 1, Br = 0.3, 

N = 0.5, k1= 0.1, Da = 0.6, M = 1, x = 0.6, t =0. 4, ε = 0.2,  = π/4. 

 

Figure 11. Effect of Br on heat transfer coefficient at the wall y = h1 with fixed Pr = 1, γ = 0.1, 

N = 0.5, k1= 0.1, Da = 0.6, M = 1, x = 0.6, t =0. 4, ε = 0.2,  = π/4. 

 

Figure 12. Effect of M on heat transfer coefficient at the wall y = h1 with fixed Pr = 1, γ = 0.1, 

Br = 0.3, N = 0.5, k
1
= 0.1, Da = 0.6, x = 0.6, t =0. 4, ε = 0.2,  = π/4. 

 

Figure 13. Effect of k
1
 on heat transfer coefficient at the wall y = h

1
 with fixed Pr = 1, γ = 0.1, 

Br = 0.3, M = 1, N = 0.5, Da = 0.6, x = 0.6, t =0. 4, ε = 0.2,  = π/4. 
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Figure 14. Effect of ε on heat transfer coefficient at the wall y = h
1
 with fixed Pr = 1, γ = 0.1, 

Br = 0.3, M = 1, N = 0.5, Da = 0.6, k1= 0.1, x = 0.6, t =0. 4,   = π/4. 

Conclusions 

Magnetohydrodynamic peristaltic transport with porous medium through a coaxial asymmetric vertical tapered channel and 

Joule heating with radiation is examined. The important findings of the present study are summarized below. 

(a) We notice that the temperature increases when increase in Radiation parameter (N), Prandtl number (Pr), heat source/sink 

parameter (γ), Brinkman number (Br), Hartmann number (M), non-uniform parameter (K1) and non-dimensional amplitude (ε) in 

entire tapered channel. 

(b) Temperature profiles are almost a parabolic in behaviour. 

(c) Heat transfer coefficient decreases in the portion of the channel x ε [0, 0.54] and then it is increases in another portion o f the 

channel x ε [0.54, 1] when increase in Radiation parameter (N), Prandtl number (Pr), heat source/sink parameter (γ), Brinkman 

number (Br), Hartmann number (M) and non-dimensional amplitude (ε). 

(d) We observe that the heat transfer coefficient decreases when non-uniform parameter (K1) is assigned higher values. 

(e) Heat transfer coefficient is in oscillatory behavior. 
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