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Let Fm be a subspace of the Finsler space Fn' The metric tensors gaﬁ (u’ U } gij (I. I} of the spaces Fm and Fn
are such that, given by Rund [1959].
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The neo-covariant differentiation of any vector field }y& (u, ﬂ} with respect to uB is given by Chandra [1972].
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where T is the notation for the neo-covariant differentiation, F& is the neo-connection of EF. d. and a denote
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Now differentiating (1.2) neo-covariantly with to 4;¥ and commuting the indices ,8 and ¥, we have
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where NE&.ET (u, ﬂ} is the neo-curvature tensor field given by Chandra [1972].
The neo-curvature tensor field Ngﬂﬁ satisfies the following identities given by Chandra [1972]
¥
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Let Tﬁﬂﬂ be any tensor field. The following commutation formula will be used in sequel
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Definition (1.1): The subspace E is said to be neo-recurrent if the neo-curvature tensor field gﬁ satisfies the relation
m

¥
n . . a _ 16
v spy = 'O Nogy =0, o
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Where Vg is non-zero neo-recurrent vector field.

The neo-curvature tensor field in this case is called neo-recurrent curvature tensor field.
In view of (1.6), (1.4c) yields

&
2. Decomposition of neo- curvature tensor field in finsler recurrent spaces.

Let us consider the decomposition of the neo-curvature tensor field Ngﬁ is the form
¥

2.1
sy = Ws Xg (2.1)
Where X;}' (u. 1) is decomposmon tensor field and W; (u, 1) is @ non-zero vector-field.
Theorem (2.1): Under the decomposition (2.1), the tensor fields X; satisfies the identities
¥
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Wg y T Wﬁ s+ W, X5 =0 (2.2b)

Theorem (2.2): The necessary and sufficient condition that the tensor field XE’ behaves like a neo-recurrence tensor field of
¥
the first order is that the vector field WE be neo-covariant constant.

Proof: Taking neo-covariant differentiation of (2.1) with respect to ., @, making use of (1.6) and (2.1) in resulting equation and

u
simplifying, we have
mn n Er , (2.3)
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Which proves the theorem.
Theorem (2.3): If the vector field W be neo-covariant constant, then under the decomposition (2.1), the tensor 71 17 is neo-

V o]
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recurrent, where the square bracket denotes the skew symmetric part.
Proof: Since T then from (2.3), we have
v WE == {],
)
n (2.4)
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Differentiating (2.4) neo-covariantly with respect to u&' and using (2.4), we have
n n (2.5)
v —(?FG_FFEI?E,]X'E
06 )
Commuting the indices @ gy @ in(2.5) and using (1.5), we have
(n n :Xﬁﬂ' a _ ya Nﬁﬂ' _xyo N (2.6)
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Again differentiating (2.6) neo-covariantly with respect to 1, and making use of (1.6), (2.4) and (2.6), we have the result
Theorem (2.4): If the vector field Wa be the neo-covariant constant, then under the decomposition (2.1), the recurrence vector
field Vg satisfies the relation
n n n n n n (2.7)
Vg 'ﬁ'ye_'ﬁ'pw + Vg v’{_?w— v:[_?m +1?<p ?I.?G,— vlf"lg =10
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Proof: Differentiating (2.5) neo-covariantly with respect to 5, and using (2.4), we have
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Commuting the indices 6 and @ in (2.8), we have
T T mn mn
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Which may be written as
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Applying (1.5) and (2.4) in (2.10) and simplifying, we have
& a o & i
vs(Xp, Nsop — X5y Npop = Xgs Nyoy)
= Vg (n 1 )X,g}r (2.11)
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Cyclic permutation of the indices O 8 and @in (2.11) yield two more relations. On adding these three relations and making
r

use of (1.4a) and (1.7)
we have (2.7)
Theorem (2.5): Under the decomposition (2.1) the decomposition tensor field X; , satisfies the relation
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Provided that the vector field Wa be neo-covariant constant.
Proof: In view of commutation formula (1.5), equation (2.9) yields
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Interchanging the indices cyclically in (2.13) and adding all the three equations and using (1.4b) an 1), we
hanging the indi ,Handqp lically in (2.13) and addi Il the th i d using (1.4b) and (2.7)

have (2.12).

Now considering the decomposition of the tensor field X; in the form
¥

R 2.14
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Where [J& (u,11) is any non-zero vector field and }/ﬁ}_(u, 1) 1s non-zero tensor field.
Under the decomposition (2.14), the theorem (2.1) yields the following results:
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(a) Yﬁ}f + Y}fﬁ = D

(b) WEYE}-‘ + WEY}"E_'_ %YEE = {]

© vplsy, +vgYet 1, Yo =0
We may establish the following theorem

(2.15a)
(2.15b)

(2.15c¢)

Theorem (2.6): If the subspace Fm undergoes the decompositions (2.1) and (2.14) and the vector-field Wa is neo-covariant
constant then the tensor yﬁ}_behaves like neo-recurrent tensor field of the first order provided that Jja is neo-covariant constant.

Proof: Differentiating (2.14) neo-covariantly with respect to u@, we have

n T T
@ ¢ ¢
Since WS is neo-covariant constant, hence using (2.4) and (2.14) in (2.16), we have
T & n
— v Y5, ) U
(V'Y == (VUNY,
0] (0]
from which we get the theorem.
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