
A. Vijayan and T. Anitha Baby/ Elixir Appl. Math. 96 (2016) 41389-41393 41389 

1. Introduction 

Let  G = (V, E) be a simple graph of order n. For any 

vertex vV, the open neighbourhood of v is the set N(v) = 

{uV/uvE} and the closed neighbourhood of v is the set 

N[v] = N(v)  {v}. For a set  S  V, the open neighbourhood 

of S is  N(S) = 

v S

 N(v) and the closed neighbourhood of S is 

N[S] = N(S)  S. The maximum degree of the graph G is 

denoted by (G) and the minimum degree is denoted by (G).  

A set S of vertices in a graph G is said to be a total 

dominating set if every vertex vV is adjacent to an element 

of S. 

A total dominating set S of G is called a connected total 

dominating set if the induced subgraph   S  is connected. 

The minimum cardinality taken over all connected total 

dominating sets S of G is called the connected total 

domination number of G and is denoted by ct (G). 

        A connected total dominating set with cardinality ct (G) 

is called ct -  set. We denote the set {1, 2, . . ., 2n -1, 2n} by 

[2n], throughout this paper. 

2. Connected Total Dominating Sets of Extended Grid 

Graphs 

Consider two paths [u1u2…un] and [v1v2…vn]. Join each 

pair of vertices ui,vi ; ui,vi+1 ; vi,ui+1, i = 1, 2,…, n. The resulting 

graph is an Extended grid graph. 

Le Gn be an Extended grid graph with 2n vertices. Label 

the vertices of Gn as given in Figure 1. 
 

Figure 1. Extended Grid Graph Gn. 

Then, V(Gn) = { 1,2,3,…,2n-3,2n-2, 2n-1, 2n} and E(Gn) 

= {(1,3)(3,5), (5,7),…, (2n-5, 2n-3), (2n-3, 2n-1), (2,4), (4,6), 

(6,8),...,(2n-4, 2n-2), (2n-2, 2n), (1,2),(3,4),(5,6),...,(2n-3,2n-

2),(2n-1,2n),(1,4),(3,6)(5,8),...,(2n-5,2n-2),(2n-3,2n), 

(2,3),(4,5),(6,7),...,(2n-4,2n-3),(2n-2,2n-1)}. 

For the construction of the connected total dominating 

sets of the Extended grid graphs Gn, we need to investigate the 

connected total dominating sets of Gn - {2n}. In this section, 

we investigate the connected total dominating sets of Gn. Let 

Dct(Gn,i) be the family of connected total dominating sets of Gn 

with cardinality i. We shall find the recursive formula for 

dct(Gn, i). 

Lemma 2.1[7] 

 ct(Pn) = n  2. 

Lemma 2.2 

 For every nN and n  4, 

(i) ct (Gn) = n 2. 

(ii) ct (Gn {2n}) = n 2. 

(iii) Dct (Gn, i) =  if and only if i < n 2 or i > 2n.  

(iv) Dct (Gn{2n}, i) =  if and only if i < n 2 or i > 2n 

1. 

Proof 

(i) Clearly {3,5,7,9,…,2n 3} is a minimum connected 

total dominating set for Gn. If n is even or odd it contains n-2 

elements. Hence, ct(Gn) = n  2. 

(ii) Clearly { 3,5,7,9,…, 2n 3} is a minimum connected 

total dominating set for Gn {2n}. If n is even or odd it 

contains n  2 elements. 

Hence, ct (Gn {2n}) = n 2. 

(iii) follows from (i) and the definition of connected total 

dominating set. 
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ABSTRACT 

Let G be a simple connected graph of order n. Let D ct(G, i) be the family of 

connected total dominating sets of G with cardinality i. The polynomial  

Dct (G, x) = 
n

i  (G)ct 
 dct (G, i) x

i
 is called the connected total domination 

polynomial of G. In this paper, we study some properties of connected total 

domination polynomials of the Extended grid graph Gn. We obtain a recursive 

formula for dct (Gn, i). Using this recursive formula, we construct the connected total 

domination polynomial Dct (Gn, x) = 
2n

i n 2 
 dct(Gn, i) x

i 
, of Gn, where dct(Gn, i) is the 

number of connected  total dominating sets of Gn with cardinality i and some 

properties of this polynomial have been studied.                                                                                    
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(iv) follows from (ii) and the definition of connected 

total dominating set. 

Lemma 2.3  

(i) If Dct (Gn{2ni  1)= , Dct (Gn, i 1) 

= , and Dct (Gn  { 2n i 1) = , then Dct 

(Gni  1) =  . 

(ii) If Dct (Gn{2n i  1)  , Dct (Gn, i 1) 

 , and Dct (Gn  {2n  i 1)  , then Dct 

(Gni  1)  . 

(iii) If Dct (Gn{2n i  1)  , Dct (Gn, i 

1)  , and Dct (Gn  {2n i 1)  , then Dct 

(Gni)  . 

(iv) If Dct (Gn {2n i  1)  ,  Dct (Gn, i 

1)  , and Dct (Gn {2n  i 1) = , then Dct 

(Gni)  . 

(v) If Dct (Gn{2n i  1) = , Dct (Gn, i 

1) = , and Dct (Gn {2n i 1) = , then Dct 

(Gni) = . 
Proof  

(i)   Since, Dct (Gn{2n i  1)= , Dct (Gn, i 

1) = , and  

Dct (Gn  { 2n  i 1) = , by Lemma  
2.2 (iii) & (iv), we have,  

i n r  i n 5 

i n r  i n 2

and i n r  i n 3. 

Therefore, i n r  i n 3. 

Therefore, i n r  i n 4 holds. 

Hence, Dct (Gni  1)= . 

(ii) Since, Dct (Gn {2n i  1)  , Dct (Gn, i 

1)  , and Dct (Gn  { 2n  i 1)  , by 
Lemma 2.2 (iii) & (iv), we have,  

n i  n 5n i  n 2and 

n i  n 

Suppose, Dct (Gni  1)= , then  i  n 4 or i 

 n 4. Suppose, i  n 4, then Dct (Gn, i 

1) = , a contradiction. 

Suppose, i  n 4, then  i  n 5 holds, 
which implies  

Dct (Gn{2 n i  1) = , a contradiction. 

Therefore, Dct (Gni  1)  . 

(iii)  Since, Dct (Gn{2n i  1)  , Dct (Gn, i 

1)  , and Dct (Gn  {2n i 1)  , by Lemma 2.2 

(iii) & (iv), we have ,  

n i  n 

n i  n 2and 

n i  n 

Suppose, Dct (Gni)= , then, by Lemma 2.2 (iii), we have  

i  n  or i n. 

Suppose,  i  n then i   n which implies Dct (Gn 

{2n i  1) = ,   a contradiction. 

Suppose, i n then i  n which implies Dct (Gn  

{2n i 1) = , a contradiction. 

 Therefore, Dct (Gni)  . 

(iv)  Since, Dct (Gn{2n i  1)  ,and Dct (Gn, 

i 1)  ,  
by Lemma 2.2 (iii) & (iv), we have,  

n i  n and n i  n 2

Suppose, Dct (Gni)= , then, by Lemma 2.2 (iii), we 

have i n  or i n. 

Suppose, i n  then i n  which implies Dct 

(Gn{2n i  1) = ,  a contradiction. 

Suppose, i n, then i  n 

Therefore, i  n   Dct (Gn, 

i 1) = , a contradiction. 

Hence, Dct (Gni)  . 

(v)   Since, Dct (Gn{2n i  1) = , Dct (Gn, i 

1) =  and                       

 Dct (Gn{2n i  1) = ,  by Lemma 2.2 (iii) & (iv), we 

have,  

i  n or  i  n 

i  n or  i  n and 

i  n or  i  n 

Therefore, i  n or  i  n 

Therefore, i  n or  i  n holds. 

Hence, Dct (Gni)  = . 
Lemma 2.4 

Suppose that Dct (Gni)  , then for every nN, 

(i) Dct (Gn{2ni  1)  , Dct (Gn, i 1) = , and 

Dct (Gn  {2n  i 1) = , if and only if  i = 2n. 

(ii) Dct (Gn{2ni  1)  , Dct (Gn, i 1)   , and  

 Dct (Gn  {2n  i 1) = , if and only if  i = 

2n . 

(iii)  Dct (Gn{2ni  1)  , Dct (Gn, i 1)   ,  

Dct (Gn  {2n  i 1)  , and Dct (Gn  i 1) = 

,    

if and only if i = 2n . 

(iv) Dct (Gn{2ni  1) = , Dct (Gn, i 1)   , 

and Dct (Gn  {2n  i 1)  , if and only if n 

= k+2 and i = k for some  kN. 
Proof  

(i) () since, Dct (Gn, i 1) =  , and                

Dct(Gn{2n  i 1) = , by Lemma 2.2(iii)& (iv), 

we have, i n or in 2 and                        

i n or i n 3. 

Therefore, i n or  i n 2. 

Suppose, i n then   i n 2 which implies Dct 

(Gn, i) =  , a contradiction. 

Therefore, i n 2. 

Therefore, i n 1.      (1) 

Also, since, Dct (Gn2n}, i 1)   , by Lemma 2.2 

(iv), we have,  

n i  n 1.                  (2) 

From (1) and (2), i n 
Therefore, i = 2n. 

() follows from Lemma 2.2 (iii) & (iv). 

(ii) () Since, Dct (Gn{2n}, i)  , and Dct (Gn 

 i 1)  ,  
by Lemma 2.2 (iii) & (iv), we have,  

n i   2n  and 

n i   2n . 

Therefore, n i   2n   

Also, since, Dct (Gn-1 2n }, i 1) = , by Lemma 

2.2 (iv), we have, i n or i 1 2n-3. 

Suppose, i n  then i n which implies, 

Dct(Gn, i) = , a contradiction.   

Therefore, i n . 

Therefore,  i n     

From (3) and (4), we have,  i n  

Therefore, in  



A. Vijayan and T. Anitha Baby/ Elixir Appl. Math. 96 (2016) 41389-41393 41391 

() follows from Lemma 2.2 (iii) & (iv). 

(iii) Since, Dct(Gn {2n}, i )  , Dct (Gn  i 1)  

 and  

Dct (Gn { 2n i)   ,  by Lemma 2.2 (iii) & 

(iv), we have,  

  n i   2n  

  n i   2n  and 

  n i   2n  

Therefore,  n i   2n   

Also, since, Dct (Gn-2, i 1) = , by Lemma 2.2 (iii), we 

have,    

   i n , or i 1 2n 

Suppose, i n , then i 1 n 

Therefore, i n which implies Dct (Gn, i) = , a 

contradiction. 

Therefore, i 1 2n  

Therefore,  i n    

From (5) and (6), we have, i  2n 

Therefore, i = 2n  2. 

() follows from Lemma 2.2 (iii) & (iv). 

(iv) Since, Dct(Gn, i)   and  

Dct (Gn {2n  i)   ,  by Lemma 2.2 (iii) & 

(iv), we have,  

n i   2n and 

n i   2n   

Therefore,  n i   2n  

Therefore,  n i  2n    

Also, since, Dct (Gn {2n}, i   = , by Lemma 2.2 

(iv), we have,   

i n or i 1 2n 

Suppose, i n , then i  2n, which implies 

Dct (Gn, i) = , a contradiction. 

Therefore,  i n  

Therefore,  i n     

From (7) and (8), we have, n i  n  

When n  k + 2, we get an inequality of the form s  i 

 s, which is not possible. When n  k + 2, we have s 

 i  s +1. Therefore (9) holds. In this case i = k. 

Conversely, assume n  k + 2 and i  k.  

Therefore n = k and      

i k 1. 

k   k = n 
Therefore,   

Dct(Gn {2n i) =  . 
Also,   

Dct (Gn {2n  i) = Dct (Gk+1{2(k+1) k) 

 .  

and  Dct (Gn i) =  Dct (Gk+1k)   . 
Theorem 2.5   

For every n  4, 

(i)    If Dct (Gn{2ni  1)  , Dct (Gn, i 1) = ,  

and Dct (Gn  {2n  i 1) = ,  then                                                      

Dct (Gni) ={X  {2n}/ XDct (Gn  {2n  i 1)}. 

(ii)   If Dct (Gn{2ni  1) = , Dct (Gn, i 1)  ,  

and Dct (Gn  {2n  i 1) ,  then                         

Dct (Gni) =  1{X {2n 2}/  X1 Dct (Gn  i 1)} 

 { X2  {2n-3}/ 2 ct n 1D (G {2n 2},i 1)}X     . 

(iii) If Dct (Gn{2ni  1)  ,  

Dct (Gn, i 1)  , and Dct (Gn  {2n  i 1)  

,   

then, 

Dct(Gni)= 

1 1 ct n

2 2 ct n 1

2 2 ct n 1

3 3 ct n 1

3 3 ct n 1

{X {2n}/ X D (G {2n},i 1)}

{X {2n 1}/ X D (G ,i 1)}  

{X {2n 2}/ X D (G ,i 1)} 

{X {2n 2}/ X D (G {2n 2},i 1)}  

{X {2n 3}/ X D (G {2n 2},i 1)}.





















    

    

    

      

     

 

Proof  

(i)Since, Dct(Gn  {2n}, i-1)  , Dct (Gn-1, i 1) =    

and Dct (Gn-1 2n 2}, i 1) = , 
by Theorem 2.4 (i), i = 2n. 

Therefore, Dct (Gn,i) = Dct (Gn, 2n) = { [2n]} 
and Dct (Gn – {2n}, i -1) = Dct (Gn  – {2n}, 2 n – 1) = { [2n  – 

1]}, 

we have the result.  

(ii) Let Y1 = {X1  {2n – 2} / X1  Dct (Gn-1,i – 1)}and 

Y2 = {X2  {2n  – 3} / X2  Dct (Gn-1 – {2n – 2},i – 1)}. 

Obviously, Y1  Y2  Dct (Gn,i)                     (1) 

Now, let Y  Dct (Gn, i). 

If 2n – 2  Y, then atleast one of the vertices labeled 2n – 4 or 

2n – 5 is in Y. In either cases, Y = {X1  {2n – 2}} for some 

X1  Dct (Gn-1,i-1). 

Therefore, Y  Y1. 

If 2n – 3  Y, then atleast one of the vertices labeled 2n – 4 or 

2n – 5 is in Y. In either cases, Y = {X2  {2n – 3}} for some  

X2  Dct (Gn-1 – {2n – 2}, i – 1). 

Therefore,Y  Y2. 

Therefore, Dct (Gn, i)  Y1  Y2. 

From (1) and (2) , we have,  

Dct (Gn, i)  =   

 
1 1 ct n 1

2 2 ct n 1

{X {2n 2}/ X D (G ,i 1)}

{X {2n 3}/ X D (G {2n 2},i 1)}









    

     

 

(iii)  Let Y1 = { X1  {2n}/ X1  Dct (Gn –
 
{2n}, i – 1) }. 

    Y2 =  

2 2 ct n 1

2 2 ct n 1

{X {2n 1}/ X D (G ,i 1)} 

{X {2n 2}/ X D (G ,i 1)}.









    

   

 

    Y3 =  

3 3 ct n 1

3 3 ct n 1

{X {2n 2}/ X D (G {2n 2},i 1)}

{X {2n 3}/ X D (G {2n 2},i 1)}.









      

     

 

Obviously, Y1  Y2  Y3  Dct(Gn,i)       (3) 

Now, Let Y  Dct(Gn,i). 

If 2n  Y, then atleast one of the vertices labeled 2n-1 or 

2n-2 or 2n-3 is in Y. In each cases, Y = {X1  {2n}} for some 

X1  Dct (Gn{2n, i – 1). 

Therefore, Y  Y1. 

Now suppose that,  2n – 1 Y, 2nY, then atleast one of 

the vertices labeled 2n – 2 or 2n – 3 is in Y.  

In each cases, Y = {X2  {2n – 1} } for some X2  Dct (Gn-1, i 

– 1). 

Now suppose that,  2n – 2Y and 2n, 2n – 1Y then  

atleast one of the vertices labeled 2n – 3  or 2n – 4 is in Y. 

If 2n – 3  Y, then  

Y = {X3  {2n – 2}} for some X3 Dct (Gn-1 – {2n – 2}, i – 1). 

If 2n – 4  Y, then  

Y = {X2  {2n – 2}} for some X2 Dct (Gn-1, i – 1). 
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Therefore, YY2 or YY3. 

Now suppose that, 2n – 3 Y and 2n, 2n – 1, 2n – 2 Y, then 

2n – 4 is in Y. 

In this case, Y = {X3  {2n – 3} } for some X3  Dct (Gn-1 –

{2n – 2}, i – 1).  

Therefore, Y  Y3. 

Hence, Dct(Gn,i)  Y1  Y2  Y3 .                                  (4) 

From (3) and (4) we have, 

Dct(Gn,i) =  

1 1 ct n

2 2 ct n 1

2 2 ct n 1

3 3 ct n 1

3 3 ct n 1

{X {2n}}/ X D (G {2n},i 1)  

{X {2n 1}}/ X D (G ,i 1)  

{X {2n 2}}/ X D (G ,i 1)   

{X {2n 2}}/ X D (G {2n 2},i 1)  

{X {2n 3}}/ X D (G {2n 2},i 1).









 
 
 
 
 
 
 
 
 

    

    

    

      

     

 

Theorem 2.6 

If Dct(Gn,i) is the family of connected total dominating 

sets of Gn with cardinality i, where i  n – 2, then dct (Gn,i) = 

dct (Gn–{2n}, i-1) + dct (Gn-1,i-1) + dct(Gn-1 – {2n – 2}, i – 1). 

Proof  

We consider all the three cases given in Theorem 2.5.  

By Theorem 2.5 (i), we have,  

Dct (Gn,i) = {X{2n} / X  Dct (Gn – {2n}, i – 1 )}. 

Since, Dct (Gn-1,i –1) =  and   

Dct (Gn-1 – {2n –2} ,i – 1) = , we have dct (Gn-1, i – 1) = 0 and  

      dct(Gn-1 – {2n – 2}, i – 1) = 0. 

Therefore, dct (Gn,i) = dct(Gn  – {2n}, i – 1). 

By Theorem 2.5 (ii), we have,  

Dct(Gn, i) = 
 

1 1 ct n 1

2 2 ct n 1

{X {2n 2}/ X D (G ,i 1)}

{X {2n 3}/ X D (G {2n 2},  i 1)}.









    

     

 

Since, Dct (Gn –{2n}, i –1) = , we have dct (Gn –{2n}, i–1) = 

0. 

Therefore, dct(Gn,i) = dct (Gn-1,i –1) + dct(Gn-1 – {2n – 2}, i – 

1). 

By Theorem 2.5  (iii), we have , 

Dct (Gn,i) =  

1 ct n

2 2 ct n 1

2 2 ct n 1

3 3 ct n 1

3 3 n 1

{X {2n}}/ X D (G {2n},i 1)}1

{X {2n 1}}/ X D (G ,i 1)}

{X {2n 2}}/ X D (G ,i 1)}

{X {2n 2}}/ X D (G {2n 2},i 1)}

{X {2n 3}}/ X D (G {2n 2},i 1)}.ct



















    

    

    

      

     

 

Therefore, dct (Gn,i) = dct(Gn –{2n}, i –1) + dct(Gn-1,i–1) + dct 

(Gn-1 – {2n – 2}, i – 1). 

3.Connected Total Domination Polynomials of Extented 

Grid Graphs. 

Definition 3.1 

Let Dct (Gn, i) be the family of connected total dominating 

sets of Gn with cardinality i and let dct (Gn, i) = | Dct (Gn, i) |. 

Then the connected total domination Ploynomial Dct (Gn, x) of 

Gn is defined as, 

Dct (Gn, x) =  

ct n(G )

2n

i   


dct (Gn, i) x
i
.  

Theorem 3.2 

For every n  5, 

Dct (Gn , x) = x[Dct (Gn–{2n}, x) + Dct (Gn-1, x) + Dct (Gn-1–{2n-

2}, x) ], with initial values,  

Dct(G2  – {4},  x) = 3x
2  

+ x
3
. 

Dct(G2, x)  =  6x
2
 + 4x

3 
+ x

4
. 

Dct(G3 – {6}, x) = 7x
2 
+ 9x

3 
+ 5x

4
 + x

5
. 

Dct(G3 , x) = 9x
2
 + 16x

3 
+ 14 x

4 
+ 6x

5 
+ x

6
. 

Dct (G4 – {8}, x) = 4x
2 
+ 16x

3 
+ 25x

4 
+ 19 x

5
 + 7x

6 
+ x

7
. 

Dct (G4, x) = 4x
2 
+ 20x

3 
+ 41x

4 
+ 44 x

5
 + 26x

6 
+ 8x

7
 + x

8
. 

Dct(G5 – {10},  x) = 8x
3 

+ 36x
4 

+ 66x
5 

+ 63 x
6
 + 33x

7 
+ 9x

8  
+  

x
9
. 

Proof  

We have,   

 dct(Gn, i) = dct(Gn – {2n}, i – 1) + dct (Gn – 1, i – 1) + dct (Gn-1–

{2n – 2}, i – 1). 

Therefore, 

dct(Gn, i) x
i
   =  dct(Gn – {2n},  i – 1) x

i
  +  dct(Gn – 1, i – 1) x

i
  

 + dct(Gn-1 – {2n – 2}, i – 1) x
i
.
 
 

dct(Gn, i) x
i
  =   dct(Gn  –  {2n}, i – 1) x

i
  + dct (Gn – 1, i  – 1) 

x
i
 + dct (Gn – 1 – {2n – 2}, i – 1) x

i 
. 

dct(Gn, i) x
i
 =  xdct (Gn – {2n}, i – 1) x

i – 1 
 + x dct (Gn – 1, i – 

1)x
i-1

  + xdct (Gn-1–{2n – 2}, i – 1) x
i -1

. 

Dct (Gn,x) = x Dct (Gn – {2n}, x) + x Dct(Gn-1, x) + x Dct(Gn-1 – 

{2n – 2} , x). 

Therefore,  

Dct (Gn, x) =  x[Dct (Gn – {2n}, x) + Dct(Gn-1, x)  +  Dct(Gn-1 – 

{2n – 2} , x)] with initial values,  

Dct(G2  – {4},  x) = 3x
2 
+ x

3
. 

Dct(G2, x) = 6x
2
 + 4x

3 
+ x

4
. 

Dct(G3 – {6}, x) = 7x
2 
+ 9x

3 
+ 5x

4
 + x

5
. 

Dct(G3 , x) = 9x
2
 + 16x

3 
+ 14 x

4  
+ 6x

5  
+ x

6
. 

Dct (G4 – {8}, x) = 4x
2 
+16x

3 
+ 25x

4 
+19 x

5
 + 7x

6 
+ x

7
. 

Dct (G4, x) = 4x
2 
+ 20x

3  
+ 41x

4 
+ 44 x

5
 +26x

6 
+ 8x

7
 + x

8
. 

Dct(G5 –{10}, x) = 8x
3 
+ 36x

4 
+ 66x

5 
+ 63 x

6
 + 33x

7 
+ 9x

8  
+  x

9
. 

Example 3.3 

Dct(G4 – {8}, x) = 4x
2 
+ 16x

3
 +25x

4 
+ 19x

5
 + 7x

6
 + x

7
. 

Dct(G4, x) = 4x
2 
+ 20x

3 
+ 41x

4 
+ 44x

5
 + 26x

6 
+ 8x

7 
+ x

8
. 

Dct(G5 - {10}, x) = 8x
3 
+ 36x

4 
+ 66x

5 
+ 63 x

6
 + 33x

7 
+ 9x

8  
+  x

9
. 

By Theorem 3.2, we have, 

Dct(G5, x) = x [ 4x
2 
+ 16x

3 
+ 25x

4 
+ 19 x

5
 + 7x

6 
+ x

7 
+  4x

2
 + 20x 

3  
+41x

4 
+ 44x

5 
+ 26x

6 
+ 8x

7 
+ x

8 
+ 8x

3 
+ 36x

4 
+ 66x

5
+ 63x

6  
+  

33x
7 

+ 9x
8  

+  x
9
]  = 8x

3 
+ 44x

4  
+ 102x

5 
+ 129x

6
 + 96x

7 
+ 42x

8 
+ 

10x
9 
+ x

10
. 

In the following Theorem we obtain some properties of  

dct (Gn, i).  

Theorem 3.4 

The following properties hold for the coefficients of Dct(Gn, x) 

for all n. 

(i) dct (Gn, 2n) = 1, for every n  2. 

(ii) dct (Gn, 2n –1) = 2n, for every n  2. 

(iii) dct (Gn, 2n –2) = 2 [n
2 
– n + 1], for every n  2. 

 (iv) dct (Gn, n – 2) = 82
n-5

, for every n  5. 
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Table 1.  dct(Gn, i) and dct(Gn – {2n}, i) for 2  n  9. 

i 

n 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

G2-{4} 3 1                

G2 6 4 1               

G3-{6} 7 9 5 1              

G3 9 16 14 6 1             

G4-{8} 4 16 25 19 7 1            

G4 4 20 41 44 26 8 1           

G5-{10} 0 8 36 66 63 33 9 1          

G5 0 8 44 102 129 96 42 10 1         

G6-{12} 0 0 16 80 168 192 129 51 11 1        

G6 0 0 16 96 248 360 321 180 62 12 1       

G7-{14} 0 0 0 32 176 416 552 450 231 73 13 1      

G7 0 0 0 32 208 592 968 1002 681 304 86 14 1     

G8-{16} 0 0 0 0 64 384 1008 1520 1452 912 377 99 15 1    

G8 0 0 0 0 64 448 1392 2528 2972 2364 1289 476 114 16 1   

G9-{18} 0 0 0 0 0 128 832 2400 4048 4424 3276 1666 575 129 17 1  

G9 0 0 0 0 0 128 960 3232 6448 8472 7700 4942 2241 704 146 18 1 

 


