Total Dominating Color Transversal number of Some familiar Graphs

D.K.Thakkar ${ }^{1}$ and A.B.Kothiya ${ }^{2}$
${ }^{1}$ Department of Mathematics, Saurashtra University, Rajkot, Gujarat, India.
${ }^{2}$ G.K.Bharad Institute of Engineering, Kasturbadham, Rajkot, Gujarat, India.

ARTICLE INFO

Article history:

Received: 29 April 2016;
Received in revised form:
25 May 2016;
Accepted:31 May2016;

Keywords

Total Dominating Color Transversal number,
Z-Partition of a graph, $\underline{\text { Transversal of } \mathrm{aZ} \text { - Partition. }}$

Abstract

A Total Dominating Color Transversal Set of a Graph G is a Total Dominating Set which is also Transversal of Some Z - Partition of vertices of G. Here Z is the Chromatic number of the graph G. Total Dominating Color Transversal number of a graph is the cardinality of a Total Dominating Color Transversal Set which has minimum cardinality among all such sets that the graph admits. In this paper we find this number for Generalized Wheel Graph, Petersen Graph, Herschel Graph, Grotszch graph and Helm Graph.

© 2016 Elixir All rights reserved.

1.Introduction

In [1], we introduced the concept of Total Dominating Color Transversal number of a graph. We determined this number for Path Graph, Cycle Graph, Complete graph etc. We also found some characterizations of this number. In this paper we determine this number for very well known graphs called Petersen Graph, Generalized Wheel Graph, Herschel Graph, Grotszch graph and Helm Graph.

2. Definitions

Definition 2.1[3]: (Total Dominating Set)

Let $G=(V, E)$ be a graph. Then a subset S of V (the vertex set of G) is said to be a Total Dominating Set of G if for each $v \in V, v$ is adjacent to some vertex in S.

Definition 2.2[3]: (Minimum Total Dominating Set/Total Domination number)

Let $G=(V, E)$ be a graph. Then a Total Dominating set S is said to be a Minimum Total Dominating set of G if $|S|=$ minimum $\{|D|: D$ is a Total Dominating set of $G\}$. Here S is called $\gamma_{\mathrm{t}}-$ set and its cardinality, denoted by $\gamma_{\mathrm{t}}(\mathrm{G})$ or just by γ_{t}, is called the Total Domination number of G .

Definition 2.3[1]: (X-partition of a graph)

Proper coloring of vertices of a graph G, by using minimum number of colors, yields minimum number of independent subsets of vertex set of G called equivalence classes (also called color classes of G). Such a partition of a vertex set of G is called a X-Partition of the graph G.
Definition 2.4[1]: (Transversal of a $\boldsymbol{\chi}$ - Partition of a graph) Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with X - Partition $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right.$,, $\left.V_{\mathcal{X}}\right\}$. Then a set $S \subset V$ is called a Transversal of this $X-$ Partition if $\mathrm{S} \cap \mathrm{V}_{\mathrm{i}} \neq \emptyset, \forall \mathrm{i} \in\{1,2,3, \ldots ., \mathrm{x}\}$.
Definition 2.5[1]: (Total Dominating Color Transversal Set)

Let $G=(V, E)$ be a graph. Then a Total Dominating Set S ᄃ V is called a Total Dominating Color Transversal Set of G if it is Transversal of at least one $\boldsymbol{\chi}$ - partition of G .

Tele:

E-mail address: kothiyaamin@gmail.com
assigned color that is assigned to any vertex of K_{p}. So chromatic number of W_{p+q} is actually the addition of Chromatic number of K_{p} and Chromatic number of C_{q}. That is, $\chi\left(W_{p+q}\right)=\chi\left(\mathrm{K}_{\mathrm{p}}\right)+\chi\left(\mathrm{C}_{\mathrm{q}}\right)$. We know that Cycle C_{q} is bipartite or tripartite, respectively, when q is even or odd.
Hence we have $\gamma_{\text {tstd }}\left(W_{p+q}\right)=p+3$, when q is odd

$$
=\mathrm{p}+2 \text {, when } \mathrm{q} \text { is even }
$$

Example 3.3:

Generalized Wheel graph - $\mathrm{W}_{2+6}=\mathrm{K}_{2} \vee \mathrm{C}_{6}$
Fig. 1
$\gamma_{\text {tstd }}\left(W_{p+q}\right)=2+2=4$.
Theorem 3.4: $Y_{\text {tstd }}(P)=4$, where P Stands for Petersen Graph.
Proof:

P: Petersen Graph
Fig. 2
We know that $\gamma_{\mathrm{t}}(\mathrm{P})=4$. So $\gamma_{\text {tstd }}(P) \geq 4$. As $\left\{\mathrm{v}_{1}, \mathrm{u}_{1}, \mathrm{u}_{2}\right.$, $\left.\mathrm{u}_{3}\right\}$ is a Total Dominating Color Transversal Set of G, we have $\gamma_{\text {tstd }}(\mathrm{P})=4$.
Now we find the Total Dominating Color Transversal number of other well known graph called Herschel graph. But before that we need the following results.
Result 3.5: Let $G=(V, E)$ be a graph and S be a subset of V with diameter of $\langle\mathrm{S}\rangle$ be k (k is a finite positive integer) ($<\mathrm{S}>$ is the subgraph of G induced by the vertices in S). If v $\in V$ is adjacent to some vertex in S then $d(u, v) \leq k+1, \forall^{\prime} u \in$ S.

Proof: Consider the given graph G and set S. Suppose a vertex v is adjacent to some vertex in S .
Let $d(u, v)>k+1$ for some $u \in S$. Definitely $v \in V \backslash S$, as diameter of $\langle\mathrm{S}\rangle$ is k . Obviously v is not be adjacent to u . So suppose v is adjacent to some other vertex, say w, in S. Now $\mathrm{k}+1<\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq \mathrm{d}(\mathrm{u}, \mathrm{w})+\mathrm{d}(\mathrm{w}, \mathrm{v}) \leq \mathrm{k}+1($ as $\mathrm{d}(\mathrm{u}, \mathrm{w}) \leq \mathrm{k})$. So we get $k+1<k+1$, which is a contradiction. Therefore d $(\mathrm{u}, \mathrm{v}) \leq \mathrm{k}+1, \forall \mathrm{u} \in \mathrm{S}$.
Theorem $3.6[1]$: If $\boldsymbol{\chi}(\mathbf{G})=\mathbf{2}$ then $Y_{\text {tstd }}(\mathbf{G})=Y_{t}(\mathbf{G})$.

Theorem 3.7: $\mathrm{Y}_{\mathrm{tstd}}(H)=4$, where H stands for Herschel Graph.
Proof:

H: Herschel Graph

Fig. 3
Clearly from the fig. 3, the Herchel graph is bipartite. So by theorem 3.6, $\gamma_{\text {tstd }}(H)=\gamma_{\mathrm{t}}(H)$.
Claim: $\gamma_{t}(H)=4$.
We first note that the diameter of H is 4 and $\mathrm{d}\left(\mathrm{u}_{2}, \mathrm{u}_{5}\right)=4$. Let S be a Total Dominating Set of H. Assume $|S|=3$. Since S is a total dominating set of $\mathrm{G},\langle\mathrm{S}\rangle$ is connected. So if D is the diameter of $\langle\mathrm{S}\rangle$ then $\mathrm{D} \leq 2$. If $\mathrm{v} \in \mathrm{V}$ is adjacent to some vertex in S then by result 1.4.1, $d(u, v) \leq 2+1=3, \forall u \in S$.
Obviously both u_{2} and u_{5} cannot be in S as $\mathrm{D} \leq 2$. If any one of u_{2} or u_{5} is in S, say u_{2} (without loss of generality), then the vertex u_{5} cannot be adjacent to any vertex in S, by result 3.5 . Note that there does not exists any vertex in H such that it is adjacent to both u_{2} and u_{5}. Also there are no adjacent vertices x and y, in S, such that x is adjacent to u_{2} and y is adjacent to u_{5}, for otherwise $d\left(u_{2}, u_{5}\right)<4$. So the only possibility is both u_{2} and u_{5} are out side S and there exists non adjacent verttices x and y in S such that x is adjacent to u_{2} and y is adjacent to u_{5}. The only possible sets S are $\left\{\mathrm{u}_{1}, \mathrm{v}_{1}, \mathrm{u}_{6}\right\},\left\{\mathrm{u}_{1}, \mathrm{u}_{7}, \mathrm{u}_{6}\right\},\left\{\mathrm{u}_{1}\right.$, $\left.\mathrm{u}_{7}, \mathrm{u}_{4}\right\},\left\{\mathrm{u}_{1}, \mathrm{v}_{1}, \mathrm{v}_{4}\right\},\left\{\mathrm{u}_{4}, \mathrm{u}_{7}, \mathrm{u}_{3}\right\},\left\{\mathrm{u}_{4}, \mathrm{v}_{3}, \mathrm{u}_{3}\right\},\left\{\mathrm{u}_{4}, \mathrm{v}_{3}, \mathrm{v}_{2}\right\},\left\{\mathrm{v}_{1}\right.$, $\left.v_{2}, v_{4}\right\}$ and $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$. None of these sets totally dominates all the vertices of H . So our assumption that $|\mathrm{S}|=3$ is wrong. Hence if S is a total dominating set of H then $|S|>3$. So $\gamma_{\mathrm{t}}(H)$ >3.
Note that as $\left\{\mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{5}, \mathrm{u}_{6}\right\}$ is a Total Dominating Set of H. So $\gamma_{\mathrm{t}}(\mathrm{H})=4$. Therefore $\gamma_{\text {tstd }}(\mathrm{H})=4$.
Now we find the Total Dominating Color Transversal number of another graph called Grotszch graph, denoted by G_{4}, which is triangle free $4-$ Chromatic graph.
Theorem 3.8: $\mathrm{Y}_{\text {tstd }}\left(G_{4}\right)=4$, where G_{4} stands for Grotszch graph.
Proof:

Grotszch Graph - G $\mathbf{4}$
Fig. 4
We first note that Grotszch graph has Chromatic number 4.

Hence $\gamma_{\text {tstd }}\left(G_{4}\right) \geq 4$. Trivially $\left\{v_{2}, v_{3}, u_{4}, u_{6}\right\}$ is a $\gamma_{\text {tstd }}-$ Set of G with $\gamma_{\text {tstd }}\left(G_{4}\right)=4$.
Theorem 3.9: Let H_{n} be a Helm Graph. Then $Y_{\text {tstd }}\left(H_{n}\right)=$ n.

Proof: Note that W_{n}, the Wheel Graph with n vertices, is a subgraph of H_{n} and $\chi\left(\mathrm{W}_{\mathrm{n}}\right)=\chi\left(\mathrm{H}_{\mathrm{n}}\right)$.
Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}$ be the vertices of the W_{n} where v_{1}, $v_{2}, \ldots \ldots, v_{n-1}$ are the vertices on the outer cycle of W_{n} and v_{n} is a hub vertex of W_{n}. Clearly $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{n}-1}$ are all support vertices of H_{n}.
Since any total dominating set must contain all its support vertices, $\gamma_{\text {tstd }}\left(H_{n}\right) \geq n-1$. Note that v_{n} has color class different from all the support vertices. So $\gamma_{\text {tstd }}\left(H_{n}\right) \geq n$. Trivially $S=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}\right\} \cup\left\{v_{n}\right\}$ is a $\gamma_{\text {tstd }}-$ Set of H_{n} with $\gamma_{\text {tstd }}\left(\mathrm{H}_{\mathrm{n}}\right)=\mathrm{n}$.
Example 3.10:

Helm Graph - H_{8}
Fig. 5

4. Concluding Remarks

Total Dominating Color Transversal number of some familiar graphs is obtained. This number is actually is an amalgam of three very well known concepts of graph theory, viz., Total Dominating Set. Transversal and Proper Coloring of vertices of a graph. Great amount of research work is going on in these concepts, in India as well as abroad. Talking about all the three concepts together will definitely bring more interesting and amazing relations among these concepts in future.

5. References

[1] D. K. Thakkar and A. B. Kothiya, Total Dominating Color Transversal number of Graphs, Annals of Pure and Applied Mathematics, Vol. 11(2), 2016, $39-44$.
[2] R. L. J. Manoharan, Dominating colour transversals in graphs, Bharathidas an University, September, 2009.
[3] Michael A. Henning and Andres Yeo, Total Domination in Graphs, Springer, 2013.
[4] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
[5] R. Balakrishnan and K. Ranganathan, "A Textbook of Graph Theory, Springer", New York, 2000. [6] Goksen BACAK, " Vertex Color of a Graph", Master of Science Thesis, 'IZM'IR, December, 2004.

