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Introduction 

The goal of speech synthesis is to convert a string of text, 

or a sequence of words, into natural-sounding speech. 

However, numerous techniques has been proposed in past 

decades and still no speech synthesis system which is 

available today is able to produce speech that could be 

characterized as natural or completely pleasant. The 

discontinuities of phoneme boundaries are identified as one of 

the significant factors affecting the quality of the synthetic 

speech. This discontinuity arises while connecting speech 

phonemes or segments to form words. In most of the 

parametric speech synthesis models, phonemes are represented 

using Linear Predictive Coding (LPC), synthesized separately 

and concatenated to form words, phrases and sentences. In this 

process the segments or phonemes do not consider the 

phoneme transitions.  

Diphone synthesis is used for addressing this problem. 

Diphones, defined as central point of the steady state part of 

the phone to the central point of the following one, it contain 

the transitions between adjacent phonemes. In diphone 

synthesis concatenation point will be in the most steady state 

region of signal, which reduces the distortion from 

concatenation points. It preserves the finest acoustic details of 

natural speech. But the output is not natural, because diphone 

synthesis, the co-articulation achieved by considering only the 

immediately preceding and following phoneme. But in some 

cases some phonemes strongly affect the articulation of 

several preceding phonemes. The second reason is that the 

transition between diphones may not be sufficiently smooth 

and perceptually disruptive discontinuities arise in the middle 

of a phoneme when they are concatenated. 

The use of large number of units (phones, diphones, 

polyphone…etc) has produced substantial increase in 

intangibility and naturalness of synthesized speech. Some of 

the available speech synthesis applications on the market use 

parametric synthesis instead of wavetable synthesis 

(concatenation) due to low storage capacity requirements. 

However, the former doesn’t provide high quality speech 

compared to concatenation synthesis in every context. One of 

the most resent models is statistical parametric model based 

speech synthesis Hidden Markov model (HMM). It consists of 

spectral, pitch, and durational parameters for a context 

dependent phoneme. In there the concatenation speech units 

are done by considering the probability of phone transition[1]. 

It is generally found that HMM-based speech synthesis is 

more intelligible but less natural-sounding than unit selection. 

All of the above speech synthesis techniques suffer from 

unnaturalness due to some discontinuities taken place when 

joining speech segments, phonemes, diaphone etc together. To 

overcome this issue, speech processing technique called pitch 

synchronous overlap add (PSOLA) method was originally 

developed [2][3]. It smoothly concatenates prerecorded 

samples and provide a good control for pitch and timing 

directly in the waveform domain, without needing any explicit 

parametric analysis of the speech. There are several versions 

of PSOLA algorithms were used in speech segment 

concatenation purpose and all of them work in essences the 

same way. The popular concatenation methods such as 

synchronous overlap add (SOLA)[4], Frequency Domain 

PSOLA[5], Time Domain PSOLA[6], Linear-Predictive 

PSOLA[7] etc are based on overlap-add method. Among the 

above methods, although TD-PSOLA provides good quality 

speech synthesis, it has limitations which are related to its 

non-parametric structure; spectral mismatch at segmental 

boundaries and tonal quality when prosodic modifications are 
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ABSTRACT 

In parametric speech synthesis algorithms, a sequence of signals corresponding to 

phonemes is generated. However, synthesized speech tends to be unnatural as the vocal 

tract transition from one phoneme to another is not considered in most of the existing 

algorithms. This paper attempts to model the phoneme transition by extracting the speech 

parameters by means of Linear Time Varying system based Auto Regressive model. To 

reduce the capacity Speech parameters were represented in polynomial equations. 

Sinusoidal Noise model was used to reconstruct the phoneme transition region. The 

results show moderate correlation of reconstructed transition regions with synthesized 

signal for different orders of polynomial.                                                                                                                                                                                                  
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applied on the concatenated acoustic units [8].  But still the 

naturalness of synthetic speech is low. 

The AR model (LPC algorithm) based method in this 

paper attempts to model the transition region from one 

phoneme to another using less number of parameters. 

Methodology  

To model the transition regions, a parametric mathematical 

model was developed. For demonstration purposes, short ‘a’ 

sound words were considered and the transition regions were 

segmented manually. The set words shown in Table 1 

containing phoneme short ‘a’ uttered by a male speaker is used 

for the analysis 

Table 1. Selected phoneme transition sounds and words. 

 Frequency peak points were extracted manually from each 

segment of the sound wave. The speech parameters were 

estimated by applying the Linear Predictive Coding (LPC) to 

the quasi-stationary part of the speech wave form. The basic 

analysis system for data extraction is shown in Fig.1. The 

amplitude frequency and phase values were calculated by 

considering the 5 dominant poles of the Linear predictive 

Coding. The experiment was carried out changing the number 

dominate component poles from 5 to 20. In AR model the 

coefficient of linear predictor (FIR filter) was estimated by 

applying the general equation  

ncoeff = 2 + Fs / 1000                               (1) 

where, Fs is sampling frequency 

 

Fig  1. Basic Analysis Model 

Estimating Speech Parameters 

Linear prediction models the human vocal tract as infinite 

impulse response(IIR) system that produces the speech signal. 

The linear predictive is so called because it assumes that the 

output samples can be predicted by a linear combination of the 

filter parameters and the previous samples. It used an all pole 

filter to simulate the vocal tract. The basic idea behind the LPC 

model is that a given speech sample at time n, S(n) can be 

approximated as a linear combination of the past p speech 

samples, such that, 

S(n) ~ a1s (n-1)+ a2s (n-2)+ a3s (n-3)+….+ aps (n-p)    (2) 

Where, the coefficients a1,a2,…,ap are assumed constant 

over the speech analysis frame [1]. 

Including an excitation term G u(n) giving, 

S(n) =    (3) 

Where, u(n) is a normalized excitation and G is the gain of 

the excitation. By expressing above equation in the z domain 

we get the relation, 

S(z) =     (4) 

Leading the transform function  

H(z) =      (5) 

By minimizing the sum of the squared differences (over a 

finite interval) between the actual speech samples and the 

linearly predicated ones, a unique set of predicator coefficients 

(ai) is determined. Speech parameters frequency, phase 

amplitude derived in terms of the predication coefficients ai. 

The partial fraction representation H(z) express as, 

+k(z)         (6) 

Where, the values rm…r0 represents the residues, the values 

pm…p0 are poles and k(z) is a polynomial in z, which is usually 

0 or constant. The real and imaginary parts of the complex 

transform of residues rm are used to estimate the amplitude An 

and the phase n 

An=              (7)   

  n =                                        (8) 

Pole locations pm used to calculate the frequency fn 

fn=                          (9) 

Where, fs sampling frequency, n designate the frequency 

increment (n= 0, 1,…,N) and Re an Im are the real and the 

imaginary parts of the rm…r0and pm…p0 transform. 

Variation of estimated speech parameters (phase, 

amplitude and frequency of i
th 

sinusoidal component) in each 

time window were represented using a polynomial equations.  

 

 
Fig  2. Proposed System. 

                                 (10) 

Where b1…….bm and c1 ….cm are polynomial coefficients.  
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Phoneme 
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Transition 

sound 

Words 

B Plosives 

Voiced 

constant 

Ba Bat, Bag, Ban, 

Bad, Back, Band  

P Plosives 

Unvoiced 

constant 

Pa Pat, Pad, Pan, 

Pam, Pal, Pack 

F Fricatives 

unvoiced 

constant 

Fa Fat, Fad, Fan, 

Fact 

V Fricatives 

voiced constant 

Va Vat, Van 

M Nasals 

constant 

Ma Mat, Mad, Man, 

Mam, Map, Mack 
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Signal Reconstruction  

Sinusoidal Noise Modeling 

The sinusoidal noise model is a parametric speech 

synthesis model originally proposed by McAulay & Quatieri 

for speech coding purposes and by Smith & Serra for the 

representation of musical signals. The sinusoidal model speech 

or music signal is represented as sum of sinusoids each with 

time-varying amplitude, frequency and phase. Sinusoidal 

modeling works quite well for perfectly periodic signals, but 

performance degrades in practice since speech is rarely 

periodic during phoneme transitions. In addition, very little 

periodic source information is generally found at high 

frequencies, where the signal is significantly noisier. To 

address this issue the sinusoidal model was improved as a 

residual noise model that models the non-sinusoidal part of the 

signal as a time-varying noise source. These systems are called 

sinusoids plus noise systems. 

Sounds that are produced by auditory systems can be 

modeled as sum of the deterministic and the stochastic parts, or 

as a set of sinusoids plus the noise residual [10]. In the standard 

sinusoidal noise model, the deterministic part is represented as 

a sum of sinusoidal trajectories with time varying parameters. 

The trajectory is a sinusoidal component with time-varying 

frequencies, amplitudes and phases. It appears in a time-

frequency spectrogram as a trajectory. The stochastic part is 

represented by the residual [11].  

x(t) =     (11) 

where, and  areamplitude and phase of sinusoidal i at 

time t, and r(t) is a noise residual, which is represented with a 

stochastic model. Further it can be represent as, 

x(t) =      (12) 

where, denotes the amplitude,  is the frequency in 

radians/s (radian frequency), and is the phasein radians of 

sinusoidal i at time t. The radian frequency  denote as 2π  

and the equation can be written as,  

x(t) =       (13) 

where,  is the oscillation frequency in i
th

 sinusoidal 

component. 

x(t) =    (14) 

Equation 14 represents a decaying sinusoidal. Where, α is 

the exponential Decay and  is the decay rate. 

Since the sinusoidal noise model has the ability to remove 

irrelevant data and encode signals with lower bit rate, it has 

also been successfully used in audio and speech coding. The 

most of the available models based on the sinusoidal model are 

capable of synthesizing vowels and the phonemes in high 

quality.  

Signals were reconstructed based on the data extracted 

from the basic analysis model. With the help of calculated 

parameters, the sinusoid is generated (Fig 2). White Gaussian 

noise was applied to generate the noise residuals using mean 

and standard deviation of the noise.  

It is infeasible to carry out the experiment for all those 

words, thus some words were selected by considering the 

phoneme classification. Then Pearson’s correlation coefficient 

between original wave and the reconstructed wave were 

calculated. The required capacity to store the source wave form 

and the proposed method speech parameters were compared by 

calculating the capacity ratio. 

 

 

Results and Discussion  

Figure 3 and Figure 4 shows how the capacity ratio changes 

with the Pearson’s correlation coefficient in different 

polynomial orders. All  observed correlation values were less 

than grater than 0.5 and less than 0.8. This interprets there are 

moderate positive correlation between the original signal and 

the constructed signal. When the capacity ratio was increased, 

the correlation values were increased only in ‘Ba’ sound of 

word ‘Bat’. For other sounds when the capacity ratio was 

increased with the polynomial order the correlation was 

reduced. The signal quality wasn’t improved when the capacity 

ratio was increased.  

Figure 4  illustrates how the average correlation coefficient 

changes with polynomial order for all the phoneme transitions. 

Generally average correlation values lies within the range of 

0.5 and 0.8. According to the error plot the variability from the 

mean value was within 0.15.The moderate correlation was 

observed between the source signal and the reconstructed 

signal for all of the phoneme transition sounds. 1
st
 order 

polynomial coefficients recalculate the amplitude and phase 

values which are more similar to the source values. Because the 

signals synthesized using 1
st
 order coefficients have higher 

correlation than other polynomial orders 
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Fig 3. Pearson’s correlation coefficient changes with 

Capacity ratio in different polynomials, considering five 

dominant poles of LPC. (M1- Number indicates the order 

of the polynomial). 
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Fig  4. Average Pearson’s Correlation Coefficient changes 

with  Polynomial Order considering first five dominant 

frequency component poles of  LPC  in different phoneme 

categories. 

Following figures (Fig 5) show how the average 

correlation changes with the capacity ratio when the number of 

dominant poles changes from 5 to 20. For ‘ba’ (word Bat) 

transition the highest correlation was found when the number 

of poles changes 5 to 20 in 3
rd

 order. In 2
nd

 order the highest 

correlation value was observed in first five dominant poles. 
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When the number of dominant poles was increased, the 

correlation values were fluctuated with the capacity ratio. ‘ma’ 

(word Mat) , ‘pa’(word Pat) phoneme transitions all the 

correlation values were decreased with the capacity ratio. This 

is because when the number of poles was increased, the 

algorithm extracted some unwanted information that disturbs 

the other important information. For all transition sounds the 

Pearson’s correlation values were less than 0.8. 

 

 
Fig  5. Pearson’s correlation coefficient changes with 

Capacity ratio in different polynomials in different number 

of dominant poles of LPC for  (a) ‘ba’ of word ‘Bat’ (b) ‘pa’ 

of word ‘Pat’ (c) ‘fa’ of word ‘Fat’(d) ‘ma’ of word ‘Mat’ 

(e) ‘va’ of word ‘Vat’. 
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Fig  6. Average Pearson’s correlation coefficient change 

with number of dominant frequency component poles of 

LPC in different polynomial orders for ‘ba’ phoneme 

transition. 
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Fig  7.  Average Pearson’s correlation coefficient change 

with number of dominant frequency component poles of 

LPC in different polynomial orders for ‘pa’ phoneme 

transition. 
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Fig  8. Average Pearson’s correlation coefficient change 

with number of dominant frequency component poles of 

LPC in different polynomial orders for ‘fa’ phoneme 

transition. 
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Fig  9. Average Pearson’s correlation coefficient change 

with number of dominant frequency component poles of 

LPC in different polynomial orders for ‘ma’ phoneme 

transition.. 
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Fig  10. Average Pearson’s correlation coefficient change 

with number of dominant frequency component poles of 

LPC in different polynomial orders for ‘fa’ phoneme 

transition 

Conclusion 

In this paper, a new parametric method has been proposed 

based on the sinusoidal noise model to synthesis transition 

region of consecutive phonemes with less number of 

parameters.  Speech parameters were extracted using LPC 

algorithm. The constructed transition region was deviated from 

the source signal in moderate amount. Results didn’t show any 

significant pattern with the capacity ratio and the polynomial 

order. The observed correlation coefficient values were less 

than 0.8 which concludes that the constructed signal was 

moderately correlated with the source signal. Significant 

improvements cannot be observed by increasing the number of 

LPC coefficients or the order of the polynomial.  
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