

N.Kannappa and B.Fairosekani/Elixir Appl. Math. 97 (2016) 41825-41828

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 97 (2016) 41825-41828

Smarandache-Soft Neutrosophic Near-Ring and Algorithms

N.Kannappa and B.Fairosekani

Department of Mathematics, T.B.M.L.College, Porayar-609307, Tamil Nadu, India.

ABSTRACT

ARTICLE INFO

Article history: Received: 11 June 2016; Received in revised form: 20 July 2016; Accepted: 27 July 2016;

Keywords

SoftNeutrosophic Nearring, Soft Neutrosophic Near field, Smarandache-Soft Neutrosophic near- ring, Soft neutrosophic (H,A)subgroup, Soft neutrosophic ideals, Soft neutrosophic quasi-ideals, Soft neutrosophic bi-ideals.

1.Introduction

In order that, New notions are introduced in algebra to better study the congruence in number theory by Florentin smarandache [2] .By <proper subset> of a set A we consider a set P included in A, and different from A ,different from empty set, and from the unit element in A-if any they rank the algebraic structures using an order relationship:

They say that the algebraic structures $S_1 \ll S_2$ if: both are defined on the same set; all S₁ laws are also S₂ laws; all axioms of an S_1 law are accomplished by the corresponding S_2 law; S_2 law accomplish strictly more axioms that S1 laws, or S2 has more laws than S_1 .

For example: Semi group << Monoid << group << ring<<field, or Semi group<< to commutative semi group, ring<< unitary ring etc. They define a general special structure to be a structure SM on a set A, different from a structure SN, such that a proper subset of A is a structure, where SM << SN.In addition we have published [8,9,10,11,12,13].

2. Preliminaries

Definition 2.1

Let (N UI) be a neutrosophic near-ring and (F, A) be a soft set over (N UI). Then (F, A) is called soft neutrosophic near-ring if and only if F(a) is a neutrosophic sub near-ring of (N UI) for all $a \in A$.

Definition 2.2

Let K(I) = (KUI) be a neutrosophic near-field and let (F, A) be a soft set over K(I). Then (F, A) is said to be soft neutrosophic near-field if and only if F(a) is a neutrosophic sub near-field of K(I) for all $a \in A$.

Now we have introduced our basic concept, called Smarandache-Soft Neutrosophic-Near Ring. **Definition 2.3**

A Soft neutrosophic -near ring is said to be Smarandache -soft neutrosophic -near ring, if a proper subset of it is a soft

Tele:	
E-mail address: sivaguru91@yahoo.com	
© 2016 Elixir All rights reserved	

In this paper, we introduced Samarandache-2-algebraic structure of Soft Neutrosophic Near-ring namely Smarandache –Soft Neutrosophic Near-ring. A Samarandache-2algebraic structure on a set N means a weak algebraic structure S_1 on N such that there exist a proper subset M of N, Which is embedded with a stronger algebraic structure S_2 , stronger algebraic structure means satisfying more axioms, that is $S_1 \ll S_2$, by proper subset one can understand a subset different from the empty set, from the unit element if any, from the Whole set. We define Smarandache - Soft Neutrosophic Near-ring and construct its algorithms through soft neutrosophic (H,A) - subgroup, soft neutrosophic ideal, soft neutrosophic bi-ideal, soft neutrosophic quasi-ideal. For basic concept of nearring we refer to G.Pilz and for soft neutrosophic algebraic structure we refer to Muhammed Shabir , Mumtaz Ali, Munazza Naz, and Florentin Smarandache.

neutrosophic -near field with respect to the same induced operations.

Alternate Definition for Smarandache-Soft Neutrosophic-Near Ring.

Definition 2.4

If there exists superset of a soft neutrosophic -near field is a soft neutrosophic near-ring with respect to the same induced operations, then that Soft neutrosophic -near ring is said to be Smarandache -soft neutrosophic -near ring.

Definition 2.5

Let (F,A) be a soft neutrosophic near-ring over $(N \cup I)$.A soft neutrosophic subgroup

(H,A) of (F,A) is called (H,A)-subgroup if $(F,A)(H,A) \subset$ (H,A).

Definition 2.6

Let (F,A) is soft neutrosophic zero-symmetric nearring. Then a soft neutrosophic subgroup (L_0, A) of ((F, A), +) is a soft neutrosophic quasi-ideal of (F,A) if and only if $(L_0,A)(F,A) \cap (F,A) (L_0,A) \subset (L_0,A).$

Definition 2.7.

Let (F,A) be a soft Neutrosophic near -ring over (NUI), which is zerosymmetric. A subgroup (L_B,A) of (F,A) is a Soft Neutrosophic bi-ideal if and only if $(L_B,A)(F,A)(L_B,A)$ \subseteq (L_B,A).

3. Algorithms:

ALGORITHM: (Soft Nuetrosophic Near-ring).

Step 1:

Consider a non-empty set N

Step 2:

Verify that N is a near-ring under '+' and '*' For check the following conditions

(i) Verify $n_1 + n_2 \in N$

(ii) Verify $(n_1 + n_2) + n_3 = n_1 + (n_2 + n_3)$

© 2016 Elixir All rights reserved.

(iii) Verify $(n_1 + e) = e = (e + n_1)$, $e \in N$.

(iv) Verify $n_1 + n_2 = n_2 + n_1 = e$

(v) Verify $n_1 + n_2 = n_2 + n_1$

(vi) Verify $n_1 * n_2 \in N$

(ii) Verify $(n_1 * n_2) * n_3 = n_1 * (n_2 * n_3)$

The above conditions are satisfied then verify $n_1 * (n_2 + n_3) = n_1 * n_2 + n_1 * n_3$

Step 3: If step 2 is verified then write (N,+,*) be near-ring

Step 4 : Consider a parameterized set A

Step 5 :Consider a neutrosophic set $\langle N \cup I \rangle = \{ n_1 + n_2 I ;$

 $n_1, n_2 \in N$ }, where I is the neutrosphic element.

Step 6: Construct the mapping $F : A \to P(U) ; \langle N \cup I \rangle$

 $\in P(U)$, where P(U) is power set of Universal set.

Step 7: write (F,A) is soft neutrosophic near-ring $\langle N \cup I \rangle$, where F(x) is soft neutrosophic sub near ring, for all $x \in A$.

Algorithm: (Soft Neutrosophic Near-field).

Step 1 : Consider a set non empty M

Step 2:

Verify that M is a near-field under '+' and '*'

For check the following conditions

(i) Verify $m_1 * m_2 \in M$

(ii) Verify $(m_1 * m_2) * m_3 = m_1 * (m_2 * m_3)$

(iii)Verify $(m_1 \ast e) = e = (e \ast m_1)$, $e \in K$.

(iv) Verify $m_1 * m_2 = m_2 * m_1 = e$

(v) Verify $m_1 * m_2 = m_2 * m_1$

The above conditions are true for the operation '+' and '*' then verify $n_{1*}(n_2 + n_3) = n_1 * n_2 + n_{1*} n_3$

Step 3: If step 2 is verified then write (M, +, *) is a near-field

Step 4 : Consider a parameterized set A

Step 5 :Consider a neutrosophic set $(M \cup I) = \{m_1 + m_2 I ; m_1, m_2 \in M\}$, where I is the neutrosphic element.

Step 6: Construct the mapping H: A \rightarrow P(U) ; $\langle M \cup I \rangle \in$ P(U), where P(U) is power set of Universal set.

E = F(0), where F(0) is power set of Oniversal set.

Step 7: write (H,A) is a soft neutrosophic near-field $\langle M \cup I \rangle$, where H(x) is soft neutrosophic

subnear-field, for all $x \in A$.

Algorithm : (Smarandache- Soft Neutrosophic Nearring).

- Step 1 : Consider a set N
- Step 2: Verify that N is a near-ring under '+' and '*'
 - For check the following conditions
 - (i) Verify $n_1 + n_2 \in N$
 - (ii) Verify $(n_1 + n_2) + n_3 = n_1 + (n_2 + n_3)$
 - (iii) Verify $(n_1 + e) = e = (e + n_1)$, $e \in N$.
 - (iv) Verify $n_1 + n_2 = n_2 + n_1 = e$
 - (v) Verify $n_1 + n_2 = n_2 + n_1$
 - (vi) Verify $n_1 * n_2 \in N$
 - (vii) Verify $(n_1 * n_2) * n_3 = n_1 * (n_2 * n_3)$

The above conditions are satisfied then verify $n_1 * (n_2 + n_3) = n_1 * n_2 + n_1 * n_3$

Step 3: If step 2 is verified then write (N,+,*) be near-ring

Step 4 : Consider a parameterized set A

Step 5 :Consider a neutrosophic set $(N \cup I) = \{ n_1 + n_2 I ; n_1, n_2 \in N \}$, where I is the neutrosphic element.

Step 6: Construct the mapping $F : A \rightarrow P(U)$; $\langle N \cup I \rangle \in P(U)$, where P(U) is power set of Universal set.

Step 7: write (F,A) is soft neutrosophic near ring over $\langle N \cup I \rangle$, where F(x) is soft neutrosophic sub

Appl. Math. 97 (2016) 41825-41828 Near- ring, for all x ∈ A. Step 8: Consider a set M ⊂ N Verify that M is a near-field under '+' and '*' For check the following conditions (i) Verify $m_1 * m_2 ∈ M$ (ii) Verify $(m_1 * m_2) * m_3 = m_1 * (m_2 * m_3)$ (iii) Verify $(m_1 * m_2) * m_3 = m_1 * (m_2 * m_3)$ (iii) Verify $(m_1 * m_2) = e = (e * m_1)$, e ∈ K. (iv) Verify $m_1 * m_2 = m_2 * m_1 = e$ (v) Verify $m_1 * m_2 = m_2 * m_1$ The above conditions are true for the operation '+' and ' •' then Verify $m_1 • (m_2 + m_3) = (m_1 • m_2) + (m_1 . m_3)$ Step 9: If step 8 is verified then write (M, +, •) be near-field Step 10: Consider a neutrosophic set $\langle M \cup I \rangle = \{ m_1 + m_2I ; m_1, m_2 ∈ M \}$, where I is the neutrosphic element.

Step 11: Construct the mapping H: $A \rightarrow P(U)$; $(M \cup I) \in P(U)$, where P(U) is power set of Universal set.

Step 12: write (H,A) is soft neutrosophic near-field over $(M \cup I)$

Step 13: Verify $(H,A) \subset (F,A)$

Step14: If step13 is verified then write (F,A) is Smarandachesoft neutrosophic near-ring over $(N \cup I)$.

4.Main Results

In Gunder pilz [4] in section 1.60(d). The Theorem by Gratzer and Fain is given the following conditions for a near-ring $N\neq\{0\}$ are equivalent

 $1. \bigcap I \neq \{0\} \ , \{0\} \neq I \subseteq N.$

2. N contains a unique minimal ideal, contained in all other non-zero ideals .

Consequently the following conditions for a soft soft neutrosophic near-ring $(F,A) \neq \{0\}$ are equivalent

1. ∩ (L,A) \neq {0} ,{0} \neq (L,A) ⊆ (F,A).

2. (F,A) contains a unique minimal soft neutrosophic ideal, contained in all other non-zero soft neutrosophic ideals.

Algorithm: (Soft Neutrosophic (H,A) –Subgroup)

Step 1:Consider a non-empty set M

Step 2: Verify that M is a near-field under '+' and * For check the following conditions

(i) For all $m_1, m_2 \in M \Rightarrow m_1 + m_2 \in M$.

(ii) For all $m_1, m_2, m_3 \in M \Rightarrow m_1 + (m_2 + m_3) = (m_1 + m_2) + m_3$

(iii) For all $m \in M$, there exist $e \in M \Rightarrow e + m = m + e = m$

(iv) For all $m \in M$, there exist $m' \in M \Rightarrow m' + m = e \qquad m + m' = e$

Let $M' = M / \{0\}$

(v) For all $m_1, m_2 \in M \Rightarrow m_1 * m_2 \in M'$.

(vi) For all $m_1, m_2, m_3 \in M' \Rightarrow m_1 * (m_2 * m_3) = (m_1 * m_2) * m_3$ (vii) For all $m \in M'$, there exist $e \in M' \Rightarrow e' + m = m + e' = m$ (viii) For all $m \in M'$, there exist $m' \in M \Rightarrow m' * m = m *$

(Viii) For all $m \in M$, there exist $m \in M \Rightarrow m * m = m * m' = e'$

(ix) For all $m_1, m_2, m_3 \in M \Rightarrow (m_1+m_2)*m_3 = m_1*m_3+m_2*m_3$ The above conditions are satisfied write (M, +, *) is a near-field.

Step 3: Consider a parameterized set A

Step 4 :Consider a neutrosophic set $(M \cup I) = \{m_1+m_2I ; m_1, m_2 \in M\}$, where I is the neutrosphic element.

Step 5: Construct the mapping H: $A \rightarrow P(U)$; $(M \cup I) \in P(U)$, where P(U) is power set of Universal set

Step 6: we write (H,A) is soft neutrosophic near-field over $\langle M \cup I \rangle$

Step 7: Let $(H,A) = (H,A_0)$

41827

Step 8: Let (H,A_i), i = 0,1,2....n be supersets of (H,A₀) Step 9: Let (F,A) be soft neutrosophic set over $\langle N \cup I \rangle$, where (F,A) = $\bigcup_{i=0}^{n} (H, A_i)$ and $\langle N \cup I \rangle = \bigcup_{i=0}^{n} \langle M_i \cup I \rangle$ Step 10: Choose sets (H,A_i)'s from (H,A_i)'s subject to for all F(a) in (F,A) and for all H(a_j) in (H,A_j) such that (H,A_j)(F,A) in (H,A_j)

Step 11: Verify $\bigcap (H,A_i) = (H,A_0) \neq \{0\}$

Step 12 : If step 11 is true, then write (F,A) is Smarandache - softneutrosophic near-ring over $\langle N \cup I \rangle$.

Algorithm: (Soft Neutrosophic Ideal)

Step 1:Consider a non-empty set M

Step 2: Verify that M is a near-field under '+' and *

For check the following conditions

(i) For all $m_1, m_2 \in M \Rightarrow m_1 + m_2 \in M$. (ii) For all $m_1, m_2, m_3 \in M \Rightarrow m_1 + (m_2 + m_3) = (m_1 + m_2) + m_3$

(iii) For all $m \in M$, there exist $e \in M \Rightarrow e + m = m + e = m$

(iv) For all $m \in M$, there exist $m' \in M \Rightarrow m' + m = e \qquad m + m' = e$

Let M ' = M $/{0}$

(v) For all $m_1, m_2 \in M \Rightarrow m_1 * m_2 \in M'$.

(vi) For all $m_1, m_2, m_3 \in M' \Rightarrow m_1 * (m_2 * m_3) = (m_1 * m_2) * m_3$ (vii) For all $m \in M'$, there exist $e \in M' \Rightarrow e' + m = m + e' = m$ (viii) For all $m \in M'$, there exist $m' \in M \Rightarrow m' * m = m * m$ '= e'

(ix) For all $m_1, m_2, m_3 \in M \Rightarrow (m_1+m_2)*m_3 = m_1*m_3+m_2*m_3$ The above conditions are satisfied write (M, +, *) is a near-field.

Step 3: Consider a parameterized set A

Step 4 :Consider a neutrosophic set $(M \cup I) = \{m_1 + m_2 I : m_1, m_2 \in M\}$, where I is the neutrosphic element.

Step 5: Construct a mapping H: A \rightarrow P(U) ; $\langle M \cup I \rangle \in$ P(U), where P(U) is power set of Universal set.

Step 6: write (H,A) is soft neutrosophic near-field over $\langle M \cup I \rangle$

Step 7: Let $(H,A) = (H,A_0) = (L,A_0)$

Step 8: Let (L,A_i) , i = 0,1,2...,n be supersets of (L,A_0)

Step 9: Let (F,A) be soft neutrosophic set over $(N \cup I)$, where (F,A) = $\bigcup_{i=0}^{n} (L, A_i)$

and
$$\langle N \cup I \rangle = \bigcup_{i=0}^{n} \langle M_i \cup I \rangle$$

Step 10: Choose sets (L,A_j) 's from (L,A_i) 's subject to for all F(a) in (F,A) and for all $L(a_j)$ in (L,A_j)

such that $L(a_j)F(a)$ in (L,A_j)

Step 11: Verify $\bigcap (L,A_i) = (L,A_0) \neq \{0\}$

Step 12 : If step 11 is true, then write (F,A) is Smarandache – soft neutrosophic near-ring over $\langle N \cup I \rangle$.

Algorithm : (Soft Neutrosophic Bi-Ideal)

Step 1:Consider a non-empty set M

Step 2: Verify that M is a near-field under '+' and *

For check the following conditions

(i) For all $m_1, m_2 \in M \Rightarrow m_1 + m_2 \in M$.

(ii) For all $m_1, m_2, m_3 \in M \Rightarrow m_1 + (m_2 + m_3) = (m_1 + m_2) + m_3$

Let M ' = M $/{0}$

(v) For all $m_1, m_2 \in M \Rightarrow m_1 * m_2 \in M'$.

(vi) For all $m_1, m_2, m_3 \in M' \Rightarrow m_1 * (m_2 * m_3) = (m_1 * m_2) * m_3$ (vii) For all $m \in M'$, there exist $e \in M' \Rightarrow e' + m = m + e' = m$ (viii) For all $m \in M'$, there exist $m' \in M \Rightarrow m' * m = m * m' = e'$ (ix) For all $m_1, m_2, m_3 \in M \Rightarrow (m_1+m_2) \ast m_3 = m_1 \ast m_3 + m_2 \ast m_3$ The above conditions are satisfied write $(M, +, \ast)$ is a near-field.

Step 3: Consider the parameterized set A

Step 4 : Consider the neutrosophic set $(M \cup I) = \{m_1 + m_2 I : m_1, m_2 \in M\}$, where I is the neutrosphic element.

Step 5: Construct the mapping H: A \rightarrow P(U) ; $(M \cup I)$

 $\in P(U)$, where P(U) is power set of Universal set

Step 6: write (H,A) is soft neutrosophic near-field over $(M \cup I)$

Step 7: Let $(H,A) = (H,A_0) = (L_B,A_0)$

Step 8: Let (L_B, A_i) , $i = 0, 1, 2, \dots, n$ be supersets of (L_B, A_0)

Step 9: Let (F,A) be soft neutrosophic set over $\langle N \cup I \rangle$, where (F,A) = $\bigcup_{i=0}^{n} (L_{B_i}, A_i)$

and
$$(N \cup I) = \bigcup_{i=0}^{n} (M_i \cup I)$$

Step 10: Choose sets (L_B, A_j) 's from (L_B, A_i) 's subject to for all F(a) in (F,A) and for all $L_B(a_j)$ in (L_B,A_j)

such that (L_B, A_j) (F,A) (L_B, A_j) in (L_B, A_j) Step 11: Verify \cap $(L_B, A_i) = (L_B, A_0) \neq \{0\}$

Step 12 : If step 11 is true, then write (F,A) is Smarandache-

soft neutrosophic near-ring over $(N \cup I)$.

Algorithem : (Soft Neutrosophic Quasi-Ideal)

Step 1:Consider a non-empty set M

Step 2: Verify that M is a near-field under '+' and *

For check the following conditions

(i) For all $m_1, m_2 \in M \Rightarrow m_1 + m_2 \in M$.

(ii) For all $m_1, m_2, m_3 \in M \Rightarrow m_1 + (m_2 + m_3) = (m_1 + m_2) + m_3$

(iii) For all $m \in M$, there exist $e \in M \Rightarrow e + m = m + e = m$

(iv) For all $m \in M$, there exist $m' \in M \Rightarrow m' + m = e \qquad m + m' = e$

Let $M' = M / \{0\}$

(v) For all $m_1, m_2 \in M \Rightarrow m_1 * m_2 \in M'$.

(vi) For all $m_1, m_2, m_3 \in M' \Rightarrow m_1 * (m_2 * m_3) = (m_1 * m_2) * m_3$ (vii) For all $m \in M'$, there exist $e \in M' \Rightarrow e' + m = m + e' = m$ (viii) For all $m \in M'$, there exist $m' \in M \Rightarrow m' * m = m * m' = e'$

(ix) For all $m_1, m_2, m_3 \in M \Rightarrow (m_1+m_2) \ast m_3 = m_1 \ast m_3 + m_2 \ast m_3$ The above conditions are satisfied write $(M, +, \ast)$ is a near-field.

Step 3: Consider the parameterized set A

Step 4 :Consider the neutrosophic set $(M \cup I) = \{m_1+m_2I : m_1, m_2 \in M\}$, where I is the neutrosphic element.

Step 5: Construct a mapping H: A \rightarrow P(U) ; $\langle M \cup I \rangle \in$ P(U), where P(U) is power set of Universal set

Step 6: write (H,A) is soft neutrosophic near-field over $(M \cup I)$

Step 7: Let $(H,A) = (H,A_0) = (L_Q,A_0)$

Step 8: Let (L_Q, A_i) , $i = 0, 1, 2, \dots$ be supersets of (L_B, A_0)

Step 9: Let (F,A) be soft neutrosophic set over $\langle N \cup I \rangle$, where (F,A) = $\bigcup_{i=0}^{n} (L_0, A_i)$ and $\langle N \cup I \rangle = \bigcup_{i=0}^{n} \langle M_i \cup I \rangle$

Step 10: Choose sets (L_Q, A_j) 's from (L_Q, A_i) 's subject to for all F(a) in (F,A) and for all $L_Q(a_j)$ in (L_Q, A_j) such that $(L_Q, A_j)(F,A) \cap (F,A) (L_Q, A_j)$ in (L_Q, A_j)

Step 11: Verify $\bigcap (L_0, A_i) = (L_0, A_0) \neq \{0\}$

Step 12 : If step 11 is true, then write (F,A) is Smarandachesoft neutrosophic near-ring over $(N \cup I)$.

N.Kannappa and B.Fairosekani/ Elixir Appl. Math. 97 (2016) 41825-41828

41828 References

1. Florentin Smarandache, Special algebraic structures, University of Maxico, Craiova, 1983.

2. Lwao Yakabe," A characterization of near-field by quasiideals, Math. Japonica 30, No. 3 (1985), 353-356.

3. Lwao Yakabe,"Quasi-ideals in near-rings" Math.Rep.XIV-1,1983.

4. Pilz.G., Near rings, North Holland, American Research Press, Amsterdam, 1983.

5. Muhammed shabir, Mumtaz Ali ,Munazza Naz ,and Florentin Smarandache," Soft neutrosophic Group" *Neutrosophic Sets and System*, Vol.1, pages13-17.,2013.

6. Mumtaz Ali, Florentin Smarandache, Muhammed shabir and Munazza Naz," Soft neutrosophic ring and Soft neutrosophic field"*Neutrosophic Sets and System*, Vol.3, pages53-59.,2014.

7. Mumtaz Ali , Florentin Smarandache, Muhammed shabir and Luige vladareanu , "Generalization of neutrosophic rings and neutrosophic fields "*Neutrosophic Sets and System*, Vol.5, pages 9-14,2014.

8. Kannappa.N.,Fairosekani.B., "On Some Characterization of Smarandache –Soft Neutrosophic-Near ring " *Jamal Academic Research Journal*, An interdisciplinary, Trichirapalli, India 2015.

9. Kannappa.N.,Fairosekani.B., "Some Equivalent conditions of Smarandache Soft Neutrosophic near ring" *Neutrosophic Sets and System*, Vol.8, pages 60-65, 2015.

10. Kannappa.N., Fairosekani.B., "Smarandache soft neutrosophic near ring and soft neutrosophic ideal" *International journal of scientific Research Engineering & Technology*, "ISSN2278-0882, Vol 4, Issue 7, pages 749-752, July 2015.

11. Kannappa. N. Fairosekani. B., "Smarandache soft neutrosophic near ring and soft neutrosophic bi-

ideal".International journal of fuzzy mathematical archive.Vol.9,No.1,pages 105-110,ISSN : 2320 3250.2015. *12*. Kannappa.N.,Fairosekani.B., "Characterization of Smarandache- Soft Neutrosophic Near-Ring by Soft

Neutrosophic Quasi-Ideals", *Annals of pure and applied mathematics*, Vol.11, No.1, 2016, 99-104, (ISSN: 2279-0888).

13. Kannappa. N., Fairosekani.B., "Smarandache - soft neutrosophic near-ring and soft neutrosophic(m,n) bi-ideal" *Elixir International Journal*,92(2016),38646-38652, (ISSN:2229-712X)

14. Ramaraj. T. Kannappa. N. " On bi-ideals of Smarandachenear-rings" *Acta ciencia Indica*, Vol.XXXIM, No.3 ,731-733. Meerut, India, 2005.

15. Ramaraj. T. Kannappa. N. " On finite Smarandache-nearrings " *Scientio magna*, Department of Mathematics , North West University, Xi'an , Shaanxi, P.R. China .Vol. I, No. 2, ISSN 1556-6706, page 49-51, 2005.

16. Ramaraj. T. Kannappa. N. "On six equivalent conditions of Smarandache-near-rings" *Pure and Applied Mathamathika Science*, ISSN 0379-3168, Saharanpur, India .Vol .LXVI, No. 1-2, Pages 87-91, September, 2007.

17. Ramaraj. T. Kannappa. N." Algorithms for Smarandachenear-ring" Presented in UGC sponsored state level seminor organized by Department of mathematics, A. V. V. M sri pushpam ollege(Autonomous), Poondi, Tamilnadu, India. March 16th and 17th 2006.