41389

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 96 (2016) 41389-41393

Connected Total Dominating Sets and Connected Total Domination Polynomials of Extended Grid Graphs

A. Vijayan¹ and T. Anitha Baby²

¹Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India. ² Department of Mathematics, Women's Christian College ,Nagercoil, Tamil Nadu, India.

ARTICLE INFO	ABSTRACT
Article history:	Let G be a simple connected graph of order n. Let $D_{\alpha}(G, i)$ be the family of
Received: 24 May 2016;	connected total dominating sets of G with cardinality i. The polynomial
Received in revised form:	n .
29 June 2016;	D_{ct} (G, x) = $\sum_{i=1}^{n} d_{ct}$ (G, i) x ¹ is called the connected total domination
Accepted: 1 July 2016;	$i = \gamma_{ct}(G)$
	polynomial of G. In this paper, we study some properties of connected total
Keywords	domination polynomials of the Extended grid graph G _n . We obtain a recursive
Extended grid graph,	formula for d_{ct} (G _n , i). Using this recursive formula, we construct the connected total
Connected total dominating	<u>2n</u>
set,	domination polynomial $D_{ct}(G_n, x) = \sum_{n=1}^{\infty} d_{ct}(G_n, i) x^1$, of G_n , where $d_{ct}(G_n, i)$ is the
Connected total domination	1 =n-2
number	number of connected total dominating sets of G_n with cardinality i and some
Connected total domination	properties of this polynomial have been studied.
polynomial.	© 2016 Elixir All rights reserved.

1. Introduction

Let G = (V, E) be a simple graph of order n. For any vertex $v \in V$, the open neighbourhood of v is the set N(v) = $\{u \in V/uv \in E\}$ and the closed neighbourhood of v is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S) = \bigcup N(v)$ and the closed neighbourhood of S is

 $N[S] = N(S) \cup S$. The maximum degree of the graph G is denoted by $\Delta(G)$ and the minimum degree is denoted by $\delta(G)$.

A set S of vertices in a graph G is said to be a total dominating set if every vertex $v \in V$ is adjacent to an element of S.

A total dominating set S of G is called a connected total dominating set if the induced subgraph $\langle S \rangle$ is connected.

The minimum cardinality taken over all connected total dominating sets S of G is called the connected total domination number of G and is denoted by $\gamma_{ct}(G)$.

A connected total dominating set with cardinality γ_{ct} (G) is called γ_{ct} - set. We denote the set {1, 2, ..., 2n -1, 2n} by [2n], throughout this paper.

2. Connected Total Dominating Sets of Extended Grid Graphs

Consider two paths $[u_1u_2...u_n]$ and $[v_1v_2...v_n]$. Join each pair of vertices $u_i, v_i; u_i, v_{i+1}; v_i, u_{i+1}, i = 1, 2, \dots, n$. The resulting graph is an Extended grid graph.

Le G_n be an Extended grid graph with 2n vertices. Label the vertices of G_n as given in Figure 1.

Tele: E-mail address: dravijayan@gmail.com © 2016 Elixir All rights reserved

Then, $V(G_n) = \{1, 2, 3, ..., 2n-3, 2n-2, 2n-1, 2n\}$ and $E(G_n)$ $= \{(1,3)(3,5), (5,7), \dots, (2n-5, 2n-3), (2n-3, 2n-1), (2,4), (4,6), \}$ (6,8),...,(2n-4, 2n-2), (2n-2, 2n), (1,2),(3,4),(5,6),...,(2n-3,2n-2),(2n-1,2n),(1,4),(3,6)(5,8),...,(2n-5,2n-2),(2n-3,2n), $(2,3),(4,5),(6,7),...,(2n-4,2n-3),(2n-2,2n-1)\}.$

For the construction of the connected total dominating sets of the Extended grid graphs G_n, we need to investigate the connected total dominating sets of G_n - {2n}. In this section, we investigate the connected total dominating sets of G_n. Let $D_{ct}(G_{n,i})$ be the family of connected total dominating sets of G_n with cardinality i. We shall find the recursive formula for $d_{ct}(G_n, i)$.

Lemma 2.1[7]

 $\gamma_{ct}(P_n) = n - 2.$

Lemma 2.2

For every $n \in N$ and $n \ge 4$,

- (i) $\gamma_{\rm ct}$ (G_n) = n -2.
- $\gamma_{ct} (G_n \{2n\}) = n 2.$ (ii)
- (iii) $D_{ct}(G_n, i) = \phi$ if and only if i < n - 2 or i > 2n.
- (iv) D_{ct} (G_n -{2n}, i) = ϕ if and only if i < n -2 or i > 2n -1.

Proof

Clearly {3,5,7,9,...,2n -3} is a minimum connected (i) total dominating set for G_n. If n is even or odd it contains n-2 elements. Hence, $\gamma_{ct}(G_n) = n - 2$.

Clearly $\{3,5,7,9,\ldots, 2n-3\}$ is a minimum connected (ii) total dominating set for $G_n - \{2n\}$. If n is even or odd it contains n = 2 elements.

Hence, $\gamma_{ct} (G_n - \{2n\}) = n - 2$.

(iii) follows from (i) and the definition of connected total dominating set.

41390

(iv) follows from (ii) and the definition of connected total dominating set.

Lemma 2.3

(i) If D_{ct} (G_{n-2} -{2n-4}, i - 1)= ϕ , D_{ct} (G_{n-1} , i -1) = ϕ , and D_{ct} (G_{n -1} - { 2n-2}, i -1) = ϕ , then D_{ct} $(G_{n-2}, i-1) = \phi.$ (ii) If $D_{ct} (G_{n-2} - \{2n - 4\}, i - 1) \neq \phi, D_{ct} (G_{n-1}, i - 1)$ $\neq \phi$, and D_{ct} (G_{n-1} - {2n-2}, i-1) $\neq \phi$, then D_{ct} $(\mathbf{G}_{\mathbf{n}-2}, \mathbf{i} - 1) \neq \mathbf{\phi}.$ $(iii) \quad If \ D_{ct} \ \left(G_{n-1} - \{ 2n \ -2 \}, \ i \ - \ 1 \right) \ \neq \ \phi, \ D_{ct} \ \left(G_{n-1}, \ i \ -1 \right) \ = \ \phi = 0$ $(-1) \neq \phi$, and D_{ct} ($G_{n-1} - \{2n\}, i - 1$) $\neq \phi$, then D_{ct} $(G_n, i) \neq \phi$. (iv) If D_{ct} (G_{n-1} -{2n -2}, i - 1) $\neq \phi$, D_{ct} (G_{n-1}, i $-1) \neq \phi$, and D_{ct} (G_n- {2n}, i-1) = ϕ , then D_{ct} $(G_n, i) \neq \phi$. (v) If $D_{ct} (G_{n-1} - \{2n -2\}, i - 1) = \phi, D_{ct} (G_{n-1}, i)$ $(-1) = \phi$, and $D_{ct} (G_n - \{2n\}, i - 1) = \phi$, then D_{ct} $(G_n, i) = \phi.$ Proof (i) Since, D_{ct} (G_{n-2} -{2n -4}, i - 1)= ϕ , D_{ct} (G_{n-1} , i $-1) = \phi$, and D_{ct} ($G_{n-1} - \{ 2n - 2 \}, i - 1$) = ϕ , by Lemma 2.2 (iii) & (iv), we have, i - 1 < n - 4 or i - 1 > 2n - 5, i - 1 < n - 3 or i - 1 > 2n - 2, and i - 1 < n - 3 or i - 1 > 2n - 3. Therefore, i - 1 < n - 4 or i - 1 > 2n - 3. Therefore, i - 1 < n - 4 or i - 1 > 2n - 4 holds. Hence, D_{ct} (G_{n-2}, i – 1)= ϕ . (ii) Since, $D_{ct} (G_{n-2} - \{2n - 4\}, i - 1) \neq \phi$, $D_{ct} (G_{n-1}, i)$ $-1) \neq \phi$, and $D_{ct} (G_{n-1} - \{ 2n - 2 \}, i - 1) \neq \phi$, by Lemma 2.2 (iii) & (iv), we have, $n - 4 \le i - 1 \le 2n - 5, n - 3 \le i - 1 \le 2n - 2$, and $n - 3 \le i - 1 \le 2n - 3$. Suppose, D_{ct} (G_{n-2}, i - 1)= ϕ , then i - 1 < n - 4 or i -1 > 2n - 4. Suppose, i - 1 < n - 4, then D_{ct} (G_{n-1}, i -1) = ϕ , a contradiction. Suppose, i - 1 > 2n - 4, then i - 1 > 2n - 5 holds, which implies $D_{ct} (G_{n-2} - \{2, n-4\}, i-1) = \phi$, a contradiction. Therefore, D_{ct} (G_{n-2} , i - 1) $\neq \phi$. (iii) Since, D_{ct} (G_{n-1} -{2n -2}, i - 1) $\neq \phi$, D_{ct} (G_{n-1} , i -1) $\neq \phi$, and D_{ct} (G_{n-1} - {2n}, i - 1) $\neq \phi$, by Lemma 2.2 (iii) & (iv), we have , $n - 3 \le i - 1 \le 2n - 3$, $n \ -3 \leq i \ -1 \leq \ 2n \ -2 \ and$ $n - 2 \leq i - 1 \leq 2n - 1.$ Suppose, D_{ct} (G_n, i)= ϕ , then, by Lemma 2.2 (iii), we have i < n - 2 or i > 2n. Suppose, i < n - 2, then i - 1 < n - 3, which implies D_{ct} (G_{n-1}) $-\{2n-2\}, i-1\} = \phi$, a contradiction. Suppose, i > 2n then i - 1 > 2n - 1, which implies D_{ct} (G_{n-1} – $\{2n\}, i-1\} = \phi$, a contradiction. Therefore, D_{ct} (G_n, i) $\neq \phi$. (iv) Since, $D_{ct} (G_{n-1} - \{2n - 2\}, i - 1) \neq \phi$, and $D_{ct} (G_{n-1}, i - 1) \neq \phi$. $i - 1 \neq \phi$, by Lemma 2.2 (iii) & (iv), we have, $n - 3 \le i - 1 \le 2n - 3$ and $n - 3 \le i - 1 \le 2n - 2$. Suppose, D_{ct} (G_n, i)= ϕ , then, by Lemma 2.2 (iii), we have i < n - 2 or i > 2n.

Suppose, i < n - 2 then i - 1 < n - 3 which implies D_{ct} $(G_{n-1} - \{2n - 2\}, i - 1) = \phi$, a contradiction. Suppose, i > 2n, then i - 1 > 2n - 1. Therefore, i - 1 > 2n - 2 holds, \Box which implies D_{ct} (G_{n-1} , i - 1) = ϕ , a contradiction. Hence, D_{ct} (G_n, i) $\neq \phi$. (v) Since, D_{ct} (G_{n-1} -{2n -2}, i - 1) = ϕ , D_{ct} (G_{n-1} , i $-1) = \phi$ and D_{ct} (G_n-{2n}, i - 1) = ϕ , by Lemma 2.2 (iii) & (iv), we have. i - 1 < n - 3 or i - 1 > 2n - 3, i - 1 < n - 3 or i - 1 > 2n - 2, and i - 1 < n - 2 or i - 1 > 2n - 1. Therefore, i - 1 < n - 3 or i - 1 > 2n - 1. Therefore, i < n-2 or i > 2n holds. Hence, D_{ct} (G_n, i) = ϕ . Lemma 2.4 Suppose that D_{ct} (G_n, i) $\neq \phi$, then for every $n \in \mathbb{N}$, (i) D_{ct} $(G_n - \{2n\}, i - 1) \neq \phi$, D_{ct} $(G_{n-1}, i - 1) = \phi$, and D_{ct} (G_{n-1} - {2n -2}, i -1) = ϕ , if and only if i = 2n. (ii) D_{ct} (G_n -{2n}, i - 1) $\neq \phi$, D_{ct} (G_{n-1} , i - 1) $\neq \phi$, and D_{ct} ($G_{n-1} - \{2n - 2\}, i - 1$) = ϕ , if and only if i = 2n - 1. (iii) $D_{ct} (G_n - \{2n\}, i-1) \neq \phi, D_{ct} (G_{n-1}, i-1) \neq \phi,$ $D_{ct} (G_{n-1} - \{2n-2\}, i-1) \neq \phi$, and $D_{ct} (G_{n-2}, i-1) =$ φ, if and only if i = 2n - 2. (iv) D_{ct} (G_n-{2n}, i - 1) = ϕ , D_{ct} (G_{n-1}, i -1) $\neq \phi$, and $D_{ct} (G_{n-1} - \{2n-2\}, i-1) \neq \phi$, if and only if n = k+ 2 and i = k for some k∈N. Proof (i) (\Rightarrow) since, D_{ct} (G_{n-1} , i -1) = ϕ , and $D_{ct}\big(G_{n-1} - \{2n \ -2\}, \ i \ -1\big) \ \ = \ \phi, \ by \ Lemma \ \ 2.2(iii) \& \ (iv),$ we have, i -1 < n - 3 or i - 1 > 2n - 2and i - 1 < n - 3 or i - 1 > 2n - 3. Therefore, i - 1 < n - 3 or i - 1 > 2n - 2. Suppose, i - 1 < n - 3, then i < n - 2 which implies D_{ct} $(G_n, i) = \phi$, a contradiction. Therefore, i - 1 > 2n - 2. Therefore, $i - 1 \ge 2n - 1$. (1)Also, since, D_{ct} ($G_{n-}\{2n\}$, i - 1) $\neq \phi$, by Lemma 2.2 (iv), we have, $n-2\leq i-1\leq \ 2n-1.$ (2) From (1) and (2), i - 1 = 2n - 1. Therefore, i = 2n. (\Leftarrow) follows from Lemma 2.2 (iii) & (iv). (ii) (\Rightarrow) Since, D_{ct} (G_n-{2n}, i-1) $\neq \phi$, and D_{ct} (G_n $_{-1}, i - 1) \neq \phi,$ by Lemma 2.2 (iii) & (iv), we have, $n-2 \leq i-1 \leq 2n-1$ and $n-3\leq i-1\leq \ 2n-2.$ Therefore, $n-2 \le i-1 \le 2n-2$. (3)Also, since, D_{ct} (G_{n-1} - {2n - 2}, i -1) = ϕ , by Lemma 2.2 (iv), we have, i - 1 < n - 3 or i - 1 > 2n - 3. Suppose, i - 1 < n - 3, then i - 1 < n - 2, which implies, $D_{ct}(G_n, i) = \phi$, a contradiction. Therefore, i - 1 > 2n - 3. Therefore, $i - 1 \ge 2n - 2$. (4)From (3) and (4), we have, i - 1 = 2n - 2. Therefore, i = 2n - 1.

41391 A. Vijayan and T. Anitha Baby/ Elixir Appl. Math. 96 (2016) 41389-41393 (\Leftarrow) follows from Lemma 2.2 (iii) & (iv). (iii) Since, $D_{ct}(G_n - \{2n\}, i - 1) \neq \phi$, $D_{ct}(G_{n-1}, i - 1) \neq \phi$ ϕ and D_{ct} (G_{n -1}-{ 2n-2}, i-1) $\neq \phi$, by Lemma 2.2 (iii) & (iv), we have, $n - 2 \le i - 1 \le 2n - 1$, $n-3 \leq i-1 \leq 2n-2$ and $n-3 \leq i-1 \leq 2n-3.$ Therefore, $n-2 \le i-1 \le 2n-3$. (5)Also, since, D_{ct} (G_{n-2}, i –1) = ϕ , by Lemma 2.2 (iii), we have, i - 1 < n - 4, or i - 1 > 2n - 4. Suppose, i - 1 < n - 4, then i - 1 < n - 3. Therefore, i < n - 2, which implies D_{ct} (G_n, i) = ϕ , a contradiction. Therefore, i - 1 > 2n - 4. Therefore, $i - 1 \ge 2n - 3$. (6)From (5) and (6), we have, i - 1 = 2n - 3. Therefore, i = 2n - 2. (\Leftarrow) follows from Lemma 2.2 (iii) & (iv). (iv) Since, $D_{ct}(G_{n-1}, i-1) \neq \phi$ and $D_{ct} (G_{n-1}, -\{2n-2\}, i-1) \neq \phi$, by Lemma 2.2 (iii) & (iv), we have, $n - 3 \leq i - 1 \leq 2n - 2 \text{ and}$ $n-3 \leq i-1 \leq 2n-3.$ Therefore, $n-3 \le i-1 \le 2n-3$. Therefore, $n-2 \le i \le 2n-2$. (7)Also, since, D_{ct} (G_n -{2n}, i - 1) = ϕ , by Lemma 2.2 (iv), we have, i - 1 < n - 2 or i - 1 > 2n - 1. Suppose, i - 1 > 2n - 1, then i > 2n, which implies D_{ct} (G_n, i) = ϕ , a contradiction. Therefore, i - 1 < n - 2. (8)Therefore, i < n - 1. (9) From (7) and (8), we have, $n - 2 \le i < n - 1$. When $n \neq k + 2$, we get an inequality of the form $s \leq i$ < s, which is not possible. When n = k + 2, we have s $\leq i < s + 1$. Therefore (9) holds. In this case i = k. Conversely, assume n = k + 2 and i = k. Therefore n - 2 = k and i - 1 = k - 1. k - 1 < k = n - 2. Therefore, $D_{ct}(G_n - \{2n\}, i-1) = \phi$. Also, $D_{ct} (G_{n-1} - \{2n - 2\}, i-1) = D_{ct} (G_{k+1} - \{2(k+1)\}, k-1)$ ≠ φ. and $D_{ct} (G_{n-1}, i-1) = D_{ct} (G_{k+1}, k-1) \neq \phi$. **Theorem 2.5** For every $n \ge 4$, (i) If $D_{ct} (G_n - \{2n\}, i-1) \neq \phi$, $D_{ct} (G_{n-1}, i-1) = \phi$, and $D_{ct} (G_{n-1} - \{2n-2\}, i-1) = \phi$, then $D_{ct} (G_n, i) = \{X \cup \{2n\}/ X \in D_{ct} (G_n - \{2n\}, i-1)\}.$ (ii) If D_{ct} (G_n -{2n}, i - 1) = ϕ , D_{ct} (G_{n-1} , i - 1) $\neq \phi$, and $D_{ct} (G_{n-1} - \{2n-2\}, i-1) \neq \phi$, then $D_{ct} (G_n, i) = \{ \{X_1 \cup \{2n-2\} / X_1 \in D_{ct} (G_{n-1}, i-1) \} \cup \}$ $\{X_2 \cup \{2n-3\}/X_2 \in D_{ct}(G_{n-1}-\{2n-2\},i-1)\}\}$. (iii) If D_{ct} (G_n-{2n}, i - 1) $\neq \phi$, $D_{ct} (G_{n-1}, i-1) \neq \phi$, and $D_{ct} (G_{n-1} - \{2n-2\}, i-1) \neq \phi$ φ,

then $D_{ct}(G_n, i) =$ $\{X_1 \cup \{2n\}/X_1 \in D_{ct}(G_n - \{2n\}, i-1)\} \cup$ $\{X_2 \cup \{2n-1\}/X_2 \in D_{ct}(G_{n-1},i-1)\} \cup$ $\{X_2 \cup \{2n-2\}/X_2 \in D_{ct}(G_{n-1},i-1)\} \cup$ $\{X_3 \cup \{2n-2\}/X_3 \in D_{ct}(G_{n-1} - \{2n-2\}, i-1)\} \cup$ $\{X_3 \cup \{2n-3\}/X_3 \in D_{ct}(G_{n-1}-\{2n-2\},i-1)\}.$ Proof (i)Since, $D_{ct}(G_n - \{2n\}, i-1) \neq \phi$, $D_{ct}(G_{n-1}, i-1) = \phi$ and D_{ct} ($G_{n-1} - \{2n - 2\}, i - 1\} = \phi$, by Theorem 2.4 (i), i = 2n. Therefore, $D_{ct} (G_n, i) = D_{ct} (G_n, 2n) = \{ [2n] \}$ and $D_{ct} (G_n - \{2n\}, i-1) = D_{ct} (G_n - \{2n\}, 2n-1) = \{ [2n - 1] \}$ 1]}, we have the result. (ii) Let $Y_1 = \{X_1 \cup \{2n-2\} / X_1 \in D_{ct} (G_{n-1}, i-1)\}$ and $Y_2 = \{X_2 \cup \{2n - 3\} / X_2 \in D_{ct} (G_{n-1} - \{2n - 2\}, i - 1)\}.$ Obviously, $Y_1 \cup Y_2 \subseteq D_{ct}(G_n, i)$ (1)Now, let $Y \in D_{ct}(G_n, i)$. If $2n - 2 \in Y$, then at least one of the vertices labeled 2n - 4 or 2n-5 is in Y. In either cases, $Y = \{X_1 \cup \{2n-2\}\}$ for some $X_1 \in D_{ct} (G_{n-1}, i-1).$ Therefore, $Y \in Y_1$. If $2n - 3 \in Y$, then at least one of the vertices labeled 2n - 4 or 2n-5 is in Y. In either cases, $Y = \{X_2 \cup \{2n-3\}\}$ for some $X_2 \in D_{ct} (G_{n-1} - \{2n - 2\}, i - 1).$ Therefore, $Y \in Y_2$. Therefore, $D_{ct}(G_n, i) \subset Y_1 \cup Y_2$. From (1) and (2), we have, $D_{ct}(G_n, i) =$ $\{X_1 \cup \{2n-2\}/X_1 \in D_{ct}(G_{n-1},i-1)\} \cup$ $\{X_2 \cup \{2n-3\}/X_2 \in D_{ct}(G_{n-1}-\{2n-2\},i-1)\}$ (iii) Let $Y_1 = \{ X_1 \cup \{2n\} / X_1 \in D_{ct}(G_n - \{2n\}, i-1) \}.$ $Y_2 =$ $\{X_2 \cup \{2n-1\}/X_2 \in D_{ct}(G_{n-1},i-1)\} \cup$ $\{X_2 \cup \{2n-2\}/X_2 \in D_{ct}(G_{n-1},i-1)\}.$ $Y_2 \equiv$ $[{X_3 \cup {2n-2}/X_3 \in D_{ct}(G_{n-1} - {2n-2}, i-1)}] \cup$ $|\{X_3 \cup \{2n-3\}/X_3 \in D_{ct}(G_{n-1}-\{2n-2\},i-1)\}.$ Obviously, $Y_1 \cup Y_2 \cup Y_3 \subset D_{ct}(G_n, i)$ (3)Now, Let $Y \in D_{ct}(G_n, i)$. If $2n \in Y$, then at least one of the vertices labeled 2n-1 or 2n-2 or 2n-3 is in Y. In each cases, $Y = \{X_1 \cup \{2n\}\}$ for some $X_1 \in D_{ct} (G_n - \{2n\}, i-1).$ Therefore, $Y \in Y_1$.

Now suppose that, $2n - 1 \in Y$, $2n \notin Y$, then at least one of the vertices labeled 2n - 2 or 2n - 3 is in Y.

In each cases, $Y = \{X_2 \cup \{2n - 1\}\}\$ for some $X_2 \in D_{ct}$ (G_{n-1}, i -1).

Now suppose that, $2n - 2 \in Y$ and 2n, $2n - 1 \notin Y$ then at least one of the vertices labeled 2n - 3 or 2n - 4 is in Y. If $2n - 3 \in Y$, then

 $Y = \{X_3 \cup \{2n-2\}\}$ for some $X_{3 \in D_{ct}}(G_{n-1} - \{2n-2\}, i-1)$. If $2n - 4 \in Y$, then

 $Y = \{X_2 \cup \{2n-2\}\}$ for some $X_{2 \in D_{ct}}(G_{n-1}, i-1)$.

41392

A. Vijayan and T. Anitha Baby/ Elixir Appl. Math. 96 (2016) 41389-41393

Therefore, $Y \in Y_2$ or $Y \in Y_3$. Now suppose that, $2n - 3 \in Y$ and $2n, 2n - 1, 2n - 2 \notin Y$, then 2n - 4 is in Y.

In this case, $Y=\{X_3\cup\{2n-3\}\ \}$ for some $X_3\in D_{ct}$ $(G_{n\text{-}1}-\{2n-2\},i-1).$ Therefore, $Y\in Y_3.$

Hence,
$$D_{ct}(G_{n},i) \subseteq Y_1 \cup Y_2 \cup Y_3$$
. (4)
From (3) and (4) we have,

 $D_{ct}(G_n, i) =$

$$\begin{cases} \{X_1 \cup \{2n\}\}/X_1 \in D_{ct}(G_n - \{2n\}, i-1) \cup \\ \{X_2 \cup \{2n-1\}\}/X_2 \in D_{ct}(G_{n-1}, i-1) \cup \\ \{X_2 \cup \{2n-2\}\}/X_2 \in D_{ct}(G_{n-1}, i-1) \cup \\ \{X_3 \cup \{2n-2\}\}/X_3 \in D_{ct}(G_{n-1} - \{2n-2\}, i-1) \cup \\ \{X_3 \cup \{2n-3\}\}/X_3 \in D_{ct}(G_{n-1} - \{2n-2\}, i-1). \end{cases}$$

Theorem 2.6

If $D_{ct}(G_n,i)$ is the family of connected total dominating sets of G_n with cardinality i, where $i \ge n-2$, then $d_{ct}(G_n,i) = d_{ct}(G_n-\{2n\},i-1) + d_{ct}(G_{n-1},i-1) + d_{ct}(G_{n-1} - \{2n-2\},i-1)$. **Proof**

We consider all the three cases given in Theorem 2.5. By Theorem 2.5 (i), we have, $D_{ct} (G_n,i) = \{X \cup \{2n\} / X \in D_{ct} (G_n - \{2n\}, i-1)\}.$

 $D_{ct}(O_n, I) = \{X \cup \{2II\}, X \in D_{ct}(O_n - \{2II\}, I - I)\}$

Since, $D_{ct} (G_{n-1}, i-1) = \phi$ and

 $\begin{array}{l} D_{ct}\left(G_{n-1}-\{2n-2\}\,,i-1\right)=\phi, \, \text{we have dct}\,\left(G_{n-1},\,i-1\right)=0 \,\,\text{and}\\ d_{ct}(G_{n-1}-\{2n-2\},\,i-1)=0.\\ \text{Therefore,}\,\,d_{ct}\,(G_n,i)=d_{ct}(G_n-\{2n\},\,i-1).\\ \text{By Theorem 2.5 (ii), we have,}\\ D_{ct}(G_n,\,i)=\\ &\left\{X_1\cup\{2n-2\}/X_1\in D_{ct}\,(G_{n-1},i-1)\}\cup \\ \left\{X_2\cup\{2n-3\}/X_2\in D_{ct}\,(G_{n-1}-\{2n-2\},\,i-1)\right\}. \end{array}\right. \end{array}$

Since, $D_{ct} (G_n - \{2n\}, i-1) = \phi$, we have $d_{ct} (G_n - \{2n\}, i-1) = 0$.

Therefore,
$$d_{ct}(G_{n,i}) = d_{ct} (G_{n-1}, i-1) + d_{ct}(G_{n-1} - \{2n - 2\}, i - 1).$$

By Theorem 2.5 (iii), we have,

$$\begin{aligned} & \sum_{t \in (G_{n}, i) = \\ & \{X_{1} \cup \{2n\}\} / X_{1} \in D_{ct}(G_{n} - \{2n\}, i-1)\} \cup \\ & \{X_{2} \cup \{2n-1\}\} / X_{2} \in D_{ct}(G_{n-1}, i-1)\} \cup \\ & \{X_{2} \cup \{2n-2\}\} / X_{2} \in D_{ct}(G_{n-1}, i-1)\} \cup \\ & \{X_{3} \cup \{2n-2\}\} / X_{3} \in D_{ct}(G_{n-1} - \{2n-2\}, i-1)\} \cup \\ & \{X_{3} \cup \{2n-3\}\} / X_{3} \in D_{ct}(G_{n-1} - \{2n-2\}, i-1)\} \end{aligned}$$

Therefore, $d_{ct} (G_{n,i}) = d_{ct}(G_n - \{2n\}, i-1) + d_{ct}(G_{n-1},i-1) + d_{ct}(G_{n-1} - \{2n-2\}, i-1).$

3.Connected Total Domination Polynomials of Extented Grid Graphs.

Definition 3.1

Let D_{ct} (G_n , i) be the family of connected total dominating sets of G_n with cardinality i and let d_{ct} (G_n , i) = | D_{ct} (G_n , i) |. Then the connected total domination Ploynomial D_{ct} (G_n , x) of G_n is defined as,

$$D_{ct} (G_n, x) = \sum_{\substack{i = \gamma_{ct}(G_n)}}^{2n} d_{ct} (G_n, i) x^i.$$

Theorem 3.2 For every $n \ge 5$,

 $\begin{aligned} & \text{D}_{\text{ct}} \left(\text{G}_{n}, x \right) = x [\text{D}_{\text{ct}} \left(\text{G}_{n} - \{2n\}, x \right) + \text{D}_{\text{ct}} \left(\text{G}_{n-1}, x \right) + \text{D}_{\text{ct}} \left(\text{G}_{n-1} - \{2n-2\}, x \right)], \text{ with initial values,} \\ & \text{D}_{\text{ct}} (\text{G}_{2} - \{4\}, x) = 3x^{2} + x^{3}. \\ & \text{D}_{\text{ct}} (\text{G}_{2}, x) = 6x^{2} + 4x^{3} + x^{4}. \\ & \text{D}_{\text{ct}} (\text{G}_{3}, x) = 9x^{2} + 16x^{3} + 14x^{4} + 6x^{5} + x^{6}. \\ & \text{D}_{\text{ct}} (\text{G}_{3}, x) = 9x^{2} + 16x^{3} + 14x^{4} + 6x^{5} + x^{6}. \\ & \text{D}_{\text{ct}} (\text{G}_{4} - \{8\}, x) = 4x^{2} + 16x^{3} + 25x^{4} + 19x^{5} + 7x^{6} + x^{7}. \\ & \text{D}_{\text{ct}} (\text{G}_{4}, x) = 4x^{2} + 20x^{3} + 41x^{4} + 44x^{5} + 26x^{6} + 8x^{7} + x^{8}. \\ & \text{D}_{\text{ct}} (\text{G}_{5} - \{10\}, x) = 8x^{3} + 36x^{4} + 66x^{5} + 63x^{6} + 33x^{7} + 9x^{8} + x^{9}. \end{aligned}$

Proof

We have, $d_{ct}(G_n, i) = d_{ct}(G_n - \{2n\}, i-1) + d_{ct}(G_n - 1, i-1) + d_{ct}(G_{n-1} - 1)$ $\{2n-2\}, i-1\}.$ Therefore, $d_{ct}(G_n, i) x^i = d_{ct}(G_n - \{2n\}, i-1) x^i + d_{ct}(G_n - 1, i-1) x^i$ $+ d_{ct}(G_{n-1} - \{2n-2\}, i-1) x^{1}$. $\sum d_{ct}(G_n, i) x^i = \sum d_{ct}(G_n - \{2n\}, i-1) x^i + \sum d_{ct}(G_n - 1, i-1)$ $x^{i} + \sum d_{ct} (G_{n-1} - \{2n-2\}, i-1) x^{i}.$ $\sum d_{ct}(G_n, i) x^i = x \sum d_{ct} (G_n - \{2n\}, i-1) x^{i-1} + x \sum d_{ct} (G_{n-1}, i-1) x^{i-1} + x$ 1) $x^{i-1} + x \sum d_{ct} (G_{n-1} - \{2n-2\}, i-1) x^{i-1}.$ $D_{ct} (G_{n,x}) = x D_{ct} (G_{n} - \{2n\}, x) + x D_{ct} (G_{n-1}, x) + x D_{ct} (G_{n-1} - x))$ $\{2n-2\}, x$). Therefore, $D_{ct}(G_n, x) = x[D_{ct}(G_n - \{2n\}, x) + D_{ct}(G_{n-1}, x) + D_{ct}(G_{n-1} - x)]$ $\{2n-2\}, x\}$ with initial values, $D_{ct}(G_2 - \{4\}, x) = 3x^2 + x^3$. $D_{ct}(G_2, x) = 6x^2 + 4x^3 + x^4$ $D_{ct}(G_3 - \{6\}, x) = 7x^2 + 9x^3 + 5x^4 + x^5.$ $D_{ct}(G_3, x) = 9x^2 + 16x^3 + 14x^4 + 6x^5 + x^6$ $D_{ct}(G_4 - \{8\}, x) = 4x^2 + 16x^3 + 25x^4 + 19x^5 + 7x^6 + x^7.$ $D_{ct} (G_4, x) = 4x^2 + 20x^3 + 41x^4 + 44x^5 + 26x^6 + 8x^7 + x^8$ $D_{ct}(G_5 - \{10\}, x) = 8x^3 + 36x^4 + 66x^5 + 63x^6 + 33x^7 + 9x^8 + x^9.$ Example 3.3 $D_{ct}(G_4 - \{8\}, x) = 4x^2 + 16x^3 + 25x^4 + 19x^5 + 7x^6 + x^7.$ $D_{ct}(G_4, x) = 4x^2 + 20x^3 + 41x^4 + 44x^5 + 26x^6 + 8x^7 + x^8.$ $D_{ct}(G_5 - \{10\}, x) = 8x^3 + 36x^4 + 66x^5 + 63x^6 + 33x^7 + 9x^8 + x^9.$ By Theorem 3.2, we have, $D_{ct}(G_5, x) = x \left[4x^2 + 16x^3 + 25x^4 + 19x^5 + 7x^6 + x^7 + 4x^2 + 20x \right]$ $+41x^{4} + 44x^{5} + 26x^{6} + 8x^{7} + x^{8} + 8x^{3} + 36x^{4} + 66x^{5} + 63x^{6} + 63x^{6}$ $33x^7 + 9x^8 + x^9] = 8x^3 + 44x^4 + 102x^5 + 129x^6 + 96x^7 + 42x^8 +$ $10x^9 + x^{10}$.

In the following Theorem we obtain some properties of $d_{ct}\left(G_n,\,i\right).$

Theorem 3.4

The following properties hold for the coefficients of $D_{ct}(G_n, x)$ for all n.

(i) $d_{ct}(G_n, 2n) = 1$, for every $n \ge 2$.

(ii) $d_{ct}(G_n, 2n-1) = 2n$, for every $n \ge 2$.

(iii) $d_{ct} (G_n, 2n-2) = 2 [n^2 - n + 1]$, for every $n \ge 2$.

(iv)
$$d_{ct} (G_n, n-2) = 8 \times 2^{n-5}$$
, for every $n \ge 5$.

i n	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$G_2-\{4\}$	3	1															
G ₂	6	4	1														
$G_3-\{6\}$	7	9	5	1													
G ₃	9	16	14	6	1												
$G_4-\{8\}$	4	16	25	19	7	1											
G_4	4	20	41	44	26	8	1										
G_{5} -{10}	0	8	36	66	63	33	9	1									
G ₅	0	8	44	102	129	96	42	10	1								
G_{6} -{12}	0	0	16	80	168	192	129	51	11	1							
G ₆	0	0	16	96	248	360	321	180	62	12	1						
$G_7-\{14\}$	0	0	0	32	176	416	552	450	231	73	13	1					
G ₇	0	0	0	32	208	592	968	1002	681	304	86	14	1				
$G_8-\{16\}$	0	0	0	0	64	384	1008	1520	1452	912	377	99	15	1			
G ₈	0	0	0	0	64	448	1392	2528	2972	2364	1289	476	114	16	1		
G_{9} -{18}	0	0	0	0	0	128	832	2400	4048	4424	3276	1666	575	129	17	1	
G ₉	0	0	0	0	0	128	960	3232	6448	8472	7700	4942	2241	704	146	18	1

Table 1. $d_{ct}(G_n, i)$ and $d_{ct}(G_n - \{2n\}, i)$ for $2 \le n \le 9$.

References

[1] S. Alikhani and Y.H. Peng, "Domination sets and Domination polynomials of cycles", Global Journal of pure and Applied Mathematics vol.4 no.2, 2008.

[2] S. Alikhani and Y.H. Peng, "Dominating sets and Domination polynomials of paths", International journal of Mathematics and mathematical sciences, 2009.

[3] S. Alikhani and Y.H. Peng, "Introduction to Domination polynomial of a graph", arXiv : 0905.225 [v] [math.co] 14 may, 2009.

[4] G. Chartrand and P. Zhang, "Introduction to Graph theory", McGraw-Hill, Boston, Mass, USA, 2005.

[5] A. Vijayan and K. Vijila Dafini, "on Geodetic Polynomial of Graphs with Extreme vertices", International Journal of Mathematical Archieve, 3(6), 2012.

[6] A. Vijayan and S. Sanal Kumar, "On Total Domination Sets and Polynomials of Paths", International Journal of Mathematics Research, Vol.4, no.4 (2012), pp. 339-348.

[7] A. Vijayan and T.Anitha Baby, "Connected Total Domination Polynomials of Graphs", International Journal of Mathematical Archieve, 5(11),2014.

[8] A. Vijayan and T.Anitha Baby, "Connected Total Dominating sets and Connected Total Domination Polynomials of square of paths", International Journal of Mathematics Trends And Technology, Vol.11, No. 1, 2014.