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1.Introduction 

Dependence of fluid viscosity on pressure is not a recent 

knowledge or phenomenon; rather, it has been known, 

investigated and modelled since the days of Stokes and Barus, 

(cf. [1], [2] and the references therein). However, studies of 

flow of pressure-dependent fluids through porous structures 

and its applications is relatively more recent and is motivated 

by both industrial applications and theoretical fundamentals of 

the nature of flow. Many applications both in industry and 

nature involve processes with high pressures that warrant 

consideration of pressure-dependent viscosity variations of 

fluids flowing in free space or in porous media, (cf. [3-6] and 

the references therein]. These applications involve chemical 

and process technologies, such as pharmaceutical tablet 

production, ground water and crude oil pumping, food 

processing technologies, lubrication theory, and microfluidics 

[1-9]. From a theoretical point of view, concern arises in how 

high pressures affect fluid viscosity, and what parameters in 

porous media are important in modelling the phenomena.  

The pioneering work of Rajagopal and co-workers (cf. [5-

9] and the references therein), among others, provided detailed 

analysis, models and many answers to questions that arise 

when this type of flow is considered. They developed a 

number of flow models based on mixture theory and reported 

on various functional forms of dependence of viscosity on 

pressure, in addition to introducing the limitations of the 

Darcy drag force in the modelling process. Others have 

considered modelling the flow through porous media using 

averaging theorems (which have worked well in other flow 

problems, [10-13]) and ended with a Darcy-Lapwood-

Brinkman model. An advantage of using averaging theorems 

is the development of models that are valid for variable 

medium porosity, hence permeability.  

The Darcy-Lapwood-Brinkman model developed in [11] 

remains silent about Forchheimer effects that arise due in part 

to the porous microstructure. This is the subject matter of the 

current work where intrinsic volume averaging will be applied 

to the Navier-Stokes equations with pressure-dependent 

viscosity. The effects of the porous microstructure will be 

accounted for using mathematical idealizations of the pore 

structure, based on the concept of Representative Unit Cell 

(RUC) that was introduced by Du Plessis and Masliyah, 

[14,15 ] and the geometric factors of Du Plessis , [16] and of 

Du Plessis and Diedericks, [17]. Both granular and 

consolidated media microstructures are considered. 

2. Model Equations 

The unsteady, Navier-Stokes flow of an incompressible 

fluid with pressure-dependent viscosity is governed by the 

equations of continuity and momentum, expressed as: 

0 v


                                                                …(1) 

  gTpvvvt


                            …(2) 

where  

 TvvT )(


                                                        …(3) 

v


 is the velocity vector field, p is the pressure,   is the 

fluid density, )( p   is the pressure-dependent viscosity 

of the fluid. 

When the flow domain is a porous structure, the above 

governing equations are valid locally (microscopically) in the 

pore space. However, due to complexity of the pore structure 

and its boundary (that is, porous matrix) it is customary to 

seek a macroscopic form of the equations, obtained by 

averaging the governing equations over a control volume,V , 

referred to as a Representative Elementary Volume (REV), 

[14,15]. An REV is composed of a fluid-phase contained in 

the pore space,
V , and a (stationary) solid-phase contained in 

the porous matrix solid of volume 
sV .  
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The fraction of pore space in the REV is the same as pore 

space fraction in the whole porous medium, thus having the 

same porosity as the medium. Porous microstructure 

interactions with the flowing fluid are accounted for through 

an idealization of the pore geometry and the concept of a 

Representative Unit Cell (RUC), introduced in [14,15]. 

Typical condition on the velocity vector is the no-slip 

assumption, 0


v  on the stationary solid matrix. 

Porosity, , of the REV (hence of the porous medium) is 

defined as, [18]: 

V

V
dV

V
dV

V
VV







   1
11                                  …(4) 

where


 is a fluid-phase function define at position x


in 

V by: 










sVx

Vx
x 




;0

;1
)(




.                                                   …(5) 

In order to average the governing equations we first 

define the volumetric phase average of a fluid quantity F per 

unit volume, as: 

 




VV

FdV
V

FdV
V

F
11                     …(6) 

and the intrinsic phase average (or the volumetric average of F 

over the effective pore space, 
V ) as: 

 







 
VV

FdV
V

FdV
V

F
11 .                        …(7) 

Relationship between the volumetric phase average and 

the intrinsic phase average can be seen from equations (6), and 

(7), and the definition of porosity, (4), as:  

  FF                                                           …(8) 

and the deviation of an averaged quantity from its true 

(microscopic) value is given by the quantity 

 FFF  .                                                          …(9)     

Averaging theorems (cf. Appendix 1) are applied to equations 

(1) and (2) to obtain [11]: 

 
S

dSnv
V

vv 0
1


 .          …(10) 

    vvv t


)(

  
vv  + 

 
S

dSnvv
V

          


S

dSnp
V

p 1


 
S

dSnT
V

T
 1

   g


.       …(11) 

Equations (10) and (11) represent the intrinsic volume 

averaged continuity and momentum equations. The deviation 

terms and surface integrals appearing in the averaged 

equations contain information on the interactions between the 

fluid-phase and solid-phase in the control volume. These are 

analyzed in what follows. 

 

3. Analysis of the Deviation Terms and Surface Integrals 

Using Gauss’ divergence theorem, namely 

 
VS

dVFdSnF
, equation (10) takes the following 

form when equation (1) is invoked: 

.0  v


                                                          …(12) 

Equation (12) represents the final form of the continuity 

equation which, for the incompressible flow at hand, translates 

into vanishing normal component of velocity.  

The term 

 
S

dSnvv
V

 contains the velocity vector 

explicitly, hence vanishes due to the no-slip velocity condition 

on the porous matrix. 

The volume filter 
  

vv  is related to the 

hydrodynamic dispersion of the average velocity. 

Hydrodynamic dispersion through porous media is the sum of 

mechanical dispersion due to tortuosity of the flow path within 

the porous microstructure, and molecular diffusion arising 

from diffusion of fluid vorticity, [11,14,15]. Now, the above 

deviation term is an inertial term representative of mechanical 

dispersion. In the absence of high velocity and high porosity 

gradients, the deviations in the velocity vector are small, and 

the product of deviations is negligible. Hence, the term 

  
vv  is negligible, [14,15].  

The term 


S

dSnp
V

1  represents pressure fluctuations on 

the fluid-solid interface. Le Bars and Grae Worster [18] argue 

that this term is small, hence can be neglected. However, in 

case of high pressure flow, it may be of significance, hence 

can be combined with

 
S

dSnT
V

1  to form a surface filter, in 

the sense introduced by Whitaker, [19,20]. These latter two 

surface integrals, combined, are related to the following 

surface integral that involves the normal derivative of v


:  

 




S

dS
n

v
np

V
][

1



 

                                            …(13) 

where n


 is a unit normal vector pointing into the solid. 

Expression (13) was elegantly analyzed by Du Plessis and 

Masliyah [14,15] and, whether (13) is used, or the analysis of 

Le Bars and Grae Worster [18] is implemented, the end result 

will be the same. 

As recognized and discussed by Le Bars and Grae Worster 

[18], the term 

 
S

dSnT
V

1  is the interfacial viscous stress 

exchange, which corresponds to the microscopic momentum 

exchange of the Newtonian fluid with the solid matrix, and it 

depends on the morphology of the porous matrix, on the 

viscosity of the fluid (hence depends on pressure for fluids 

with pressure-dependent viscosities) and, if present, on the 

relative velocity of the fluid-phase and the solid-phase. As a 

first approximation, the following expression can be used for 

this surface integral, [14,15,18,20,20]:  
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k

v
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S












 2

1
      …(14) 

wherein 

k
f




 and k  is the hydrodynamic 

permeability.  

With the above analysis of the surface integrals and deviation 

terms, equation (11) reduces to: 

 

    vvv t


)(  

  p
   vfT



  g
 .                                                            …(15) 

Equation (14) is the form implemented in the formulation 

by Alharbi and Hamdan [11]. Clearly, the RHS of (14) is the 

Darcy viscous damping (drag) term. Following [7-9], the 

coefficient of velocity in the Darcy term can be replaced by a 

function of pressure, )( p , as will be seen in the final form 

of governing equations. 

4. Forchheimer Effects 

Integral (13) can be identified with the force that gives 

rise to Darcy resistance and the Forchheimer inertial terms. 

The first approximation in (14) involves the Darcy resistance. 

In order to account for the porous microstructure and 

Forchheimer effects, we follow the analyses provided in 

Whitaker, [19,20], Ma and Ma and Ruth, [21], Ruth and Ma, 

[22,23], and Du Plessis and Diedericks, [17] in decomposing 

the surface integral as follows.  

Surface integral (13) can be decomposed into two parts: 

one is a shear force integral (which accounts for the viscous 

drag effects that predominate in the Darcy regime, that is, for 

small Reynolds number flow), and the other is an inertial force 

integral (which accounts for inertial drag effects that 

predominate in the Forchheimer regime, that is, for high 

Reynolds number flow). This type of integral has received 

extensive analysis, and its quantification gives closure to the 

problem of flow through a porous structure, [16,17]. To 

accomplish this, we let 
1f

 be the velocity-independent viscous 

shear geometric factor that depends on the geometry of the 

porous medium and gives rise to the Darcy resistance, and 
2f

 

the velocity-dependent inertial geometric factor that gives rise 

to the Forchheimer inertial term. Following Du Plessis and 

Diedericks, [17], the Churchill-Usagi total frictional effects, f, 

of the porous matrix on the fluid may be expressed as: 
rrr fff 21                                                     …(16)     

where r is a shifting factor that Du Plessis and Diedericks, 

[17], have shown to produce reasonable correlation when its 

value is unity. Furthermore, in terms of the factor
1f

, 

hydrodynamic permeability,  , is given by, [17]: 

1f


 

                                                 …(17) 

and expressions (13) or (14) can be expressed as: 

  



  vffvfdS

n

v
np

V
S




 )(][
1

21

.                                                                                       …(18)                                                              

Expressions for
1f

 and 
2f

 require a mathematical 

description of the porous matrix and its microstructure. Du 

Plessis and Diedericks, [17], carried out extensive analysis on 

evaluating these geometric factors for isotropic porous media, 

based on Du Plessis and Masliyah’s concept of a 

Representative Unit Cell (RUC), [14,15], which they defined 

as the minimal REV in which the average properties of the 

porous medium are embedded. For granular and consolidated 

isotropic porous media, the following expressions, 

summarized in Table 1, as given in Du Plessis and Diedericks, 

[17], are adopted in this work for 
1f

 and
2f , and for the 

hydrodynamic permeability: 

Table 1. Friction Factors for Granular and Consolidated 

Media. 

Granular Consolidated 

(Sponges and Metallic 

Foams) 
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d
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where d is a microscopic length (such as the mean pore 

diameter) and 
dC  is the Forchheimer drag coefficient, and 



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







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
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3

1

3

4
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2

89

4

31











 …(19)                                      

Now, upon using (18) in (15), and substituting the friction 

factors of Table 1, we obtain: 

For Granular Media 

    vvv t
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                                                                                         …(20) 

For Consolidated Media  

    vvv t
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Letting
  vq


, 

  gG


, 

 pp* ,
  TI


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and 

)3(

)1(










d

C
C d

c

, and using the definitions of 

hydrodynamic permeability for each medium, given in Table 

1, we can write (12), (20), and (21) in the following forms. 

 

Continuity equation: 
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.0 q


                                                                     …(22) 

Momentum equations: 

For Granular Media: 
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For Consolidated Media: 
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The following observations can be made regarding equations 

(23) and (24): 

(1) The term I


  in equations (23) and (24) can be written 

in the expanded form: 
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Defining 
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In taking the viscosity a function of pressure, we 

take )( *** p   and identify )( p  as follows: 

For granular media: 
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For consolidated media: 
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.                                              …(28) 

Equations (27) and (28) clearly indicate that the Darcy 

drag coefficient is indeed a function of pressure. Various 

forms of )( p  have been discussed and implemented in the 

work of Rajagopal and co-workers (cf. [5-9] and the 

references therein). 

(2) It is customary to express the Forchheimer term in a form 

that involves the square root of permeability, namely and 

qq
Cd 



 . This can be accomplished here by mathematically 

adjusting the definitions of 
cC  and 

gC  in terms of the 

porosity, such that 
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
 for 

granular and consolidated media, respectively. 

 

The momentum equations (23) and (24) can thus be written in 

the following final forms of momentum equations that are 

valid for variable porosity media: 

For Granular Media 
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For Consolidated Media: 
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6. Conclusion 

In this work, intrinsic volume averaging was implemented 

in deriving equations governing the flow of an incompressible 

fluid with variable, pressure-dependent viscosity through 

isotropic porous media. Granular and consolidated media were 

considered and the effects of the porous microstructure were 

modelled based on existing models in the literature. Darcian 

drag and Forchheimer effects were identified in this work, and 

the dependence of Darcy’s drag coefficient on pressure was 

discussed. 

 Appendix 1 

Averaging Theorems 

Letting F  and H be volumetrically additive scalar 

quantities, F


 a vector quantity, and c a constant (whose 

average is itself), then, [5]: 

 (i)…  FccF =c
  F  

(ii)…


S

dSnF
V

FF 1


 

where S is the surface area of the solid matrix in the REV that 

is in contact with the fluid, and 
n

 is the unit normal vector 

pointing into the solid, and a surface integral of the form 


S

dSn
  has been abbreviated as


S

dSn . 

(iii)…  HFHF 

   HFHF   

(iv)… 

  FHFH

   HFHF   

(v)…  F


 
S

dSnF
V

F .
1


  

(vi)…  tF tt FF )(   . 
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Rule (vi) is valid under the assumption that the fluid-solid 

interface in the REV has a zero microscopic velocity. 

(vii)…
 F

 
S

dSnF
V

F .
1


 

(vii)… Due to the no-slip condition, a surface integral is zero if 

it contains the fluid velocity vector explicitly. 
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