
S. Manimaran et al./ Elixir Non-Linear Dynamics 99 (2016) 43221-43224 43221 

1. Introduction 

Chua’s circuit is one of the best known and studied 

physical systems displaying chaotic behavior [1].  Its 

importance resides in allowing the investigation of a wide 

variety of non-linear phenomena using a simple experimental 

set-up.  One of its main features is that the circuit non-linearity 

is continuous and piecewise-linear, with the breakpoints 

precisely established.  This quality not only makes easier the 

theoretical analysis of the circuit properties but also makes 

more feasible the reproducibility of the experiments Chua’s 

circuit has also technological importance, being an obvious 

choice in applications where electronic chaos generation is 

needed.  One such application is secure communication 

systems. In this case it would be interesting if Chua’s circuit 

could generate not only simple chaos (which is characterized 

by a single positive Lyapunov exponent) but also hyperchaos 

(characterized by at least two positive Lyapunov exponents).  

In fact, hyperchaos makes message masking more effective by 

giving rise to more complex time series [2-3]. 

At this point it is worth nothing that to produce 

hyperchaos has been the object of increasing interest.  Its 

investigation is related to that of turbulence [4-5]. 

Theoretically discovered by Rossler, the first experimental 

detection of hyperchaos was achieved by Matsumoto et al., 

using an electrical circuit [6]. Since then, other similar 

experiments have been performed involving, e.g. electrical 

circuits, chemical reactions, semiconductors and lasers [7-10]. 

In this work we introduce a four-dimensional autonomous 

Van der Pol–Duffing oscillator circuit in order to make it 

hyperchaotic.  By just including a one inductor is parallel to 

this canonical model and designing a simple cubic non-linear 

element, we are able to realize a very simple fourth-order non-

linear dynamical system. 

Without the parallel combination of one inductor, this 

circuit exhibits the familiar period-doubling route to chaos of 

the canonical model, as the control parameter (linear resistor 

(or) linear capacitor) as varied. However, an important 

noticeable feature is that when the parallel combination of one 

inductor (L2) is included, the circuit exhibits period doubling 

route to chaos, periodic window and then hyperchaos through 

period three-doubling bifurcation, followed by boundary 

crisis. 

The organization of the paper is as follows. In sec.2, we 

present details of the experimental realization of the four-

dimensional autonomous Van der Pol–Duffing oscillator 

circuit and the occurrence of bifurcations leadings to chaos 

and hyperchaos, while in sec.3, the numerical simulation 

results of the circuit model is presented. In sec.4, we briefly 

summarize the results and suggest further improvements. 

2. Experimental realization of the four-dimensional 

autonomous Van der Pol–Duffing oscillator  

The original canonical Chua’s circuit is one of the most 

simple third-order autonomous electronic generators of 

chaotic signals. It was synthesized using four linear element 

(two capacitors, C1, C2, one inductor, L1, and resistor R) and 

two active elements (one linear negative conductor G1, and 

one cubic non-linear element namely parallel combination of 

two diodes) which can be built using off- the shelf op-amps. 

The chaotic behavior of the circuit was studied numerically, 

conformed mathematically and realized experimentally       

[11-12]. 

Varying the inductance L1, while keeping the other circuit 

parameters at constant values, one finds that the circuit admits 

period-doubling bifurcations, intermittency and chaos [12], for 

a small range of inductance L1, it also exhibits crisis induced 

intermittency [13].   
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ABSTRACT 

In this paper, we present the hyperchaotic dynamics of a four-dimensional autonomous 

Van der Pol–Duffing oscillator circuit.  This circuit, which is capable of realizing the 

behavior of every member of Van der Pol–Duffing family, consists of just four linear 

elements (inductors and capacitors), a negative conductor and a cubic non-linear element.  

The route followed is a transition from regular behavior to Chaos and then to hyperchaos 

through period three-doubling bifurcation, as the system parameter is varied.  The 

hyperchaotic dynamics, characterized by more than one positive Lyapunov exponents, is 

described by a set of four coupled first-order ordinary differential equations.  This has 

been investigated extensively using laboratory experiments and numerical analysis. 
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In spite of these varied behavior, this circuit does not 

exhibits hyperchaos, because of its limited dimensionality. 

The important requisites for hyperchaos are (i) the minimal 

dimension of phase space that embeds the hyperchaotic 

attractor should be at least four energy storage elements, 

which requires the minimum number of coupled first–order 

ordinary differential equations to be four, and (ii) the number 

of terms in the coupled equations giving raise to instability 

should be at least two, of which one should be a non-linearity 

function [14]. 

By introducing an additionally one inductor L2 in parallel 

to the negative conductor G1, the third-order canonical circuit 

it can be converted into a fourth-order autonomous electronic 

circuit and thereby made to exhibits strong hyperchaos. The 

four-dimensional autonomous Van der Pol–Duffing oscillator 

circuit satisfying the above criteria for hyperchaos is shown in 

Fig. 1. The characteristic of the negative conductance is 

mathematically represented by iG1 = G1 V2 [15-19]. The 

characteristics of the cubic non-linear element are a three 

segment piecewise linearity, closely resembling that of a 

Chua’s diode. 

Applying Kirchoff’s laws, the set of four coupled first–

order differential equations describing the circuit is obtained 

as 

1

1 2

1

2

1

1

2

2 1 2

1 2 1

2 2

L N

L L

L

L

dV
C i i

dt

dV
C G V i i

dt

di
L V V

dt

di
L V

dt

 

  

 



                      (1) 

 

Fig 1. Circuit realization of the four-dimensional 

hyperchaotic autonomous Van der Pol Duffing oscillator 

circuit. 

While V1, V2 are the voltages across the capacitors C1, C2 

and
1Li
, 

2Li
 denotes the currents through the inductances L1 

and L2 respectively.  The term  1Ni g V  representing the 

characterizes of the cubic non-linear element can be expressed 

mathematically as  

  3

1 1 1g V aV bV                          (2) 

This higher dimensional circuit is also truly canonical.  

This is because, by removing the additional inductor (L2) it 

exhibits all the behaviors reported by Chua and Lin (1991) and 

Kyprianidis (1995). When the additional inductor (L2) is 

included it exhibits a regular behavior to Chaos and then to 

hyperchaos through boundary condition. 

2.1. Experimental observations 

Route to hyperchaos via period-doubling bifurcation 

For our present experimental study we have chosen the 

following typical values of the circuit in Fig. 1(a): C1 = 10 nF, 

C2 = 33 nF and L2 = 330 mH. The negative conductance and 

the cubic non-linear element are chosen to be the same as 

those of Kyprianidis et al., (1995), namely G1 = 0.5 mS,  

a = 1.25, b = 0.85 and Bp =1.0 V. Here the variable inductor, 

L1 is assumed to be the control parameter. By increasing the 

value of L1 from 5 mH to 45 mH, the circuit behavior of Fig.1 

is found to transit from regular behavior to chaos and then to 

hyperchaotic attractor and boundary crisis, etc. When the 

value of L1 is increased from 5 mH upto 45 mH, particularly in 

the range L1 = 37.5 mH the system displays a hyperchaotic 

motion. The projected onto different planes formed by the V1, 

V2, 
1Li  and 

2Li  axes plane of simulation storage oscilloscope 

are shown in Fig. 2. Experimental time series were registered 

using a simulation storage oscilloscope for discrete values of 

C1 and C2 are shown if Fig. 3. 

The distribution of power in a signal x (t) is the most 

commonly quantified by means of the power density spectrum 

or simply power spectrum. It is the magnitude-square of the 

Fourier transform of the signal  x t . It can be detect the 

presence of hyperchaos when the spectrum is broad-banded. 

The power spectrum corresponding to the voltages  1V t  and 

 2V t  waveforms across the capacitors C1 and C2 for the 

hyperchaotic regimes is shown in Fig. 4 which resembles 

broad-band spectrum noise. 

3. Numerical Simulations 

For a convenient numerical analysis of the experimental 

system given by Eqns. (1) we rescale the parameters as  
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 and then redefine  as T. Then the normalized 

equation of the four-dimensional autonomous Van der Pol–

Duffing oscillator circuit (Fig.1) is 
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Where   3

1 1 1 2 1g x x x                           (4) 
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(b) 

 

(c) 

 

(d) 

Fig 2. Simulation results of the projections of hyperchaotic 

attractor onto different planes. 

 

Fig 3.  Simulation results of the hyperchaotic time series at 

fixed range of control parameter of L1 = 37.5 mH. 

 

Fig 4. Simulation results of the hyperchaotic power 

spectrum at fixed range of control parameter of L1 = 37.5 

mH. 

 

Fig 5. Hyperchaotic region observed from the circuit of 

Fig. 1. Projection onto different planes. 

 

 Fig 6. Numerical results of the hyperchaotic time series at 

fixed range of control parameter of L1 = 37.5 mH. 

 Fig 7(a). For the normalized Eq. (3): One parameter 

bifurcation diagram in the (L1 − x2) plane at fixed range 

of control parameter of L1 = (5 mH, 45 mH). 

Fig 7(b). or the normalized Eq. (3): Two largest Lyapunov 

exponents versus L1 for two rajectories in the (L1− λ1, λ2) 

plane. 

 

Fig 8. Blow-up of a part of the corresponding Lyapunov 

spectrum of Fig. 7(b).
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As seen in Eqns. (3) and (4) can exhibits chaos and 

hyperchaos due to the existence of the nonlinear term  1g x  

which is a piecewise-linear function with three segments. The 

dynamics of Eqns. (3) and (4) now depends upon the 

parameters
1 2α ,α ,υ, γ,β , a = 1.25, b = 0.85 and V = 1. The 

experimental results have been verified by numerical 

simulation of the normalized Eqns. (3) and (4) using standard 

Runge-Kutta integration routine for a specific choice of 

system parameters employed in the laboratory experiments. 

That is, in the actual experimental setup the inductor L1 is 

increased from 5 mH to 45 mH. Therefore, in the numerical 

simulation, we study the corresponding Eqns. (3) and (4) for 

L1 in the range L1 = (5 mH, 45 mH). When the value of L1 is 

increased be high, particularly in the range L1 = 37.5 mH the 

system displays a hyperchaotic motion. The projection of 

hyperchaotic attractors onto different planes are shown in Fig. 

5. In Figure 6. Shows the numerical hyperchaotic time series 

was registered using a discrete value of ‘L1’ serving as the 

control parameter. It is gratifying to note that the numerical 

results agree qualitatively very well with that of the 

experimental simulation results. 

3.1. One parameter bifurcation diagram and Lyapunov 

exponents 

The main features of the four-dimensional autonomous 

Van der Pol–Duffing oscillator circuit can be summarized in 

the one parameter bifurcation diagram drawn in the (L1 − x2) 

plane (Fig. 7 (a)). Note that x2 is the rescaled variable in Eqns. 

(3), x2 = V2/V. This bifurcation diagram clearly indicates that 

in the region L1 = (5 mH, 45 mH) the system undergoes period 

three-doubling bifurcation sequence to chaos, shows periodic 

windows through hyperchaotic region are observed in Fig. 1 

The Lyapunov exponent’s λ1, λ2, λ3 and λ4 were obtained 

using the Wolf algorithm. For periodic orbits λ1 = 0, λ2, λ3, λ4 < 

0, for quasi-periodic orbits λ1 = λ2 = 0, λ3, λ4 < 0, while for 

chaotic attractor λ1 > 0, λ2 = 0, λ3, λ4 < 0 and for hyperchaotic 

attractor λ1 > λ2 > 0, λ3 = 0, λ4 < 0. The Lyapunov spectrum in 

the (L1 − λ1, λ2) plane, that is the first two maximal Lyapunov 

exponents versus fixed range of the control parameter as L1 is 

increased, is shown in Fig. 7 (b). This correlates to the 

bifurcation diagram, Fig 7 (a). In the range (45 mH > L1 > 5 

mH) the system exhibits periodic windows with no positive 

Lyapunov exponent. When L1 is increased further in the range 

(45 mH > L1 > 5 mH), the system becomes chaotic with a 

single positive Lyapunov exponent (λ1). 

The chaotic nature is also characterized by a single 

positive Lyapunov exponent (λ1). It is quite fascinating to look 

at the window region in the range (45 mH > L1 > 5 mH), 

which corresponds to an entirely different dynamical behavior. 

It has been observed that for L1 > 5 mH the attractors of the 

system are in any one of the smooth regions of the piecewise 

segments. Correspondingly, the attractors exhibit one of the 

generic types of bifurcations, namely period-doubling, saddle-

node, or hopf-bifurcations. A section of the bifurcation 

diagram and the Lyapunov spectrum for the range   45 mH > 

L1 > 5 mH are shown in Figs. 7 (a) and 7 (b), respectively, for 

clarity. The Lyapunov spectrum in the (L1−λ1, λ2) plane, that is 

the first two maximal Lyapunov exponents versus fixed range 

of the control parameter as L1 is increased, 

is shown in Fig. 8. For the hyper chaotic 

attractor shown in Fig. 7 (b) for L1 = 37.5 mH the Lyapunov 

exponents are λ1 = 0.05962, λ2 = 0.0089, 

λ3 = −0.00024 and λ4 = −4.54853.  

4. Conclusions 

It appears that the four-dimensional autonomous Van der 

Pol–Duffing oscillator circuit presented in this paper is one of 

the simplest fourth-order systems reported so far.  Its 

simplicity arises from the fact that (i) the negative 

conductance is a simple op-amp impedance converter, (ii) the 

cubic non-linear element is synthesized from parallel 

combination of two diodes and (iii) the circuit equations are 

the most simple because of the inclusion of the inductor (L2) is 

connected in parallel to the canonical Chua’s circuit. When the 

value of L1 is increased from 5 mH upto 45 mH, particularly in 

the range L1 = 37.5 mH the system displays a hyperchaotic 

motion. The projected onto different planes formed by the V1, 

V2, 1Li  and 2Li  axes plane of simulation storage oscilloscope. 

The attractive feature of this circuit is the presence of strong 

hyperchaotic attractor over a range of parameter values, which 

might be useful for applications in controlling chaos and in 

secure communications.   

It is of further interest to study these aspects also in this 

system as well as the torus breakdown route to chaos and 

synchronization of coupled hyperchaotic circuits of the present 

system of improved high security communication systems etc.  
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