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Introduction 

Nanotechnology [1] has been broadly used in several 

industrial applications. It aims at manipulating the structure of 

the matter at the molecular level with the goal for innovation 

in virtually every industry and public endeavour including 

biological sciences, physical sciences, electronics cooling, 

transportation, the environment and national security. Low 

thermal conductivity of convection heat transfer fluids such as 

water, oil and ethylene glycol mixture is a primary limitation 

in enhancing the performance and the compactness of many 

engineering electronic devices. To overcome this drawback, 

there is a strong motivation to develop advanced heat transfer 

fluids with substantially higher conductivities to enhance 

thermal characteristics. Small particles (nano - particles) stay 

suspended much longer than larger particles. If particles settle 

rapidly (micro particles), more particles need to be added to 

replace the settled particles, resulting in extra cost and 

degradation in the heat transfer enhancement. As such an 

innovative way in improving thermal conductivities of a fluid 

is to suspend metallic nano-particles within it. The resulting 

mixture referred to as a nanofluid possesses a substantially 

larger thermal conductivity compared to that of traditional 

fluids. Nanofluids demonstrate anomalously high thermal 

conductivity, significant change in properties such as viscosity 

and specific heat in comparison to the base fluid, features 

which have attracted many researchers to perform in 

engineering applications. The popularity of nanofluids can be 

gauged from the researchers done by scientists for its frequent 

applications and can be found in the literature [2-6]. Mixed 

convection flows or combined free and forced convection 

flows occur in many technological and industrial applications 

in nature, e.g.; solar receivers exposed to wind currents, 

electronic devices cooled by fans, nuclear reactors cooled 

during emergency shutdown and so on. The vertical channel is 

a frequently encountered configuration in thermal engineering 

equipments, for example, collector of solar energy, cooling 

devices of electronic etc. Due to its wide applications, 

numerous investigations have been done toward the 

understandings of fully developed mixed convection flow in a 

vertical channel filled with nanofluids. The case of fully 

developed mixed convection in a vertical channel filled by a 

nanofluid was solved by Grosan and Pop [7]. Das et al. [8] 

solved the problem of mixed convective magneto 

hydrodynamic flow in a vertical channel filled with 

nanofluids. Barletta et al. [9] have described a dual mixed 

convective flow in a vertical channel. Hang and Pop [10] have 

examined the fully developed mixed convection flow in a 

vertical channel filled with nanofluids. The mixed convection 

flow of a nanofluid in a vertical channel has been presented by 

Xu et al. [11]. Fakour et al. [12] have described the mixed 

convection flow of a nanofluid in a vertical channel. 

Couette flow is important flow phenomenon with respect 

to engineering applications involving shear-driven flow such 

as aerodynamic heating and polymer technology [13]. In 

particular, the study of MHD Couette flow is useful for 

acquiring a better understanding of electrostatic precipitation 

and MHD power generators [14]. Singh [15] investigated the 

effect of natural convection on unsteady Couette flow. Jha 

[16] investigated natural convection in unsteady MHD Couette 

flow. 

The aim of the present paper is to study the fully 

developed laminar mixed convection couette flow in a vertical 

channel filled with a nanofluid using the model proposed by 

Grosan [7]. Both walls of the channel are kept at constant 

temperatures and concentrations. The effects of the moving 

plate velocity, mixed convection, buoyancy ratio, Brownian 

motion and thermophoresis parameters are discussed about 

temperature and velocity distributions in the channel. 

We consider a nanofluid that steadily flows between two 

vertical and parallel plane walls. The distance between the 

walls is L . We select a coordinate system in which the x -

axis is aligned parallel to the gravitational acceleration 

vector g , but with the opposite direction (Fig. 1). 
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ABSTRACT 

The study of fully developed mixed convection Couette flow of a nano fluid between two 

vertical parallel plates, with asymmetric thermal and nanoparticle concentration 

conditions at the walls, filled by a  nanofluid has been studied. The nanofluid model used 

in this paper takes into account the lower plate moving velocity, Brownian diffusion and 

the thermophoresis effects and the analysis is based on analytical solutions. Analytical 

expressions for the fully developed velocity, temperature and nanoparticle concentration 

profiles as well as for the Nusselt and Sherwood numbers at the left wall of the channel 

are obtained and analysed.  
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Mathematical Analysis 

 

Fig 1. physical model and coordinate system 

The y-axis is orthogonal to the channel walls, and the 

origin of the axes such that the positions of the channel walls 

are y =0 and y = L , respectively. 

We consider a nanofluid that steadily flows between two 

vertical and parallel plane walls. The distance between the 

walls is L . We select a coordinate system in which the x -

axis is aligned parallel to the gravitational acceleration 

vector g , but with the opposite direction (Fig. 1). The y-axis 

is orthogonal to the channel walls, and the origin of the axes 

such that the positions of the channel walls are y =0 and 

y = L , respectively. It is assumed that the temperature and 

the nanoparticles concentration at the wall at y =0 are 

1T and
1C ,while the temperature and the nanoparticles 

concentration at the wall at y = L  are 
2T and 

2C ,respectively. It is also assumed that the values of velocity 

at the channel entrance are 
0u and lower plate velocity 

pu . 

The governing equations are: 
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and are subjected to the boundary conditions 

,pu u   
1,T T   

1C C    at   0y                          (4) 

0,u    
2T T ,  

2C C    at   y L                               (4) 

In order to determine the pressure gradient from Eq. (1), the 

mass flux conservation Q is required 
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we introduce now the following dimensionless variables: 
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We assume that, 

0 1 2( ) 2T T T  and
0 1 2( ) 2C C C  .Substituting these 

variables into Eqs. (1)-(3). We get the following ordinary 

differential equations: 
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and the boundary conditions (4) become 

(0) ,pU U  (0) 1,    (0) 1                          (10) 

(1) 0,U     (1) 1,     (1) 1                                       (10) 

along with the mass flux conservation relation (5), which 

becomes 
1

0

1UdY 
                                                                  (11) 

Where we have taken
0Q U L . 

 In the above equations, dp dx   is the pressure 

parameter, Gr is the Grashof number, Re is the Reynolds 

number and ReGr is the mixed convection parameter. 

Further, Nr is the buoyancy-ratio parameter, Nb is the 

Brownian motion parameter, Nt is the thermophoresis 

parameter, 
PU is the lower plate moving velocity, 

0T is the 

reference temperature, 
0C is the reference nano-particles 

volume fraction concentration, 
p

 is the nano-particle mass 

density, 
f

is the fluid density, ( ) fc is the heat capacity of 

the fluid, and ( ) pc is the effective heat capacity of the nano-

particle material. These parameters are given by  
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We notice that when Nr , Nb and Nt are all zero, Eqs. (7)- 

(9) involve just two dependent variables, namely U and . 

 Solution of the Problem 
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The equations (7)-(9) along with the boundary 

conditions (10) and the mass flux conservation equation (11) 

have been solved analytically. The general solution has the 

form  
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where , 1 7iA i   are constants, which are given by 
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The physical quantities of interest are the Nusselt  Nu and 

the Sherwood  Sh  numbers defined as 

Graphs 
 

Fig 2. Variation of dimensionless velocity for different 

values of Nr. 

 

 
Fig 3. Variation of dimensionless velocity for different 

values of Up 

 

Fig 4. Variation of dimensionless velocity for different 

values of Nb. 

 

Fig 5. Variation of dimensionless velocity for different 

values of Nt = 0, 1, 2.5, 5. For fixed 

values of Nb = 0.5, Nr = 100, Up = 1. 

Table 1. Comparison between 0pU   and 1pU 
 

 

Re

Gr
 

 

 

Nr  

 

 

Nt  

 

 

Nb  

  

             
 0  

          
 0  

pU = 0 pU = 1 pU = 0 pU = 1 pU = 0 pU = 1 

I.Pop Present I.Pop Present I.Pop Present 

0 0 0 0.2 12 6 2.4266 2.4266 2 2 

 0 0.2 0.2 12 6 2.9055 2.9055 1.0945 1.0945 

 5 0.2 0.2 11.2090 5.2090 2.9055 2.9055 1.0945 1.0945 

1000 0 0 0.2 -67.7723 -73.7723 2.42659 2.42659 2 2 

 0 0.2 0.2 -146.1992 -152.1992 2.90554 2.90554 1.0945 1.0945 

 5 0.2 0.2 -146.9902 -152.9902 2.90554 2.90554 1.0945 1.0945 
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Fig 6. Variation of dimensionless temperature for fixed 

values of Nt=0.5. 

 
Fig 7. Variation of dimensionless temperature for fixed 

values of Nb=0.5. 

 
Fig 8. Variation of dimensionless concentration for 

fixed values of Nt = 0.5. 

 

Fig 9. Variation of dimensionless concentration for 

fixed values of Nb=0.5. 

 

 

Fig 10. Variation of reduced Nusselt number  0  

(dashed line) and reduced Sherwood number 

 0 (full line) with respect to Nb. 

 

Fig.11. Variation of reduced Nusselt number 
 0

 

(full line) and reduced Sherwood number 

 0
(dotted line) with respect to Nt. 
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Substituting Eq. (6) into Eq. (13), we get 

(0)Nu  
, 

(0)Sh  
                (16)

    

using Eqs. (13) and (14), the expressions for the Nusselt 

and Sherwood numbers defined by Eq.(16) become 

2 4(0) ,Nu A A  
 

1 2 4(0)
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
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Results and Discussion 

In order to check the analytical solution (13), 
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 we have the Eqs. (7)-(11) using analytical method for 

some values of the governing parameters. Representative 

for a fixed value of the mixed convection parameter 

ReGr
=1000. It can be seen from Figs 2-5 increasing 

values of the buoyancy-ratio parameter Nr , the lower 

plate moving velocity pU
, the Brownian motion 

parameter
,Nb
 and the thermophoresis parameter Nt , the 

flow decelerate near the hot wall and accelerate near the 

cold wall. However, we notice the presence of the reversed 

flow near both (hot and cold) wall for large values of 

Nr (see fig.2) and Nt (see fig. 5). 

Fig.2. shows the effects of buoyancy-ratio 

parameter Nr  on velocity profile. We observed that the 

velocity increases for increasing values of the buoyancy-

ratio parameter Nr . The effects pU
 on velocity 

distribution are presented in Fig.3. From this figure we 

noticed that the velocity increases as lower plate velocity 

increases. Fig.4 depicts the effects of Brownian motion 

parameter Nb on velocity. From this figure we observed 

that the velocity increases as the values of  Nb  increasing 

in case of cooling of the plate. The effect of 

thermophoresis parameter Nt on velocity is shown in fig.5. 

It shows that the velocity increases as Nt  increases. Figs. 

6 and 7 represent the effects of Brownian motion 

parameter Nb and thermophoresis parameter Nt   on 

temperature. An increase in the values of Nb or Nt the 

temperature increases.  

Figs.8 and 9 represent the profiles of concentration 

distribution which increases with the increase of Brownian 

motion parameter Nb and decreases with the increase of 

thermophoresis parameter Nt . Finally Figs.10 and 11 

represent the variation of reduced Nusselt number 

(0)
(dashed line) and reduced Sherwood number 

(0)
(full line) with respect to Nb and Nt . These 

figures  show that the Nusselt number decreases with the 

increasing of Nb and  Nt , while the Sherwood number 

decreases with the increasing of Nb and increases with 

the increasing of Nt , which is in agreement with the 

temperature and the nanoparticle volume fraction profiles 

shown in figs 5,6,7 and 8. We notice that the reduced 

Sherwood number is more sensitive with the variation of 

the parameters Nb and  Nt than the reduced Nusselt 

number.The comparison is shown in Table 1 where a very 

good agreement is seen. Therefore, we are confident that 

the obtained results for the present problem are correct. 

The temperature is enhancing with increasing Nb or Nt . 
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