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Introduction 

The concept of blocking in statistically planned experiments was given by Prof. R. A. Fisher in the year 1935, in his book 

“Design of Experiments”. Further, the research work on the construction of the statistical designs of incomplete type was started 

by Prof. R.C. Bose and others [1]. Later different methods of construction of balanced incomplete block designs have been given 

in the literature like, Shrikhande et al. [2],  Calinski [3-4], Hanani [5], Agrawal et al. [6] etc.  

Let us consider a block design in which ν treatments arranged in b blocks and elements of the incidence matrix N are denoted 

by [nij], for all i = 1, 2,…,ν ;  j = 1, 2,…,b ; such that the j
th

 block contains kj experimental units and the i
th

 treatment appears ri 

times in the entire design. A balanced block design is said to be (a) binary when  nij = 0 or 1, ∀ i = 1, 2,…, ν ; j = 1, 2,…, b . 

Otherwise, it is said to be nonbinary (see Raghavarao [7]); (b) ternary if nij  =  0,1 or 2, ∀ i = 1, 2,…,ν ;  j = 1, 2,…,b and it has 

parameters ν, b, ρ1 , ρ2,  r, k, Λ ; where ρ1 , ρ2 are the number of times 1, 2 occurs in the incidence matrix, respectively (see 

Billington et al. [8]); (c) generalized binary if  nij = 0 or x, ∀ i = 1, 2,…, ν ; j = 1, 2,…, b and some positive integer x (> 1), and it 

has parameters ν, b, r, k, Λ (see Angelis et al.[9]). 

An equi-replicate, equi-block sized, incomplete design, which is also balanced in the sense given above is called balanced 

incomplete block design, which is an arrangement of ν symbols (treatments) into b sets (blocks) each containing k (< ν) distinct 

symbols, such that any pair of distinct symbols occurs in exactly λ sets. Then it is easy to see that each treatment occurs in r (> λ) 

sets. ν, b, r, k, λ are called parameters of the BIBD and the parameters satisfies the relations ν r = bk,  r (k-1) = λ (ν -1) and b ≥ ν 

(Fisher‟s Inequality). A BIB design is said to be symmetric if b= ν and r=k. 

The idea of merging the levels of factors was exploited by Addelman [10] to construct orthogonal resolution-III plans for 

symmetrical and asymmetrical factorial experiments. The effect of merging of treatments in block designs was studied by Pearce 

[11] and it was shown that merging of treatments in general leads to an increase in precision of the resulting design, if the merging 

has any effect. 

We always need to setup a design in such a way that the variability in response due to uncontrolled variables (sometimes 

called experimental error) is not so great that it makes the effects of the controlled variables and usually the effect of the highest 

order interaction is very low but it contributes the effects of the treatments. We also want designs which are efficient, i.e., designs 

where we can answer the questions of interest with a minimal amount of data because of the expense associated with data 

collection. Especially in agricultural experiments, we preferred incomplete block designs when experimental units are very large. 

Thus in the construction method discussed here we are deleting the control treatment and merging all the main effects with less 

effective highest order interaction separately in order to increase the efficiency of the constructed design in our research. 

In many experimental situations, it is a severe restriction that all blocks in the experiment are of the same size. Variance 

Balanced (VB) designs forms a class of designs that are flexible extensions to balanced incomplete block designs. They provide 

the ability to design an experiment with equal precision among all pairwise comparisons, without being restricted to equal block 

size and equal replication of the treatments. 

The importance of VB designs in the context of experimental material is well known as it yields optimal design apart from 

ensuring simplicity in the analysis. Many practical situations demand designs with varying block sizes (Pearce [12]), or resolvable 

VB designs with unequal replications (Kageyama [13], Mukerjee and Kageyama [14]) 
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Rao [15] gave the necessary and sufficient condition for a block design to be variance balanced. Pearce [12] observed that it is 

sufficient to ensure the constancy of off diagonal elements of the matrix C (= R – NK
-1

N‟) for a design to have variance balance. 

Hedayat and Federer [16] defined that a design is said to be VB if every normalized estimable linear function of treatment effect 

can be estimated with the same precision. Designs require equal number of replications on all the treatments and equal block sizes. 

These two conditions were relaxed with the introduction of new class of balanced designs called VB designs. 

A block design is called variance balanced if and only if 

1. it permits the estimation of all normalized treatment contrasts with the same variance. 

2. if the information matrix for treatment effects C = R – NK
–1

N‟ satisfies C = ψ [Iν – (1/ ν ) 1ν1ν‟]. 

where ψ is the unique nonzero eigen value of the matrix C with the multiplicity (v – 1), Iv is the v × v identity matrix.  

Hedayat and Federer [16], Khatri [17], Agarwal and Kumar [18-19] have provided several methods for construction of VB 

designs. Kageyama [20] gave some methods for constructing block designs with unequal treatment replications and unequal block 

sizes. Das and Ghosh [21] have defined generalized efficiency balanced (GEB) designs which includes both, VB as well as 

efficiency balanced (EB) designs. Ghosh et al. [22] gave methods to construct binary and non-binary VB design.  

The concept of efficiency balanced (EB) was introduced by Jones [23] and the nomenclature “efficiency balance” is due to 

Puri and Nigam [24], Williams [25]. Jones [23] showed that if s is a right eigenvector of the matrix M = R
-1

NK
-1

 N' corresponding 

to an eigenvalues μ (≠ 1), then the loss of information on the „intra-block component‟ of s'T is μ so that the efficiency-factor of the 

„intra-block component‟ is 1 − μ. Calinski [3] and Puri and Nigam [24] established a sufficient condition for a design to be 

efficiency balanced is that its M matrix.  

A block design is called efficiency balanced if  

1. Every contrast of treatment effects is estimated through the design with the same efficiency factor. 

2. nrJIM /)1( '
   ; (See Caliski [3]) 

and since M s = μ s, where μ is the unique non zero eigen value of M with multiplicity (1-ν).  For the EB block design N, the 

information matrix C is given as C = (1- μ) (R – (1/n) r r'); (see Kageyama [26]). 

Mukerjee and Saha [27] derived some optimality results on efficiency balanced designs. Gupta et al. [28] gave a method for 

constructing general efficiency balanced designs with equal and unequal block sizes. Gupta [29] gave a method for constructing 

efficiency balanced designs through BIB and GD designs. Ghosh et al. [30] introduced efficiency balanced and variance balanced 

ternary block designs. Ceranka and Graczyk [31] discussed some problems for a class of EB block design based on balanced 

incomplete block designs with repeated blocks. Sun and Tang [32] gave the optimal efficiency balanced designs and their 

constructions. 

In a given class of designs, one should attempt to choose a design which is good according to some well defined statistical 

criterion. This has led to the study of optimality of experimental designs. Optimal designs are experimental designs that are 

generated based on a particular optimality criterion and are generally optimal only for a specific statistical model. The optimality 

of a design depends on the statistical model and is assessed with respect to a statistical criterion, which is related to the variance-

matrix of the estimator.  

Kiefer [33] introduced Balanced Block Designs (BBD) as a generalization of Balanced Incomplete Block (BIB) designs and 

proved the A-, D- and E-optimality of BBD‟s in D (v, b, k), where D (v, b, k) is the class of all connected block designs with v 

treatments, b blocks, and constant block size k.  

Let CP denote the class of all acceptable designs with reference to P. CP consists of only connected designs. For any design 

d CP; let Vd denote the dispersion matrix, using d. Then 

A- optimality A design *d CP is said to be A-optimal in CP if 

 )V()V( dd* trtr   

i.e. A-optimality criterion seeks to minimize the trace of the inverse of the information matrix. This criterion results in minimizing 

the average variance of the estimates of the regression coefficients. 

D- optimality A design *d CP is said to be D-optimal in CP if 

 )V(det)V(det dd*   

i.e. D-optimality criterion seeks to minimize |(X'X)
−1

|, or equivalently maximize the determinant of the information matrix X'X of 

the design. 

E- optimality A design *d CP is said to be E-optimal in CP if 

)(max)(max dd*    

i.e. E-optimality criterion seeks to maximizes the minimum eigen value of the information matrix. 

In fact Subsequently, Kiefer [34] proved the stronger result regarding the optimality of balanced block designs, by 

introducing the concept of universal optimality of BBD‟s in D (v, b, k). The original concept of universal optimality in Kiefer [33] 

dealt with information matrices with zero row and column sums.  

Let Cd be the C-matrix of a design d. an optimality criterion is a function ),(:  R , where Rv is the set of ν × ν 

non-negative definite matrices with zero row and column sums. A design d
*
 is called  – optimal if it minimizes )( *d

C over the 

class of competing designs. A design is said to be universally optimal if   satisfies, 

(i)     is convex. 

(ii)   )( Cb  is non-increasing in the scalar b ≥ 0. 

(iii)   is invariant under any simultaneous permutation of rows and  columns of C. 

http://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Information_matrix
https://en.wikipedia.org/wiki/Eigenvalue
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Kiefer [34] obtained a sufficient condition for universal optimality. He proved that the balanced block design (if it exists) is 

universally optimal in the class of all connected designs. If a design is universally optimal then it is A-, D- and E-optimal as well 

and a vice a versa. 

Although a considerable amount of work is available on optimality of designs in D (v, b, k), not much appears to have been 

done on the optimality of designs with unequal block sizes, except by Lee and Jacroux [35-37], Dey and Das [38], Gupta and 

Singh [39], Gupta et al. [40]. 

Factorial experiments are experiments that investigate effects of two or more factors or input parameters on the output 

response of a process. It involves simultaneously more than one factor each at two or more levels. Several factors affect 

simultaneously the characteristic under study in factorial experiments and the experimenter is interested in the main effects and 

the interaction effects among different factors. Experiments in which the number of levels of all the factors are same, are called 

symmetrical factorial experiments. 

Rajarathinam et al. [41-42] gave the construction of unequal block sizes and equireplicated binary variance balanced and 

efficiency balanced designs from symmetrical factorial design. Since they delete the control treatment and merged all the main 

effects and considered them as one block in the first method (See Rajarathinam et al. [41]) and in the second method delete the 

control treatment as well as all the main effects in 2
n
-factorial design (See Rajarathinam et al. [42]). Thus in previously 

constructed designs, it is not possible to determine the main effects separately and hence cannot be checked its significance values. 

But in the construction method discussed here we are deleting the control treatment and merging the highest order treatment 

combination (which is of less important in the practical point of view) with each of main effect separately; because of this there is 

a scope to determine the main effects and also the efficiency of the design increases in our result.  

Rajarathinam et al. (41-42) gave the following theorems 

Lemma 1.1  

Let us consider a 2
n
 Symmetrical factorial experiment.  

(i) from these 2
n
 treatment combinations let delete the control treatments (i.e. a treatment combination whose level of all factor is 

zero).  

(ii) merge all those treatment combinations, which represent n main effects (i.e. treatment combinations, where level of one factor 

is one while level of other factors are zero) and further consider these n merged treatment combinations as one treatment 

combinations. This way, we have (2
n
–n) treatment combinations.  

(iii) finally consider (2
n
 – n) treatment combinations as the blocks for the required design. 

       Construction of an variance balanced design is given in the theorem that follows. 

Theorem 1.2 

 If there exists a 2
n
 symmetrical factorial experiment then there always exists a unequal block sizes, equireplicated, binary 

variance balanced design, by merging all the treatment combinations belonging to main effects and then considering these merged 

n treatment combinations as one, with the following parameters 

ν 
 
=  n,    b  = 2

n 
- n,    r 

 
= 2

n 
- 1,    k 

 
=  [2,2,….,2; 3,3,….,3; 4,4,….,4; ……; n, n]  

Lemma 1.3  

Consider a 2
n
 symmetrical factorial experiment. From the 2

n
 treatment combinations, delete the control treatments (i.e. 

treatment combinations where the levels of all factors is zero) as well as all main effects (i.e. treatment combinations where the 

level of one factor is one while the levels of all other factors are zero). Hence we have 2
n
 − n − 1 treatment combinations as the 

blocks in the required design. 

Construction of an efficiency balanced design is given in the theorem that follows. 

Theorem 1.4  

If there exists a 2
n
 symmetrical factorial experiment then there always exists a unequal block sizes, equireplicated, binary 

efficiency balanced design, by deleting the control treatment and main effects with the following parameters 

ν 
 
=  n,    b  = 2

n 
– n-1,    r

  
= 2

n-1
-1,    k 

 
=  [2, 2,…., 2; 3,3,….,3;.……..; n-1, n-1,…., n-1; n]  

2 Method of Construction 

Let as consider a 2
n
-factorial design. There are 2

n
-treatment combinations and n-main effects are there in the design. Now 

delete the control treatment and merge the highest order treatment combination (which is of less importance in estimation point of 

view) with each main effects separately. Thus we get 2
n
-1 treatment combinations. Now consider these (2

n
-1) treatment 

combinations as blocks for the required design with unequal (varying) block sizes. 

For example, let n=3, Then in 2
3
-factorial experiment there are 2

3
 =8 treatment combinations in all, which are as follows  

0  0 0 

0  0  1 

0  1  0 

0  1  1 

1  0  0 

1  0 1 

1  1  0 

1  1  1 

Delete a treatment combination whose levels of all factors are zero i.e. delete the control treatment. Next merge the highest 

order treatment combination with each main effect i.e. the treatment combination where the level of only one factor is one while 

the levels of the other factors are zero. Here there are three main effects in 2
3
-factorial experiment. The remaining treatment 

combinations remain as it is. Thus we get  

2  1  1 

1  2  1 
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1  1  2 

1  1  0 

1  0 1 

0  1  1 

1  1  1 

Finally we get 2
3
-1 =7 treatment combinations. Now transposing all the treatment combinations and treated them as blocks; 

we get the incidence matrix of variance balanced and efficiency balanced design, with block sizes 2, 3 and 4 respectively.  

Theorem 2.1 

The existence of 2
n
- symmetrical factorial experiment implies the existence of equireplicate variance balanced and efficiency 

balanced design with unequal block sizes, having parameters             

ν
* 
=  n,    b

* 
= 2

n 
-1,    r

* 
= 2

n-1 
+ n,    k

* 
=  [2,2,….,2; 3,3,….,3; 4,4,….,4; ………; n-1, n-1,…., n-1; n ; n+1, n+1,…., n+1]  

Proof  

In 2
n
-symmetric factorial experiment, there are 2

n
- treatment combinations in all. Considering “n” factors as rows and 2

n
-

treatment combinations as columns. Now deleting the control treatment and merging the highest order treatment combination with 

each main effect separately, we get the 2
n
 – 1 treatment combinations (which are treated as blocks); then incidence matrix N

*
 of 

design D
*
 with unequal block sizes is given as  















































   

























  




































  


















  



















eractionfactornwitheffects
mainoftomergingdueoccursblocksC

eractionfactorneractionfactorneractionfactoreractionfactor

n

N

intintint)1(int3int2

*

1

211

111

111

111

121

112

1

1

1

1

1

1

110

101

111

111

111

011

100

100

100

001

011

011

100

100

100

010

001

011

       

                                                                                                                                                                                                            (1) 

Since in N
*
; there are “n” rows. Considering these n-rows as treatments, we have ν

* 
= n.  

In incidence matrix N
*
, among 

n
c2 columns, in each column, element one occurs twice while zero occurs (n-2) times, among 

n
c3 

columns, element one occurs thrice while zero occurs (n-3) times in each column and so on. Also due to merging of blocks, 
n
c1 

columns are obtained in which one occurs (n-1) times and two occurs once.  

Thus we get 

        
132

* CCCCb n
n

nnn    

 
00132

* CCCCCCb nnn
n

nnn    

 12
*  nb  

Also in N
*
; 

n
c2 block have block size 2, 

n
c3 blocks have block size 3, and so on and due to merging of blocks 

n
c1 blocks have 

block size (n+1). Thus 





















    
times1

times

times1times3times2

1,..........,1,1;;1,..........,1,1.........;;.........3,..........,3,3;2,..........,2,2*

Cn
nCn

nCnCnCn

nnnnnnnk

 

Since we have considered rows as treatments and columns as blocks. In N
*
 there are ν

*
 = n treatments and b

*
=2

n
-1 blocks. In 

each row due to pooling one occurs (2
n-1

-1+n) times and 2 occurs once. Thus row sum becomes        

              

)1(1
1

2
1

1
1*  

 nCCCr n
nnn 

   10
1

1
1

2
1

1
1

0
1*  


 nCCCCCr n

n
nnnn   

 112
1*   nr n  

nr n  
2

1*  

Now calculation of variance and efficiency can be done as follows  

Since a block design is variance balanced iff  

         









 '* 1




 JJIC
                                                                                                                                                         (2) 

Where *  is the unique non-zero eigen value of the C -matrix with multiplicity (v-1). 
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The C- matrix for the design having incidence matrix given in (1) can be written as  

































1

1

1

1

n

n

C









                                                                                                                                                  (3) 

Where, 

.......... 2, 1,mwhere;
211

2
2

2
2

1
2

0
2


























mn

C

n

C

n

C

n

C

n

n m
nnnn


                                          (4)                                                                                                                                                                                                                                                                                                                              

 

Comparing (2) and (3) 

....... 2, 1,mwhere;
211

2
2

2
2

1
2

0
2

* 




































mn

C

n

C

n

C

n

C

n

n
n m

nnnn


                                           (5) 

Hence the incidence matrix defined in eq. (1) of design D
*
 gives equireplicated variance balanced design with unequal block 

sizes.  

We know that M-matrix is defined as  

             M = I – R
-1

 C                                                                                               (6) 

After simplification we get,  

 

   






































*

*

*

*

)1(

)1(
1

r

n
r

r

r

n

M















                                                                                                                                              (7) 

Since MJ = J, where J is the unit vector of order (vx1).  

Also M-matrix is given as  

  '**** /)1(   JrJrIM
i

i 







                                                                                                                                           (8) 

Where μ is the loss of information, I is the identify matrix of order (ν×ν), Jv is unit vector of order (ν×1) and 
i

ir
* is the total 

number of observations.  

On simplification we get 
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Comparing (7) and (9) we get,  
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where θ is defined in (4). 

Thus the design is efficiency balanced with unequal block sizes.  

Example 2.2 Let n=4, then in 2
4
- factorial design; theorem 2.1 yields an incidence matrix N

*
 as given below 
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Here,   
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The C- matrix for the design having incidence matrix given above can be written as  
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Also we know tha 
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                                                                                                                                                                (12) 

where *  is the unique non-zero eight value of the C-matrix with multiplicity 3. 

Comparing (11) and (12) 
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                                                                                                                                                                                        (13)      

Thus the design is Variance balanced. 

Now the M-matrix of the above design is given as 
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                                                                                                                                                     (14) 

Obviously this matrix satisfies the condition of efficiency balanced design i.e. MJ=J; where J is the ν×1 vector of ones.  

The efficiency factor is calculated using the formula 
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                                                                                                                                               (15) 

On simplification we get 
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equating  (14) and (16), we get  

180

23* 
                                                                                                                                                                                            (17)  

Thus the design is Efficiency balanced. 

3 Optimality of the design 

Let θ1, θ2, θ3, …, θ(v-1) be non-zero eigen values of Cd matrix of design d. As we know that for variance balanced design there will 

be only one non-zero eigen value with multiplicities (v–1) of Cd matrix of design d. That is, θ1 = θ2 = θ3 =..….= θ(v-1) = θ as C–

matrix is positive semi-definite. Then, 

A-Optimality: A design is A-Optimal if 
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D-Optimality: A design is D-Optimal if 
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E-Optimality: A design is E-Optimal if 

)1(

)(
)(Min
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
 d

i

Ctr  

Example 3.1 Consider a variance balanced and efficiency balanced design obtained in the example 2.2 with parameters v
*
 = 4, b

* 

= 15, r
* 

= 12, k
*
 = [2,…, 2; 3,...., 3; 4; 5, …, 5]. The trace of C-matrix is comes out to be 157/5 and non-zero eight value of C-

matrix is 
15

157*   with multiplicity 3. 

I) Checking A- Optimality  

Here, the inequality  
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holds true, which is the required condition of a variance balanced design to be A-optimal, with equal replication and unequal 

block sizes. Thus the variance balanced and efficiency balanced design constructed here is A-optimal.  

II) Checking D-Optimality  

Here, the inequality  
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holds true, which is the required condition of a variance balanced design to be D-optimal, with equal replication and unequal 

block sizes. Thus the variance balanced and efficiency balanced design constructed here is D-optimal.  

III) Checking E-optimality 

Here, the inequality  

)14(
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
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15
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holds true, which is the required condition of a variance balanced design to be E-optimal, with equal replication and unequal block 

sizes. Thus the variance balanced and efficiency balanced design constructed here is E-optimal.  

Since, the constructed VB is A-Optimal, D-Optimal as well as E-Optimal and hence the constructed variance balanced 

and efficiency balanced design is the universally optimal. 

Conclusion 

In this research we have significantly shown that the constructed variance balanced and efficiency balanced designs are 

universally optimal and more efficient in terms of variance and efficiency both as compared to the previously constructed designs 

by Rajarathinam et al. [41-42].  
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