On Decomposition of Neo-Curvature Tensor Field in Finsler Recurrent Spaces

U.S.Negi

Department of Mathematics, H.N.B. Garhwal (Central) University, Campus Badshashi-thaul, Tehri Garhwal-249199, U.K. India.

ARTICLE INFO

Article history:
Received: 10 May 2016;
Received in revised form:
1 July 2016;
Accepted: 6 July 2016;

ABSTRACT

Takano [1967] has studied the decomposition of curvature tensor in a recurrent space. Chandra [1972] has defined Neo-covariant derivative and its applications. In this paper, I have studied decomposition of Neo-curvature tensor field in Finsler recurrent spaces and several theorems have been established.
© 2016 Elixir All rights reserved.

Keywords

Finsler recurrent spaces,
Neo-curvature,
Neo-covariant,
Tensor field.

Introduction

MSC2010: 53C15, 53C50, 53C55, 53C80.
Let F_{m} be a subspace of the Finsler space F_{n}. The metric tensors $g_{\alpha \beta}(u, \dot{u}), g_{i j}(x . \dot{x})$ of the spaces F_{m} and F_{n} are such that, given by Rund [1959].
$g_{\alpha \beta}(u, \dot{u})=g_{i j}(x, \dot{x}) X^{i} X^{j}, \quad X^{i}=\frac{\partial x^{i}}{\partial u_{\alpha}}$
The neo-covariant differentiation of any vector field $Y^{\alpha}(u, \dot{u})$ with respect to u^{β} is given by Chandra [1972].
${ }_{\nabla}^{n} Y^{\alpha}=\partial_{\beta} Y^{\alpha}+\dot{\partial}_{\delta} Y^{\alpha} \partial_{\beta} \dot{u}^{\delta}+F_{\beta \gamma}^{\alpha} Y^{\gamma}$
where n is the notation for the neo-covariant differentiation, $F_{\beta \gamma}^{\alpha}$ is the neo-connection of F_{m}, ∂_{β} and $\dot{\partial}_{\beta}$ denote ∇
$\partial / \partial u^{\beta}$ and $\partial / \partial \dot{u}^{\beta}$ respectively.
Now differentiating (1.2) neo-covariantly with to u^{γ} and commuting the indices β and γ, we have
${\underset{\beta \gamma}{n}}_{n} Y^{\alpha}-{ }_{\beta \gamma}^{n} Y^{\alpha}=N_{\delta \beta \gamma}^{\alpha} Y^{\delta}$
where $N_{\delta \beta \gamma}^{\alpha}(u, \dot{u})$ is the neo-curvature tensor field given by Chandra [1972].
The neo-curvature tensor field $N_{\delta \beta \gamma}^{\alpha}$ satisfies the following identities given by Chandra [1972]
$N_{\delta \beta \gamma}^{\alpha}+N_{\delta \gamma \beta}^{\alpha}=0$
$N_{\delta \beta \gamma}^{\alpha}+N_{\beta \gamma \delta}^{\alpha}+N_{\gamma \delta \beta}^{\alpha}=0$
${ }_{\varnothing}^{n} N_{\delta \beta \gamma}^{\alpha}+{ }_{\nabla}^{n} N_{\delta \gamma \varnothing}^{\alpha}+{ }_{\gamma}^{n} N_{\delta \varnothing \beta}^{\alpha}=0$
Let $T_{\beta \gamma}^{\alpha}$ be any tensor field. The following commutation formula will be used in sequel

$$
\begin{equation*}
{\underset{\emptyset}{\nabla \theta}}_{n} T_{\beta \gamma}^{\alpha}+{\underset{\nabla}{\theta \emptyset}}_{n} T_{\beta \gamma}^{\alpha}=T_{\beta \gamma}^{\varepsilon} N_{\varepsilon \emptyset \theta}^{\alpha}-T_{\varepsilon \gamma}^{\alpha} N_{\beta \emptyset \theta}^{\varepsilon}-T_{\beta \varepsilon}^{\alpha} N_{\gamma \emptyset \theta}^{\varepsilon} \tag{1.5}
\end{equation*}
$$

Tele: 9758037370
E-mail address: usnegi7@gmail.com

Definition (1.1): The subspace F_{m} is said to be neo-recurrent if the neo-curvature tensor field $N_{\delta \beta \gamma}^{\alpha}$ satisfies the relation

$$
\begin{equation*}
{ }_{\nabla}^{\square}{ }_{\emptyset}^{n} N_{\delta \beta \gamma}^{\alpha}-v_{\emptyset} N_{\delta \beta \gamma}^{\alpha}=0, \tag{1.6}
\end{equation*}
$$

Where $\boldsymbol{v}_{\varnothing}$ is non-zero neo-recurrent vector field.
The neo-curvature tensor field in this case is called neo-recurrent curvature tensor field.
In view of (1.6), (1.4c) yields
$v_{\emptyset} N_{\delta \beta \gamma}^{\alpha}+v_{\beta} N_{\delta \gamma \emptyset}^{\alpha}+v_{\gamma} N_{\delta \varnothing \beta}^{\alpha}=0$.
2. Decomposition of neo-curvature tensor field in finsler recurrent spaces.

Let us consider the decomposition of the neo-curvature tensor field $N_{\delta \beta \gamma}^{\alpha}$ is the form

$$
\begin{equation*}
N_{\delta \beta \gamma}^{\alpha}=W_{\delta} X_{\beta \gamma}^{\alpha} \tag{2.1}
\end{equation*}
$$

Where $X_{\beta \gamma}^{\alpha}(u . \dot{u})$ is decomposition tensor field and $W_{\delta}(u, \dot{u})$ is a non-zero vector-field.
Theorem (2.1): Under the decomposition (2.1), the tensor fields $X_{\beta \gamma}^{\alpha}$ satisfies the identities

$$
\begin{align*}
& X_{\beta \gamma}^{\alpha}+X_{\gamma \beta}^{\alpha}=0 \tag{2.2a}\\
& \quad W_{\delta} X_{\beta \gamma}^{\alpha}+W_{\beta} X_{\gamma \delta}^{\alpha}+W_{\gamma} X_{\delta \beta}^{\alpha}=0 \tag{2.2b}\\
& v_{\emptyset} X_{\beta \gamma}^{\alpha}+v_{\beta} X_{\gamma \emptyset}^{\alpha}+v_{\gamma} X_{\emptyset \beta}^{\alpha}=0 \tag{2.2c}
\end{align*}
$$

Theorem (2.2): The necessary and sufficient condition that the tensor field $X_{\beta \gamma}^{\alpha}$ behaves like a neo-recurrence tensor field of the first order is that the vector field W_{δ} be neo-covariant constant.
Proof: Taking neo-covariant differentiation of (2.1) with respect to u^{\emptyset}, making use of (1.6) and (2.1) in resulting equation and simplifying, we have

$$
W_{\delta}\left(\begin{array}{l}
n \tag{2.3}\\
\nabla X_{\beta \gamma}^{\alpha}-v_{\emptyset} X_{\beta \gamma}^{\alpha} \\
\emptyset
\end{array}\right)=-\left(\begin{array}{l}
n \\
\nabla W_{\delta} \\
\emptyset
\end{array}\right)^{X_{\beta \gamma}^{\alpha}}
$$

Which proves the theorem.

Theorem (2.3): If the vector field W_{δ} be neo-covariant constant, then under the decomposition (2.1), the tensor $n v$ is neo-
recurrent, where the square bracket denotes the skew symmetric part.
Proof: Since $n \quad$ then from (2.3), we have

$$
\begin{align*}
\nabla W_{\delta}= & 0 \\
\emptyset & n \\
& \nabla X_{\beta \gamma}^{\alpha}=v_{\emptyset} X_{\beta \gamma}^{\alpha} \tag{2.4}\\
& \emptyset
\end{align*}
$$

Differentiating (2.4) neo-covariantly with respect to u^{θ} and using (2.4), we have

$$
n \quad n
$$

$$
\nabla X_{\beta \gamma}^{\alpha}=\left(\nabla v_{\emptyset}+v_{\theta} v_{\emptyset}\right) X_{\beta V^{*}}^{\alpha}
$$

$\emptyset \theta$
Commuting the indices $\boldsymbol{\theta}$ and \emptyset in (2.5) and using (1.5), we have

$$
\begin{equation*}
\left.\stackrel{(n}{\nabla v_{\emptyset}-}{ }_{\emptyset}^{\nabla} v_{\theta}\right) X_{\beta \gamma}^{\alpha}=X_{\beta \gamma}^{\varphi} N_{\varphi \emptyset \theta}^{\alpha}-X_{\varphi \gamma}^{\alpha} N_{\beta \emptyset \theta}^{\varphi}-X_{\beta \varphi}^{\alpha} N_{\gamma \emptyset \theta}^{\varphi} \tag{2.6}
\end{equation*}
$$

Again differentiating (2.6) neo-covariantly with respect to $\boldsymbol{u}^{\varepsilon}$ and making use of (1.6), (2.4) and (2.6), we have the result
Theorem (2.4): If the vector field W_{δ} be the neo-covariant constant, then under the decomposition (2.1), the recurrence vector field v_{\emptyset} satisfies the relation

$$
v_{\emptyset}\left(\begin{array}{lc}
n & n \tag{2.7}\\
\nabla v_{\theta}- & \nabla v_{\varphi} \\
\varphi & \theta
\end{array}\right)+v_{\theta}\left(\begin{array}{cc}
n & n \\
\nabla v_{\varphi}- & \nabla v_{\varnothing} \\
\emptyset & \varphi
\end{array}\right)+v_{\varphi}\left(\begin{array}{cc}
n & n \\
\nabla v_{\emptyset}- & \nabla v_{\theta} \\
\theta & \emptyset
\end{array}\right)=0
$$

Proof: Differentiating (2.5) neo-covariantly with respect to u^{φ} and using (2.4), we have

Commuting the indices θ and φ in (2.8), we have

$$
\begin{align*}
\stackrel{n}{\nabla}_{\emptyset \theta \varphi} X_{\beta \gamma}^{\alpha}-\stackrel{n}{\nabla} X_{\emptyset \varphi \theta}^{\alpha}= & {\left[\left(\begin{array}{cc}
n & n \\
\nabla \\
v_{\emptyset}- & \nabla \\
\theta \varphi \\
\varphi \theta
\end{array}\right)+\right.} \tag{2.9}\\
& \left.+v_{\emptyset}\left(\begin{array}{cc}
n \\
\nabla v_{\theta}- & \nabla \\
\varphi & v_{\varphi} \\
\varphi & \theta
\end{array}\right)\right] X_{\beta \gamma}^{\alpha}
\end{align*}
$$

Which may be written as

Applying (1.5) and (2.4) in (2.10) and simplifying, we have

$$
\begin{align*}
& v_{\emptyset}\left(X_{\beta \gamma}^{\delta} N_{\delta \theta \varphi}^{\alpha}-X_{\delta \gamma}^{\alpha}\right. N_{\beta \theta \varphi}^{\delta}-X_{\beta \delta}^{\alpha} \\
&=v_{\emptyset}\binom{n}{N_{\gamma \theta \varphi}^{\delta}} \tag{2.11}\\
& \nabla v_{\theta}-\nabla v_{\varphi} \\
& \varphi
\end{align*}
$$

Cyclic permutation of the indices \emptyset, θ and $\varphi^{\text {in (2.11) yield two more relations. On adding these three relations and making }}$ use of (1.4a) and (1.7)
we have (2.7)
Theorem (2.5): Under the decomposition (2.1) the decomposition tensor field $X_{\beta \gamma}^{\alpha}$, satisfies the relation

$$
\left.\left(\begin{array}{c}
n \tag{2.12}\\
\nabla X_{\beta \gamma}^{\alpha} \\
\emptyset \theta \varphi \\
\emptyset \varphi \theta \\
\nabla \\
X_{\beta \gamma}^{\alpha}
\end{array}\right)+\left(\begin{array}{c}
n \\
\nabla \varphi \emptyset \\
\nabla \\
\theta \varphi \gamma \\
\theta \varphi \emptyset \\
\nabla \\
X_{\beta \gamma}^{\alpha}
\end{array}\right) \stackrel{\left(n_{\varphi \emptyset \theta}^{n}\right.}{\nabla} X_{\beta \gamma}^{\alpha}-\underset{\emptyset \varphi \theta}{\nabla} X_{\beta \gamma}^{\alpha}\right)=0
$$

Provided that the vector field W_{δ} be neo-covariant constant.
Proof: In view of commutation formula (1.5), equation (2.9) yields

Interchanging the indices \emptyset, θ and φ cyclically in (2.13) and adding all the three equations and using (1.4b) and (2.7), we have (2.12).
Now considering the decomposition of the tensor field $X_{\beta \gamma}^{\alpha}$ in the form

$$
\begin{equation*}
X_{\beta \gamma}^{\alpha}=U^{\alpha} Y_{\beta \gamma} \tag{2.14}
\end{equation*}
$$

Where $U^{\alpha}(u, \dot{u})$ is any non-zero vector field and $Y_{\beta \gamma}(\mathrm{u}, \dot{u})$ is non-zero tensor field.
Under the decomposition (2.14), the theorem (2.1) yields the following results:
(a) $Y_{\beta \gamma}+Y_{\gamma \beta}=0$
(b) $W_{\delta} Y_{\beta \gamma}+W_{\beta} Y_{\gamma \delta}+W_{\gamma} Y_{\delta \beta}=0$
(c) $v_{\emptyset} Y_{\beta \gamma}+v_{\beta} Y_{\gamma \emptyset}+v_{\gamma} Y_{\oplus \beta}=0$

We may establish the following theorem
Theorem (2.6): If the subspace F_{m} undergoes the decompositions (2.1) and (2.14) and the vector-field W_{δ} is neo-covariant constant then the tensor $Y_{\beta \gamma}$ behaves like neo-recurrent tensor field of the first order provided that U^{α} is neo-covariant constant. Proof: Differentiating (2.14) neo-covariantly with respect to u^{\varnothing}, we have

n
∇
φ

Since W_{δ} is neo-covariant constant, hence using (2.4) and (2.14) in (2.16), we have

from which we get the theorem.

References

[1] Rund, H. (1959), The differential geometry of Finsler spaces, Springer- Verlag Bertain.
[2] Takano, K. (1967), Decomposition of curvature tensor in a recurrent space, Tensor N.S. 18(3).pp 343-347.
[3] Chandra, A. (1972) Neo-covariant derivative and its applications, Ganita No.2, Vol. 2, pp.33-39.
[4] Negi, U.S. and Gairola Kailash (2012), On H-Projective transformations
in almost Kaehlerian spaces, Asian Journal of Current Engineering and Maths 1:3, 162-165.
[5] Negi, U.S. and Gairola Kailash (2012), Admitting a conformal transformation group on Kaehlerian recurrent spaces, International Journal of Mathematical Archive-3(4), 1584-1589.

