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Introduction 

The problem of imperfect knowledge has been tackled for a 

long time by philosophers, logicians and mathematicians. There 

are many approaches to the problem of how to understand and 

manipulate imperfect knowledge. The most successful approach 

is based on the fuzzy set notion proposed by L. Zadeh [12]. 

Rough set theory proposed by Z. Pawlak in [10] presents still 

another attempt to this problem. Rough sets have been proposed 

for a very wide variety of applications. In particular, the rough 

set approach seems to be important for Artificial Intelligence and 

cognitive sciences, especially in machine learning, knowledge 

discovery, data mining, expert systems, approximate reasoning 

and pattern recognition. Inspite, all these theories have their 

inherit difficulties as pointed out by Molodsov [6]. 

To overcome these difficulties, in 1999 Molodtsov 

introduced the concept of soft sets, which can be seen as a new 

mathematical tool for dealing with uncertainties.This so-called 

soft set theory seems to be free from the difficulties affecting the 

existing methods. The study of hybrid models combining soft 

sets with other mathematical structures is emerging as an active 

research topic of soft set theory [2, 4, 5, 8].   But these sets fail 

when we talk about indeterminate state which exits in the belief 

system. 

One of the interesting generalizations of the theory of fuzzy 

sets and intuitionistic fuzzy sets is the theory of neutrosophic 

sets introduced by F. Smarandache [11]. In order to give a new 

approach to decision making problems, we combine a fuzzy soft 

relation with neutrosophic rough sets and propose the concept of 

neutrosophic soft rough sets. Then we can define the upper and 

lower approximations of any neutrosophic set on parameter set 

𝐸. Like the traditional neutrosophic rough set models, 

neutrosophic   soft rough sets can also be exploited to extend 

many practical applications in reality. Therefore, we propose a 

novel approach to decision making based on neutrosophic soft 

rough set theory. 

Prelimnaries 

Definition 2.1: [11] 

A neutrosophic set A on the universe of discourse X is 

defined as  

A=   where   

] 
-
0, 1

+ 
[  and 

  3)()()(0 xFxIxT AAA . 

Definition 2.2: [1] 

 Let U be the initial universe set and E be a set of 

parameters. Let P(U)  denotes the power set of U. Consider a 

non-empty set A , A  E .A pair ( F,A) is called a soft set over 

U, where F is a mapping given by F: A   P(U) 

Definition 2.3. [5]. Let (𝐹, 𝐸) be a soft set over 𝑈. Then a subset 

of 𝑈 × 𝐸 called a crisp soft relation from 𝑈 to 𝐸 is uniquely 

defined by   = {⟨(𝑢, 𝑥) ,  (𝑢, 𝑥)⟩ | (𝑢, 𝑥) ∈ 𝑈×𝐸} , where : 

𝑈 × 𝐸 → [0, 1],  

   (𝑢, 𝑥) =   

Definition 2.4. [4]. Let 𝑈 be an initial universe set and let 𝐸 be a 

universe set of parameters. A pair (𝐹, 𝐸) is called a fuzzy soft set 

over 𝑈 if  F: 𝐸 → 𝐹(𝑈), where 𝐹(𝑈) is the set of all fuzzy 

subsets of 𝑈. 

Definition 2.5.[1]  Let 𝑈 be a nonempty and finite universe of 

discourse and𝑅 ⊆ 𝑈×𝑈an arbitrary crisp relation on 𝑈. We 

define a set-valued function 𝑅𝑠: 𝑈 → (𝑈) by  

𝑅𝑠(𝑥) = {𝑦 ∈ 𝑈 | (𝑥,𝑦) ∈ 𝑅}, 𝑥 ∈ 𝑈. 

The pair (𝑈, 𝑅) is called a crisp approximation space. For any 𝐴 

⊆ 𝑈, the upper and lower approximations of 𝐴 with respect to 

(𝑈, 𝑅), denoted by  (𝐴) and  (𝐴), are defined, respectively, as 

follows: 

 = {𝑥 ∈𝑈| 𝑅𝑠(𝑥) ∩ 𝐴 } 

 = {𝑥 ∈𝑈| 𝑅𝑠(𝑥) ⊆ 𝐴} . 

The pair ((𝐴), 𝑅(𝐴)) is referred to as a crisp rough set, and 𝑅, 𝑅 : 

𝑃(𝑈) → 𝑃(𝑈) are, respectively, referred to as upper and lower 

crisp approximation operators induced from  (𝑈, 𝑅). 

Example 2.6.  Let 𝑈 be a universal set, which is denoted by 

𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}. Let 𝐸 be a set of parameters, where   = 

{𝑒1, 𝑒2, 𝑒3, 𝑒4}. Suppose that a soft set over 𝑈 is defined as 

Follows  

(𝑒1) = {𝑢1, 𝑢3, 𝑢4} , 𝐹 (𝑒2) = {𝑢2, 𝑢4} , 𝐹 (𝑒3) = ,  𝐹(𝑒4) = 𝑈.
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Then the crisp soft relation on 𝑈 × 𝐸 is written by  

𝑅 = {(𝑢1, 𝑒1) , (𝑢3, 𝑒1) , (𝑢4, 𝑒1) , (𝑢2, 𝑒2) , (𝑢4, 𝑒2) ,(𝑢1, 𝑒4) , (𝑢2, 

𝑒4) , (𝑢3, 𝑒4) , 𝑢4, 𝑒4) , (𝑢5, 𝑒4)}  

From Definition 2.5, we can obtain  

(𝑢1) = {𝑒1, 𝑒4}, (𝑢2) = {𝑒2, 𝑒4}, 𝑅𝑠(𝑢3) = {𝑒1, 𝑒4}, 𝑅𝑠(𝑢4) = {𝑒1, 𝑒2, 

𝑒4}, and 𝑅𝑠(𝑢5) = {𝑒4}.  

If the set of parameter 𝐴 = {𝑒2, 𝑒3, 𝑒4}, we have  = {𝑢2, 𝑢5} 

and  = 𝑈. 

Rough Neutrosophic Soft Set 

Definition 3.1.  Let (U, E, R) be a crisp soft approximation 

space. For any A= { /x } , 

the lower upper approximatios of A with respect to (U, E, R), 

denoted by  and  are respectively defined as follows: 

 = { / u }  

{ / u } Where    

 ux Rs



, 
 ux Rs




, 

 ux Rs



   

 = 
 ux Rs




,    ux Rs



, 

 ux Rs



  

Remark 3.2.   and  are two neutrosophic sets on U and 

the pair ) is referred as a soft rough neutrosophic set 

of A with respect to (U, E, R) and   and  : N(E)N(U) are 

referred to as upper and lower soft rough neutrosophic 

approximation operator.  

Example 3.3.  

Let U be the universal set, which is denoted by 𝑈 = {𝑢1, 𝑢2, 𝑢3, 

𝑢4, 𝑢5}. Let   be the set of parameters , where 𝐸 = {𝑒1, 𝑒2, 𝑒3, 

𝑒4,e5}. Suppose that a soft set over U is defined as  

F (𝑒1) = {𝑢1, 𝑢2}        F (𝑒2) = {𝑢1, 𝑢2, 𝑢3}      F (𝑒3) = {𝑢3, 𝑢4}         

F (𝑒4) =                   F (𝑒4) =  U 

The crisp soft relation on 𝑈×𝐸 is given by 

𝑅= 

{(𝑢1,𝑒1),(𝑢2,𝑒1),(𝑢1,𝑒2),(𝑢2,𝑒2),(𝑢3,𝑒2),(𝑢3,𝑒3),(𝑢4,𝑒3),(𝑢1,𝑒5),(𝑢2,𝑒5

),(𝑢3,𝑒5),(𝑢4,𝑒5),(𝑢5,𝑒5)} 

𝑅s(𝑢1) = {𝑒1,𝑒2 ,𝑒5}  𝑅s(𝑢2) = {𝑒1,𝑒2 ,𝑒5}   𝑅s(𝑢3) = {𝑒2,𝑒3 ,𝑒5}  

𝑅s(𝑢4) = { 𝑒3 ,𝑒5}  𝑅s(𝑢5) = {𝑒5}   

We can define a neutrosophic set 𝐴∈ N(𝐸) as follows: 

Let A = { e1,𝑒2 ,𝑒5} 

Then  = { 1,  𝑢2, 𝑢5}  

We can define an neutrosophic set 𝐴 ∈ N(𝐸) as follows: 

A= {⟨𝑒1, 0.5, 0.6, 0.2⟩ , ⟨𝑒2, 0.8,0.3, 0.16⟩ ,⟨𝑒3, 0.4,0.7, 0.3⟩ , 
        ⟨𝑒4, 0.6, 0.7, 0.1⟩, ⟨𝑒5, 0.5, 0.4, 0.4⟩} . 

we have 

= 0.8,  = 0.6,  = 0.2 

= 0.8,  = 0.6,  = 0.2 

= 0.8,  = 0.7,  = 0.3 

= 0.5,  = 0.7,  = 0.3 

= 0.5,  = 0.4,  = 0.4 

= 0.5,   = 0.3, 0.4 

= 0.5,   = 0.3,  0.6 

= 0.4,   = 0.3,  0.6 

= 0.4,  = 0.4,  0.4 

= 0.5,   = 0.4,  0.4 

) ={⟨ 0.8,0.6, 0.2⟩ ,⟨𝑢2, 0.8,0.6, 0.2⟩ , ⟨𝑢3, 0.8, 0.7, 0.3⟩ , 

             ⟨𝑢4, 0.5, 0.7, 0.3⟩ , ⟨𝑢5, 0.5, 0.4, 0.4⟩}  

 ={⟨𝑢1, 0.5,0.3, 0.6⟩ , ⟨𝑢2, 0.5,0.3,0.6⟩ , ⟨𝑢3, 0.4, 0.3,0.6⟩, 

             ⟨𝑢4, 0.4,0.4, 0.4⟩ , ⟨𝑢5, 0.5,0.4, 0.4⟩} 

Theorem  3.4.  Let (𝑈,,) be a crisp soft approximation space. 

Then the upper and lower soft rough neutrosophic 

approximation operators )  and ) satisfies the following 

properties,∀𝐴, 𝐵 ∈  N(𝐸), ∀𝛼, 𝛽, γ ∈ [0, 1 ]  with 𝛼 +𝛽+ γ ≤ 3. 

(SRN1) (𝐴) =∼  (∼ 𝐴), 

(SRN2) (𝐴 ∩ 𝐵) = (𝐴) ∩ (𝐵), 

(SRN3) 𝐴⊆𝐵⇒ (𝐴) ⊆ (𝐵), 

(SRN4) (𝐴 ∪ 𝐵) ⊇ (𝐴) ∪ (𝐵), 

(SRN5) (𝐴) =∼  (∼ 𝐴) 

(SRN6) (𝐴 ∪ 𝐵) = (𝐴) ∪ (𝐵), 

(SRN7) A ⊆𝐵 ⇒ (𝐴) ⊆ (𝐵) 

(SRN8) (𝐴 ∩ 𝐵) ⊆ (𝐴) ∩ (𝐵), 

Where  ∼𝐴is the complement of 𝐴.  

Proof.  

We only prove properties of the lower soft rough  neutrosophic 

approximation operator  (𝐴). The upper soft rough 

neutrosophic approximation operator  (𝐴) can be proved 

similarly. 

Then  we have 

∼  (∼𝐴) = { / u 

}  

= {⟨𝑢,  ux Rs



, 1-  ux Rs



, 
 ux Rs




 ⟩} 

= {  ux Rs



, , 
 ux Rs




/ u ⟩} 

                  = { / u } = 

(𝐴) 

 (𝐴∩𝐵)={⟨𝑢, , , | ∈ } 

               ={⟨𝑢, 
 ux Rs




, 

 ux Rs



| ∈ } 

               ={⟨𝑢, 
 ux Rs




,   

                    
 ux Rs




,  ux Rs



 

| ∈ }    

               = {⟨𝑢, ,       

                    | ∈ } 

               =  ∩  

Remark.3.5. The properties (1) and (5) shows that the upper and 

lower approximation operators  and   are dual to each other. 

Example 

A = {⟨𝑒1, 0.5, 0.6, 0.2⟩ , ⟨𝑒2, 0.8,0.3, 0.16⟩ ,⟨𝑒3, 0.4,0.7, 0.3⟩ , 
         ⟨𝑒4, 0.6, 0.7, 0.1⟩, ⟨𝑒5, 0.5, 0.4, 0.4⟩}. 

∼𝐴 = {⟨𝑒1, 0.2, 0.4, 0.5⟩ , ⟨𝑒2, 0.6,0.7, 0.8⟩ ,⟨𝑒3, 0.3,0.3, 0.4⟩ , 
            ⟨𝑒4, 0.1, 0.3, 0.6⟩, ⟨𝑒5, 0.4, 0.6     0.5⟩}. 
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  (∼ 𝐴) = {⟨𝑒1, 0.6, 0.7, 0.5⟩ , ⟨𝑒2, 0.6,0.7, 0.5⟩ ,⟨𝑒3, 0.6,0.7, 

0.4⟩ , 
                    ⟨𝑒4, 0.3, 0.6, 0.4⟩, ⟨𝑒5, 0.1, 0.6, 0.5⟩} 

∼  (∼𝐴) = {⟨𝑒1, 0.5, 0.3, 0.6⟩ , ⟨𝑒2, 0.5,0.3, 0.6⟩ ,⟨𝑒3, 0.4,0.3, 

0.6⟩ ,   

                    ⟨𝑒4, 0.4, 0.4, 0.4⟩, ⟨𝑒5, 0.5, 0.4, 0.4⟩} = (𝐴) 

(SRN) (𝐴) = ∼  (∼ 𝐴), holds. 

 Example 3.6:  

A = {⟨𝑒1, 0.5, 0.6, 0.2⟩ , ⟨𝑒2, 0.8,0.3, 0.16⟩ ,⟨𝑒3, 0.4,0.7, 0.3⟩ ,  
         ⟨𝑒4, 0.6, 0.7, 0.1⟩, ⟨𝑒5, 0.5, 0.4, 0.4⟩} . 

B = {⟨𝑒1, 0.7, 0.3, 0.2⟩ , ⟨𝑒2, 0.7,0.6, 0.3⟩ ,⟨𝑒3, 0.4,0.4, 0.5⟩ ,  
         ⟨𝑒4, 0.5, 0.6, 0.1⟩, ⟨𝑒5, 0.4, 0.6, 0.7⟩} . 

𝐴 ∩ 𝐵 = {⟨𝑒1, 0.5, 0.3, 0.2⟩ , ⟨𝑒2, 0.4,0.3, 0.7⟩ ,⟨𝑒3, 0.4,0.4, 0.5⟩ , 
                  ⟨𝑒4, 0.5, 0.6, 0.1⟩, ⟨𝑒5, 0.4, 0.4, 0.7⟩} . 

 ={⟨𝑢1, 0.5,0.3, 0.6⟩ , ⟨𝑢2, 0.5,0.3,0.6⟩ , ⟨𝑢3, 0.4, 0.3,0.6⟩, 

           ⟨𝑢4, 0.4,0.4, 0.4⟩ , ⟨𝑢5, 0.5,0.4, 0.4⟩} 

 ={⟨𝑢1, 0.4,0.3, 0.7⟩ , ⟨𝑢2, 0.4,0.3,0.7⟩ , ⟨𝑢3, 0.4, 0.4,0.7⟩, 

⟨𝑢4, 0.4,0.4, 0.7⟩ , ⟨𝑢5, 0.4,0.6, 0.7⟩} 

(𝐴) ∩ (𝐵) = {⟨𝑢1, 0.4,0.3, 0.7⟩ , ⟨𝑢2, 0.4,0.3,0.7⟩ , ⟨𝑢3, 0.4, 

0.3,0.7⟩,    

                         ⟨𝑢4, 0.4,0.4, 0.7⟩ , ⟨𝑢5, 0.4,0.4, 0.7} 

 (𝐴∩𝐵) ={⟨𝑢1, 0.4,0.3, 0.7⟩ , ⟨𝑢2, 0.4,0.3,0.7⟩ , ⟨𝑢3, 0.4, 

0.3,0.7⟩,                                                                                                                                                                         

               ⟨𝑢4, 0.4,0.4, 0.7⟩ , ⟨𝑢5, 0.4,0.4, 0.7⟩}  

Neutrosophic Soft Rough Sets 

Definition 4.1. Let 𝑈 be an initial universe set and let 𝐸 be a 

universe set of parameters. For an arbitrary fuzzy soft relation 𝑅 

over U×𝐸,   the pair ( is called a fuzzy soft  approximation 

space. For any𝐴∈N(𝐸), we define the upper             and lower 

soft approximations of  𝐴 with respect to (𝑈, 𝐸, 𝑅), denoted by 

 and , respectively, as follows 

 = { / u }  

{ / u } 

Where 

= Ex
  )(),( xTxuT AR 

, 

= Ex


 
)(),( xIxuT AR 

 

= Ex
  )(),(1( xFxuT AR 

 

= Ex
  )(),(1( xTxuT AR 

 

= Ex
  )(),(1( xTxuT AR 

 

= Ex
  )(),( xIxuI AR 

 

Then the pair ) is called neutrosophic soft rough set 

and and  N(U).  

In fact, + +  = Ex


 

)(),( xTxuT AR 
+ Ex


 
)(),( xIxuT AR 

  

      + Ex
  )()),(1( xFxuT AR  3

 

Hence, (  ∈N(𝑈). Similarly, we can obtain  ∈N(𝑈). So 

we call 𝑅,  

𝑅:N(𝐸) →N(𝑈) the upper and lower neutrosophic soft rough 

approximation operators, respectively. 

 

Remark 4.2. Let (𝑈, 𝐸, 𝑅) be a fuzzy soft approximation space. 

If 𝐴  (𝐸), then neutrosophic soft rough approximation operators 

 and degenerate to the following forms: 

 = { / u }  

{ / u } 

 

 = Ex
  )()),(1( xTxuT AR 

 

In this case, neutrosophic soft rough approximation operators 

and are identical with the soft fuzzy rough 

approximation operators. That is, neutrosophic soft rough 

approximation operators are an extension of the soft fuzzy rough 

approximation operators. 

Example 4.3:  Suppose that 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5} is the set of 

five SMART PHONES under consideration of a decision maker 

to purchase. Let 𝐸 be a parameter set, where  

𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4} = {operating system,  apps,  web access,  

messaging}. 

Mr. X wants to purchase   a phone which qualifies with the 

parameters of  . Assume that Mr. X describes the phones by 

constructing a fuzzy soft set (𝐹, 𝐸) which is a fuzzy soft relation 

𝑅 from 𝑈 to 𝐸. And it is presented by a table as in the following 

form: 

Table representing TR(u,x), IR(u,x), FR(u,x) 

 

 

 

 

 

 

 

 

Now suppose that Mr. X gives the optimum normal decision 

object 𝐴 which is an neutrosophic subset defined as follows: 

A= {⟨𝑒1, 0.7, 0.7, 0.1⟩ , ⟨𝑒2, 0.7,0.6, 0.5⟩ ,⟨𝑒3, 0.8,0.9, 0.1⟩ , ⟨𝑒4, 

0.7, 0.5, 0.4⟩} 

The Truth, Indeterminacy and False values are given as 

 = 0.7,     = 0.8,      = 0.2 

= 0.7,    = 0.6,      = 0.5. 

 = 0.6,     = 0.6,      = 0.4 

 = 0.7,     = 0.5,      = 0.3 

 = 0.7,    = 0.7,     = 0.1 

  = 0.7,      = 0.5,    0.5 

  = 0.7,     = 0.5,      0.5 

  = 0.6,      = 0.5,     0.5 

  = 0.6,     = 0.5,     0.4 

  = 0.6,     = 0.5,     0.4 

) = {⟨ , 0.7, 0.8, 0.2⟩ ,⟨𝑢2, 0.7,0.6, 0.5⟩ ,⟨𝑢3, 0.6, 0.6, 0.4⟩,  
               ⟨𝑢4, 0.7, 0.5, 0.3⟩ ,⟨𝑢5, 0.7, 0.7, 0.1⟩} , 

 ={⟨𝑢1, 0.7,0.5, 0.5⟩ , ⟨𝑢2, 0.7,0.5,0.5⟩ , ⟨𝑢3, 0.6, 0.5,0.5⟩, 
               ⟨𝑢4, 0.6,0.6, 0.4⟩ , ⟨𝑢5, 0.6,0.5, 0.4⟩} 

Theorem 4.4. Let (𝑈, 𝐸, 𝑅) be a fuzzy soft approximation space. 

Then the upper and lower neutrosophic soft rough 

approximation operators and   satisfy the following 

properties,  𝐴, 𝐵 N(𝐸),  

(NSR1) (𝐴) =∼  (∼ 𝐴), 

R 𝑒1 𝑒2 𝑒3 𝑒4 

𝑢1 0.7,0.8,0.28 0.9,0.8,0.1 0.7,0.8,0.3 0.6,0.7,0.2 

𝑢2 0.8,0.5,0.7 0.6,0.6,0.2 0.5,0.4,0.7 0.5,0.6,0.7 

𝑢3 0.5,0.6,0.6 0.5,0.4,0.6 0.6,0.5,0.5 0.4,0.5,0.3 

𝑢4 0.9,0.3,0.3 0.4,0.2,0.7 0.4,0.5,0.4 0.3,0.4,0.6 

𝑢5 0.5,0.7,0.1 0.3,0.1,0.7 0.5,0.6,0.7 0.7,0.6,0.2 
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(NSR2) (𝐴 ∩ 𝐵) = (𝐴) ∩ (𝐵), 

(NSR3) 𝐴⊆𝐵⇒ (𝐴) ⊆ (𝐵), 

(NSR4) (𝐴 ∪ 𝐵) ⊇ (𝐴) ∪ (𝐵), 

(NSR5) (𝐴) =∼  (∼ 𝐴) 

(NSR6) (𝐴 ∪ 𝐵) = (𝐴) ∪ (𝐵), 

(NSR7) A ⊆𝐵 ⇒ (𝐴) ⊆ (𝐵) 

(NSR8) (𝐴 ∩ 𝐵) ⊆ (𝐴) ∩ (𝐵), 

Where  ∼ 𝐴 is the complement of 𝐴. 

Proof is similar to Theorem 3.4. 

Example 4.5: 

Consider A= {⟨𝑒1, 0.7, 0.7, 0.1⟩ , ⟨𝑒2, 0.7,0.6, 0.5⟩ ,⟨𝑒3, 0.8,0.9, 

0.1⟩ , ⟨𝑒4, 0.6, 0.5, 0.4⟩} 

 ∼ 𝐴= {⟨𝑒1, 0.1, 0.3, 0.7⟩, ⟨𝑒2, 0.5, 0.4, 0.7⟩ ,⟨𝑒3, 0.1,0.1, 0.8⟩ , 
⟨𝑒4, 0.4, 0.5, 0.7⟩} 

(∼ A) = {⟨u1,0.5,0.5,0.7⟩ , 

⟨u2,0.5,0.5,0.7⟩,⟨u3,0.5,0.5,0.6⟩,⟨u4,0.4,0.4,0.6⟩,⟨u5,0.4,0.5,0.6⟩}, 

= 

{⟨u1,0.5,0.5,0.7⟩,⟨u2,0.5,0.5,0.7⟩,⟨u3,0.5,0.5,0.6⟩,⟨u4,0.4,0.4,0.6⟩,⟨
u5,0.4,0.5,0.6⟩}, 

= 

{⟨u1,0.7,0.5,0.5⟩,⟨u2,0.7,0.5,0.5⟩,⟨u3,0.6,0.5,0.5⟩,⟨u4,0.6,0.6,0.4⟩,⟨
u5,0.6,0.5,0.4⟩} 

 =   

Consider another set B = 

{⟨u1,0.7,0.6,0.5⟩,⟨u2,0.6,0.4,0.2⟩,⟨u3,0.3,0.8,0.3⟩,⟨u4,0.4,0.7,0.1⟩} 

= 

{⟨u1,0.3,0.4,0.5⟩,⟨u2,0.6,0.4,0.5⟩,⟨u3,0.4,0.6,0.5⟩,⟨u4,0.4,0.7,0.5⟩,⟨
u5,0.4,0.6,0.5⟩} 

A ∩ B = 

{⟨e1,0.7,0.6,0.5⟩,⟨e2,0.6,0.4,0.5⟩,⟨e3,0.3,0.8,0.1⟩,⟨e4,0.4,0.5,0.4⟩}. 

(A ∩ B) = A = 

 {⟨e1,0.7,0.7,0.1⟩,⟨e2,0.7,0.6,0.5⟩,⟨e3,0.8,0.9,0.1⟩,⟨e4,0.6,0.5,0.4⟩} 

We know  

=  

{⟨u1,0.6,0.6,0.4⟩,⟨u2,0.6,0.5,0.4⟩,⟨u3,0.7,0.6,0.4⟩,⟨u4,0.6,0.6,0.4⟩, 
⟨u5,0.6,0.5,0.4⟩} 

A)∩ (B) = 

⟨u1,0.3,0.4,0.5⟩,⟨u2,0.6,0.4,0.5⟩,⟨u3,0.4,0.6,0.5⟩,⟨u4,0.4,0.6,0.5⟩,⟨u

5,0.4,0.5,0.5⟩} 

It follows that (NSR2) holds. Similarly, we can verify that 

(NSR6) also holds. 

In Example 4.4, we can note that (𝐴) ⊈ (𝐴). But if 𝑅 is referred 

to as a serial fuzzy soft relation from 𝑈 to parameter set 𝐸, that 

is, for each 𝑢 𝑈, there exists 𝑒  𝐸 such that 𝑅(𝑢, 𝑥) = 1, we 

have 𝑅(𝐴)  𝑅(𝐴).  

Theorem 4.6. Let (𝑈, 𝐸, 𝑅) be a fuzzy soft approximation space. 

If 𝑅 is serial, then the upper and lower IF soft rough 

approximation operators and   satisfy the following 

properties: 

(1)  (Φ) = Φ,  (𝐸) = 𝑈. 

(2)  (𝐴)   (𝐴), 𝐴  N(𝐸). 

Proof. It is straightforward.  

Application Of Neutrosophic Soft Rough Sets In Decision 

Making 

In the above-mentioned sections, to demonstrate the validity 

of that new models properties, several examples are carried out. 

For example, by data validation all upper and lower 

approximation operators  and  in the above examples are dual 

to each other. By those examples, the models are further 

understood, laying a good foundation for further study and 

application. 

In this section, we present an approach to the decision 

making based on neutrosophic soft rough sets. 

Let (𝑈, 𝐸, 𝑅) be a fuzzy soft approximation space, where 𝑈 is 

the universe of the discourse, 𝐸 is the parameter set, and 𝑅 is a 

fuzzy soft relation on  ×𝐸. Then we can give an algorithm based 

on IF soft rough sets with five steps. 

First, according to their own needs, the decision makers can 

construct a fuzzy soft relation 𝑅 from 𝑈 to 𝐸, or fuzzy soft set 

(𝐹, 𝐸) over 𝑈. 

Second, for a certain decision evaluation problem, each 

person has various opinions on the attributes of the same 

parameter.  

we can compute then neutrosophic soft rough approximation 

operators   and  (𝐴) of the optimum normal decision 

object 𝐴. Thus, we obtain two most close values   and  

(𝐴)  to the decision alternative 𝑢𝑗 of the universe set 𝑈. 

Fourth two operations on two neutrosophic sests, shown as 

follows, for all 𝐴, 𝐵  N(𝑈). 

 (i) Union operation: 

))(),(min(,))(),(max(,))(),((max,~ xFxFxIxIxTxTxBA BABABA
 

(ii) Intersection operation: 

))(),(max(,))(),(min(,))(),((min,~ xFxFxIxIxTxTxBA BABABA

(iii) Ring sum operation: 

 𝐴 ⊕ 𝐵 = {⟨𝑥, (𝑥) + (𝑥) − (𝑥)+ (𝑥), (𝑥) (𝑥)⟩ | 𝑥 ∈ 

𝑈}. 

 (iv) Ring product operation: 

 𝐴 ⊗ 𝐵 = {⟨𝑥, (𝑥)  (𝑥)  , (𝑥) (𝑥), (𝑥)+ (𝑥)− 

(𝑥) (𝑥)⟩ | 𝑥 ∈ 𝑈} . 

 ) ={⟨ 0.80,0.7, 0.5⟩ ,⟨𝑢2, 0.7,0.7, 0.3⟩ , ⟨𝑢3, 0.4, 0.5, 0.5⟩ , 
                ⟨𝑢4, 0.4, 0.4, 0.6⟩ , ⟨𝑢5, 0.6, 0.5, 0.4,⟩} , 

 ={⟨𝑢1, 0.4,0.5, 0.4⟩ , ⟨𝑢2, 0.5,0.5,0.4⟩ , ⟨𝑢3, 0.5, 0.6,0.4⟩ , 
                ⟨𝑢4, 0.6,0.5, 0.4⟩ , ⟨𝑢5, 0.5,0.5, 0.4⟩} 

) H 

={⟨𝑢1, 0.88,0.875, 0.02⟩ , ⟨𝑢2, 0.88,0.85,0.12⟩ , ⟨𝑢3, 0.7, 

0.36,0.02⟩ , 
    ⟨𝑢4, 0.76, 0.7, 0.24⟩ , ⟨𝑢5, 0.8,0.75, 0.16⟩} 

It is noted that the optimal decision is still 𝑢1. Hence, Mr. X 

will purchase the phone 𝑢1. 
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