41680

N. Anitha and M. Latha/ Elixir Adv. Pure Math. 96 (2016) 41680-41683

Available online at www.elixirpublishers.com (Elixir International Journal)

Awakening

Advances in Pure Mathematics

Elixir Adv. Pure Math. 96 (2016) 41680-41683

Isomorphism and Anti isomorphism in Q-Fuzzy Translation of Interval Valued Q- Fuzzy Subhemirings of a Hemiring

N. Anitha¹ and M. Latha²

¹Department of Mathematics, Periyar University PG Extension centre , Dharmapuri-636705. ²Department of Mathematics, Karpagam University, Coimbatore-641021.

ARTICLE INFO

Article history: Received: 18 March 2016; Received in revised form: 15 July 2016; Accepted: 21 July 2016;

ABSTRACT

In this paper, we made an attempt to study the algebraic nature of a Interval valued fuzzy subhemiring of a hemiring.

© 2016 Elixir All rights reserved.

Keywords

Interval valued fuzzy set, Interval valued fuzzy subhemiring, Interval valued Fuzzy Translation.

Introduction

There are many concepts of universal algebras generalizing an associative ring (R; +; .). Some of them in particular, near rings and several kinds of semirings have been proven very useful. Semirings (called also half rings) are algebras (R; + ;.) share the same properties as a ring except that (R; +) is assumed to be a semi group rather than a commutative group. Semi rings appear in a natural manner in some applications to the theory of automata and formal languages. An algebra (R; +;) is said to be a semi ring (R; +)and (R; .) are semi groups satisfying a.(b+c)=a.b+a.c and (b+c).a=b.a+c.a for all a,b and c in R. A semiring R is said to be additively commutative if a+b=b+a for all a, b and c in R. A semiring R may have an identity 1, defined by 1.a=a=a.1 and a zero 0, defined by 0+a=a=a+0 and a.0=0=0.a for all a in R. A semiring R is said to be a hemi ring if it is an additively commutative with zero. Interval valued fuzzy sets were introduced independently by Zadeh(19), Gratten-Guiness(6), Jahn.K.U(7), in the seventies, in the same year.An interval valued fuzzy set(IVF) is defined by an interval-valued membership function Jun.Y.B and Kin.K.H.(8) defined an interval valued fuzzy R-subgroups of nearrings. Solairaju .A and R.Nagarajan(18), defined the charactarization of interval valued Anti fuzzy Left h-ideals over Hemirings. Azriel Rosenfield (5) defined a fuzzy Groups. Solairaju .A and R.Nagarajan,(22) have given new structure and construction of Q-fuzzy groups, In this paper, we introduce some properties and theorems in Interval valued Q-fuzzy subhemirings of a hemiring under Isomorphism and Antiisomorphism and established some results.

1. Preliminaries

1.1Definition

Let X be any nonempty set. A mapping $[M]: X \rightarrow D[0,1]$ is called an interval valued fuzy

Tele: E-mail address: anithaarenu@gmail.com © 2016 Elixir All rights reserved subset(briefly, IVFS) of X, where D[0,1] denoted the family of all closed subintervals of [0,1] and $[M](x)=[M^{-}(x), M^{+}(x)]$, for all x in X, where M⁻and M⁺ are fuzzy subsets of X such that $M^{-}(x) \leq M^{+}(x)$, for all x in X. Thus [M](x) is an interval (a closed subset of [0,1]) and not number from the intervak [0,1] as in the case of fuzzy subset. Note that [0] = [0,0] and [1]=[1,1].

1.2 Remark

Let $\mathbf{D}^{\mathbf{X}}$ be the set of all interval valued fuzzy subsets of X, where D means D[0,1].

1.3Definition

Let $[M] = \{ \langle x, [M^{-}(x), M^{+}(x)] \rangle / x \in X \}, [N] = \{ \langle x, [N^{-}(x), N^{+}(x)] \rangle / x \in X \}$

be any two interval valued fuzzy subsets of x. We define the following relations and operations:

i)[M] \subseteq [N] if and only if M⁻(x) \leq N⁻(x) and M⁺(x) \leq N⁺(x), for all x in X.

ii)[M] = [N] if and only if $M^{-}(x) = N^{-}(x)$ and $M^{+}(x) = N^{+}(x)$, for all x in X.

iii)[M] **∩ [N]**=

{ $(x, [min{M^{-}(x), N^{-}(x)}, min{M^{+}(x), N^{+}(x)}])/ x \in X$ } iv)[M] $\cup [N]=$ { $(x, [max{M^{-}(x), N^{-}(x)}, max{M^{+}(x), N^{+}(x)}])/$

 $\{(x, [\max\{M (x), N (x)\}, \max\{M (x), N (x)\}] / x \in X\}$ $[M]^{c} = [1] - [M] = \{(x, [1 - M^{+}(x), 1 - M^{-}(x)) / M^{-}(x), M^{-}(x)\}$

 $[M]^{\circ} = [1] - [M] = \{(x, [1 - M^{\circ}(x), 1 - M^{\circ}(x)) / x \in X\}$

1.3 Definition

The union of two (S,Q)-fuzzy sets A and B of a set X is defined

 $([A] \cup [B])(x,q) = \max\{[A](x,q), [B](x,q)\}$ for all x in X and q in Q.

1.4 Definition

The intersection of two (S,Q)-fuzzy sets A and B of a set X is defined by

 $([A] \cap [B])(x,q) = \min\{[A](x,q), [B](x,q)\} \text{ for all } x \text{ in } X \text{ and } q \text{ in } Q.$

1.5 Definition

Let (R, +, .) be a hemiring. A interval valued Q-fuzzy subset [M] of R is said to be an interval valued Q -fuzzy subhemiring (IVQFSHR) of R if the following conditions are satisified:

(i) $[M](x + y, q) \ge \min([M](x, q), [M](y, q))$

$$(ii)[M](xy,q) \ge \min([M](x,q),[M](y,q)), \text{ for all } x$$

and y in R, and q in Q.

1.6 Definition

Let (R, +, .) be a hemiring. A interval valued Q-fuzzy subhemiring [A] of R is said to be an interval valued Q-fuzzy normal subhemiring (IVQFNSHR) of R if [A](xy,q)=[A] (yx,q), for all x and y in R and q in Q.

1.7 Definition

Let (R, +, .) and (R', +, .) be any two hemirings. Then the function $f:R \longrightarrow R'$ is called a hemiring homomorphism if it satisfies the following axioms:

i) f(x + y) = f(x) + f(y), ii) f(xy) = f(x)f(y), for all x and y in R.

1.8 Definition

Let (R, +, .) and (R', +, .) be any two hemirings. Then the function $f:R\longrightarrow R'$ is called a hemiring anti-homomorphism if it satisfies the following axioms:

i) f(x + y) = f(y) + f(x),

ii) f(xy) = f(y)f(x), for all x and y in R.

1.9 Definition

Let (R, +, .) and (R', +, .) be any two hemirings. Then the function f:R—>R' be a hemiring homomorphism. If f is one-to-one and onto ,then f is called a hemiring isomorphism.

1.10 Definition

Let (R, +, .) and (R', +, .) be any two hemirings. Then the function $f:R \longrightarrow R'$ be a hemiring anti-homomorphism. If f is one-to-one and onto, then f is called a hemiring anti-isomorphism.

1.11 Definition

Let A be a Q-fuzzy subset of X and $\alpha \in [0,1 - Sup\{[A](x,q): x \in X, 0 < [A](x,q) < 1\}].$

Then $\mathbf{T} = \mathbf{T}_{\alpha}^{A}$ is called a interval valued Q-fuzzy translation of [A] if $\mathbf{T}(\mathbf{x}, \mathbf{q}) = [A]((\mathbf{x}, \mathbf{q}) + \alpha)$, for all x in X.

2. Isomorphism And Antiisomorphism In Interval Valued Q- Fuzzy Translation Interval Valued Q- Fuzzy Subhemirings Of A Hemiring

2.1 Theorem

Let (R, +,.) and (R', +, .) be any two hemirings. The interval valued Q-fuzzy normal subhemiring of $f(R) = \mathbf{R}'$ under the anti-homomorphic preimage is an interval valued Q-fuzzy normal subhemiring of R_*

Proof

Let (R, +, .) and (R', +, .) be any two hemirings.Let f:R—>R' antihomomorphism. be an Then f(x + y) = f(y) + f(x), and f(xy) = f(y)f(x) for all x and y in R. Let [V] be a interval valued Q-fuzzy normal subhemiring of $f(R) = \mathbf{R'}$ and A be an anti-homomorphic preimage of [V] under f. we have to prove that [A] is an interval valued Q-fuzzy normal subhemiring of hemiring R. Let x and y in R and q in Q. Then clearly [A] is an interval valued Qfuzzy normal subhemiring of the hemiring R. Since [V] is an interval valued Q-fuzzy normal subhemiring of the hemiring R'

Now, [A](xy,q) = [V]((f(xy),q)), since [A](x,q) = [V]((f(x),q)) = ([V](f(y)f(x),q))

as f is an anti-homomorphism = [V](f(x)f(y),q) = [V]((f(yx),q)) as f is an antihomomorphism=[A](yx,q), since

[A](xy,q) = [A](yx,q), which implies that [A](xy,q) = [A](yx,q) for all x and y in R and q in Q.Hence [A] is an interval valued Q-fuzzy normal subhemiring of hemiring R.

In the following Theorem • is the composition operation of functions:

2.2 Theorem

Let [A] be an interval valued Q-fuzzy subhemiring of hemiring H and f is an isomorphism from a hemi ring R onto H. If [A] be an interval valued Q-fuzzy normal subhemiring of hemiring H,then [A] o f is an interval valued Q-fuzzy normal subhemiring of the hemiring R.

Proof

Let x and y in R and q in Q and [A] be an interval valued Q-fuzzy normal subhemiring of the hemiring H. Then we have Clearly [A]• f is an interval valued Q-fuzzy subhemiring of the hemiring R.

$$([A] \circ f)((xy,q)) = [A]((f(xy),q)) =$$

[A]((f(x)f(y),q)
as f is an isomorphism
=[A](f(y)f(x),q) = [A]((f(yx),q)) as f is an
isomorphism = ([A] \circ f)((yx,q)) for all x and y in R and
q in Q. Therefore [A] of is an interval valued Q-fuzzy normal

subhemiring of the hemiring R.

2.3 Theorem

Let [A] be a interval valued Q-fuzzy subhemiring of hemiring H and f is an anti-isomorphism from a hemi ring R onto H. If [A] be a interval valued Q-fuzzy normal subhemiring of hemiring H, then [A] of is a interval valued Q-fuzzy normal subhemiring of the hemiring R.

Proof

Let x and y in R and q in Q and [A] be a interval valued Q-fuzzy normal subhemiring of hemiring H. Then we have clearly [A] of is an interval valued Q-fuzzy subhemiring of the hemiring R.

Now,
$$([A] \circ f)((xy,q)) = [A]((f(xy),q))$$

= ([A](f(y)f(x),q) as f is an anti- isomorphism= ([A](f(x)f(y),q) = [A]((f(yx),q)) as f is an antiisomorphism = ([A] \circ f)((yx,q)), which implies that ([A] \circ f)((xy,q)) = ([A] \circ f)((yx,q)), for all x and y in R and q in Q. Therefore [A] \circ f is an interval valued Q-fuzzy normal subhemiring of the hemiring R.

2.4 Theorem

If [M] and [N]are two interval valued Q-fuzzy translations of interval valued Q-fuzzy normal subhemiring [A] of a hemiring (R, +, .), then their intersection $[M] \cap [N]$

is an interval valued Q-fuzzy translation of A.

Proof

It is trivial.

2.5Theorem

The intersection of family of interval valued Q-fuzzy translations of interval valued Q-fuzzy normal subhemiring [A] of a hemiring (R, +, .) is an interval valued Q-fuzzy translation of A.

Proof

It is trivial.

2.6Theorem

If [M] and [N] are two interval valued Q-fuzzy translations of interval valued Q-fuzzy normal subhemiring [A] of a hemiring (R,+, .),then their union $[M] \cup [N]$ is an interval valued Q-fuzzy translation of A.

Proof

It is trivial.

2.7Theorem

The union of family of interval valued Q-fuzzy translations of interval valued Q-fuzzy normal subhemiring [A] of a hemiring (R ,+, .) is an interval valued Q-fuzzy translation of A.

Proof

It is trivial.

2.8 Theorem

Let (R, +,.) and (R', +,.) be any two hemirings and Q be a non-empty set. If $f:R \longrightarrow R'$ is a homomorphism, Then interval valued Q-fuzzy translation of a interval valued Qfuzzy normal subhemiring [A] of R under the homomorphic image is an interval valued Q-fuzzy normal subhemiring of f(R)=R'.

Proof

Let (R, +, .) and (R', +, .) be any two hemirings and Q be a non-empty set and f:R—>R' be homomorphism. That is f(x +y)=f(x)+f(y) and f(xy)=f(x)f(y), for all x and y in R. Let $\mathbf{T} = \mathbf{T}_{\alpha}^{A}$ be the interval valued Q-fuzzy translation of an interval valued Q-fuzzy normal subhemiring of [A] of R and [V] be the homomorphic image of [T] under f. We have to prove that [V] is an interval valued Q-fuzzy normal subhemiring of R'. Now, f(x) and f(y) in R' and q in Q. Then clearly, [V] is an interval valued Q-fuzzy subhemiring of the hemiring R'.

Now, $[V](f(x)f(y),q) = [V](f(xy),q) \ge$ $[T](xy,q) = [A]((xy,q) + \alpha) = [A]((yx,q) + \alpha) =$ $[T](yx,q) \le [V](f(yx),q) = [V](f(y)f(x),q)$,which implies that [V](f(x)f(y),q) = [V](f(y)f(x),q) for all f(x) and f(y) in R' and q in Q. Therefore [V] is an interval valued Q-fuzzy normal subhemiring of the hemiring R'.

2.9 Theorem

Let (R, +,.) and (R', +,.) be any two hemirings and Q be a non-empty set. If f:R—>R' is a homomorphism, Then interval valued Q-fuzzy translation of a interval valued Qfuzzy normal subhemiring [V] of $f(R) = \mathbf{R'}$ under the homomorphic pre-image is an interval valued Q-fuzzy normal subhemiring of R.

Proof

Let (R, +, .) and (R', +, .) be any two hemirings and Q be a non-empty set and f:R—>R' be homomorphism. That is f(x +y) = f(x)+f(y) and f(xy) = f(x)f(y), for all x and y in R. Let $\mathbf{T} = \mathbf{T}_{\alpha}^{\mathbf{V}}$ be the interval valued Q-fuzzy translation of an interval valued Q-fuzzy normal subhemiring of [V] of **R'** and [A] be the homomorphic pre-image of [T] under f. We have to prove that [A] is an interval valued Q-fuzzy normal subhemiring of R. Let x and y in R and q in Q. Then clearly [A] is an interval valued Q-fuzzy subhemiring of the hemiring R.

Now,
$$[A](xy,q) = [T](f(xy),q) = [V]((f(xy),q) + \alpha) = [V]((f(x)f(y),q) + \alpha) = [V]((f(y)f(x),q) + \alpha) = [V]((f(yx),q) + \alpha) = [T](f(yx),q) = [A](yx,q)$$

, which implies that [A](xy,q) = [A](yx,q), for all x and y in R and q in Q. Therefore, [A] is an interval valued Q-fuzzy normal subhemiring of the hemiring R.

2.10 Theorem

Let (R, +,.) and (R', +,.) be any two hemirings and Q be a non-empty set. If $f:R\longrightarrow R'$ is a anti-homomorphism, Then interval valued Q-fuzzy translation of a interval valued Qfuzzy normal subhemiring [A] of R under the antihomomorphic image is interval valued Q-fuzzy normal subhemiring of $f(R)=\mathbf{R'}$.

Proof

Let (R, +, .) and (R', +, .) be any two hemirings and Q be a non-empty set and $f:R \longrightarrow R'$ be an anti-homomorphism. That is f(x + y) = f(y)+f(x) and f(xy)=f(y)f(x), for all x and y in R. Let $\mathbf{T} = \mathbf{T}_{\alpha}^{\mathbf{A}}$ be the interval valued Q-fuzzy translation of a interval valued Q-fuzzy normal subhemiring of [A] of R and [V] be the anti- homomorphic image of $\mathbf{T}_{\alpha}^{\mathbf{A}}$ under f. We have to prove that [V] is an interval valued Q-fuzzy normal subhemiring of f(R)=R'.Now for f(x) and f(y) in R and q in Q. Then clearly, [V] is an interval valued Q-fuzzy subhemiring of the hemiring R'.

Now, $[V]((f(x)f(y),q)) = [V](f(yx),q) \ge$ $[T](yx,q) = [A]((yx,q) + \alpha) = [A]((xy,q) + \alpha) = [T](xy,q) \le [V](f(xy),q) =$ [V]((f(y)f(x),q)), which implies that [V]((f(x)f(y),q)) =[V]((f(y)f(x),q)), for all f(x) and f(y) in R' and q in Q.

Therefore [V] is an interval valued Q-fuzzy normal subhemiring of the hemiring R'.

2.11 Theorem

Let (R, +,.) and (R', +,.) be any two hemirings and Q be a non-empty set. If $f:R \longrightarrow R'$ is a anti-homomorphism, then interval valued Q-fuzzy translation of a interval valued Qfuzzy normal subhemiring [V] of f(R)=R' under the antihomomorphic pre-image is an interval valued Q-fuzzy normal subhemiring of R.

Proof

Let (R, +, .) and (R', +, .) be any two hemirings and Q be a non-empty set and $f:R \longrightarrow R'$ be an anti-homomorphism. That is f(x + y) = f(y) + f(x) and f(xy) = f(y)f(x), for all x and y in R. Let $\mathbf{T} = \mathbf{T}_{\alpha}^{\mathbf{V}}$ be the interval valued Q-fuzzy translation of a interval valued Q-fuzzy normal subhemiring of [V] of R' and [A] be the anti- homomorphic pre-image of [T] under f. We have to prove that [A] is an interval valued Q-fuzzy normal subhemiring of R. Let x and y in R and q in Q. Then Clearly, [A] is an interval valued Q-fuzzy normal subhemiring R.

Now

 $[A](xy,q) = [T](f(xy),q) = [V]((f(xy),q) + \alpha) = [V]((f(y)f(x),q) + \alpha) = [V]((f(x)f(y),q) + \alpha) = [V]((f(x)f(y),q) + \alpha) = [T](f(yx),q) = [A](xy,q) =$

[A](yx,q)

, which implies that [A](xy,q) = [A](yx,q), for all x and y in R and q in Q. Therefore, [A] is an interval valued Q-fuzzy normal subhemiring of R.

Reference

1. Akram.M and K.H.Dar On Anti fuzzy left h-ideals in hemirings, International Mathematical Forum, 2(46); 2295-2304, 2007.

2. Akram.M and K.H.Dar, 2007 Fuzzy left h-ideals in hemirings with respect to s-norm, International Journal of Computational and Applied Mathematics, 2: 7-14.

3. Atanassov.K.T.,1986, Intuitionistic fuzzy sets, fuzzy sets and systems,20(1): 87-96.

4. Azriel Rosenfield, Fuzzy Groups, Journal of Mathematical analysis and applications, 35, 512-517(1971).

5. Biswas.R, Fuzzy subgroups and anti-fuzzy subgroups, Fuzzy sets and systems, 35; 121-124,

(1990).

6. Gratten-Guiness, Fuzzy membership mapped onto interval and many valued quantities ,Z.Math,Logik,Grundladen Math,22,149-160(1975).

7. Jahn.K.U., Interval wertige mengen, Math Nach.68,115-132(1975).

8. Jun.Y.B and Kin.K.H, Interval valued fuzzy R-subgroups of nearrings, Indian Journal of Pure and Applied Mathematics, 33(1), 71-80(2002).

9. Kim.K.H., 2006, On Intuitionistic Q-fuzzy semi prime ideals in semi groups, Advances in

Fuzzy Mathematics,1(1): 15-21.

10. Muthuraj R, P.M.Sitharselvam and M.S.Muthuraman, 2010. Anti Q-fuzzy group and its Lower level subgroups, International Journal of Computer Applications, 3(3): 0975-8887.

11. Osman kazanci, sultan yamark and serife yilmaz, 2007. On intuitionistic Q-fuzzy R-subgroups of nearrings, International mathematical forum, 2(59):2899-2910.

12. Palaniappan.N & K.Arjunan, 2007 Operation on fuzzy and anti fuzzy ideals,

Antartica J.Math, 4(1); 59-64.

13. Palaniappan.N & K.Arjunan, , 2007 Some properties of intuitionistic fuzzy subgroups, Acta Ciencia Indica, VolXXXIIII (2); 321-328.

14. RatnabalaDevi.O,2009. On the intuitionistic Q-fuzzy Ideals of nearrings, NIFS 15(3):25-32.

15. Roh.H, K.H.Kim and J.G.Lee, 2006. Intuitionistic Q-fuzzy subalgebras of BCK/BCI-Algebras,International Math Forum 1,24:1167-1174.

16. Solairaju .A and R.Nagarajan, 2008.Q-fuzzy left R-subgroups of near rings w.r.t T-norms, Antarctica journal ofmathematics, 5:1-2.

17. Solairaju .A and R.Nagarajan, 2009.A new structure and construction of Q-fuzzy groups, Advances in fuzzy mathematics, Volume4 (1):23-29.

18. Solairaju .A and R.Nagarajan, Charactarization of interval valued Anti fuzzy Left h-ideals over Hemirings, Advances in fuzzy Mathematics, Vol.4, No.2, 129-136(2006).

19. Zadeh.L.A, Fuzzy sets, Information and control, 8; 338-353, 1965.

20. Roh.H, K.H.Kim and J.G.Lee,2006. Intuitionistic Q-fuzzy subalgebras of BCK/BCI-Algebras,International Math Forum 1,24:1167-1174.

21. Solairaju .A and R.Nagarajan, 2008.Q-fuzzy left R-subgroups of near rings w.r.t T-norms, Antarctica journal ofmathematics, 5:1-2.

22. Solairaju .A and R.Nagarajan, 2009.A new structure and construction of Q-fuzzy groups, Advances in fuzzy mathematics, Volume4 (1):23-29.