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Introduction
The wigner distribution function (WDF) was introduced in 1932[1] for handling problems in quantum Statistical mechanics
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1 +oo -2ip.y (1)
P“.- (q’ :F'} = (k)™ -'r—u: 1\”*@"‘ 5;)1:’)(3 - E;}ET d_}?
or
iy (2)
. 27
Py (q,p) = ,::ﬁ},,fm Y E+yE—ye r dy

Where 1.5’@ 0,_,.(#@ is the wave function that is obtained by solving schrodinger equation in coordinate or

momentum space .

The quantities p.gandy ¢ n-dimensional vectors and n is the number of degrees of freedom.

Using this function most of the techniques developed for classical statistical mechanics can be applied to the problems
encountered in quantum domain .

In particular, the quantum mechanical averages of the dynamical variables may be calculated by integrations in phase
space.

The wave function ¢@ ar(p@ must first be transformed to obtain wiq gt y_}} or db(_p_} + y_}} before performing

the integral in (1) or (2) .
In most practical cases this transformation leads to complicated expression for the integrand and hence to non-trivial
integral .
In this paper we attempt to find expression for in differential forms which in stead of + -+ Of
bap P P Py VICRESA

¢{p+iy+} involve derivatives of 1'{,@ ﬂ’-'"d-'*@ and of delta functions.

These new forms turn out to be more convenient than the original integral forms.

In addition we calculate the WDF for a particle in an external uniform magnetic field. We also obtain the equation
governing the evolution of the WDF for charged particles in non-uniform external magnetic field. The equation contains
the well-known liouville equation in the sense of the correspondence principle i.e. PR

It also contains the derivatives of the vector potential of orders two and higher.
2. The WDF in differential forms

In order to obtain the differential forms of WDF we consider one dimensional case, extension to higer dimensions is
straightforward. We expand + +- as
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Introducing (3) into (1) and integrating only, we obtain the desired expression.
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Using the alternative expression (2) for P, and similar manipulations lead to another  expression for P,
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It should be emphasized that practical quantum mechanical calculations of dynamical variables involve the integrals
of P_(W) (q,p) on phase space, therefore, the appearance of d(p) or 6(q) in (4) or (5) leads to the straightforward
differentiations of classical dynamical variables.
Furthermore the WDF'S , as expressed in powers of #, are appropriate for approximate calculations.
As an application , we show that quantum mechanical averages of the dynamical variable are obtained by integration on
phase space . consider a function of coordinate , F(q) then we have

< F>= [Py (qp) Flg)dgdp 6)
Substltutmg P, from (4) into (6) we obtain
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Substltutlng P, from (4) into (6) we obtain
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The integral on p vanish except for n=m=0 , hence
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For function of momentum F(p) , using the alternative expression (5) for Py, and similar manipulation , we obtain

| Pwapn F@apia= | ¢ @F@o@aq

Equation (8) and (9) are usually proved using weyl correspondence rule[2]

3. Evolution of WDF for charged particle in magnetic field.

In this section we obtain the equation governing the temporal evolution of WDF for electron in an external magnetic
field described by a vector potential H(E . the Hamiltonian for this system is
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Where sum over the repeated indices is implied. Expanding the functions A}. [EI’ + ?} we obtain
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Substituting (11) for A ("4-?) in to (10) we find

aza

g2
H(qi?) = _Z_g—i_z_u EEm—n DEmimzmg Ny NgMg

I:i 1:|m +

¢+ MWiq) Wig) Mg Mg Hp) Mg,

amA g a" Af (q)
% J}.m:[ +1q ym2+“2 J;rm3+“3 my m2§ g ﬂz? g
dq,"dq,"*8q5™* | [3q," g, dq;

(+1)™ "™ Ay @ (12)
Z Z ymi J’Tmz ymg m ms my o
iuc my,mymy - % 3dq, '0q; *dqs ° g,

m=01m, mymg

In order to obtain the evolution of Py, , we differential (1) with respect to t , multiply by ik , use the schrodinger
equation , and obtain
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Intro ducing (12) into (13) we find
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Replacing 2 by 4 _@ integrating onyand replacing + @ by @  again , we obtain
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Similar manipulation leads to following expression for [
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Substituting (16), (17), (18) into (14) the final result
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The first quantum mechanical correction is of order g2 and given by
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Where my;+ my, +my; or mn,+ n, +n, equal to corresponding order of the derivative of the vector
potential A}. [q) .

For charged particle in uniform magnetic field all the correction terms vanish and the corresponding WDF satisfies
liouville equation . for the special case, afther lengthy.
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