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1. Introduction  
A good illustration method of a finite sequence, which is used to measure the randomness, was developed in the 1970s. 

Lempel and Ziv in [1] justified using the shortest length of Linear Feedback Shift Register (LFSR) models to measure the 

unpredictability of the sequences. Since LFSRs are easy to implement by hardware and fast to process, they were often 

recommended to be the pseudorandom sequences generators. Mainly, because of the adoption of LFSRs in stream ciphers, 

cryptographers and mathematicians used thorough mathematical theory to analyze their security. Also because LFSRs are linear 

devices, the linear complexity is an important concept to determine the security levels of stream ciphers (for other complexity 

measurements such as higher-order complexity, 2-adic complexity measures and complexity measures based on pattern counting, 

one could refer to [2]). And the linear complexity profile is also a good tool to measure the randomness of generated sequences.  

The randomness and complexity properties of these sequences are vital in some applications where security is an issue. Large 

linear complexity (also known as linear span) of the sequence is required to prevent it from being reconstructed from a subset of 

the sequence, for example, using the Berlekamp-Massey algorithm. With the exception of [3], the sequences in these sets are 

obtained from sequences of powers of primitive elements in fields of characteristic 2 by algebraic manipulations. As a 

consequence, the sequences all have periods of the form  (or, in the case of sequences obtained from the duals of 

nonprimitive BCH codes, period dividing ) and the sizes of the sets are rather restricted. In literature, comprehensive 

research has been performed on how to generate sequences with these desired properties, some representative examples can be 

found in [4] and references therein. 

A detailed characterization of a class of homomorphisms between de Bruijn digraphs of different orders with a property D 

that can be used to construct de Bruijn cycles recursively. For two positive integers n and k, property D allows a recursive 

construction of de Bruijn cycles that the inverse of a factor in a lower order de Bruijn graph, , is a factor in a higher order de 

Bruijn graph, , of the same alphabet, q, which generalized a well-known binary construction of Lempel is discussed in 

[5]. There are three standard test batteries for empirically estimating random number quality: Diehard, STS, and Rabbit (in 

TestU01) test suites to test the randomness properties of binary sequences. It is shown in [6] that sequences generated recursively 

from de Bruijn graphs pass these test suites. It is also found that such sequences exhibit good autocorrelation and cross correlation 

properties [7].   

In this correspondence, we discuss and illustrates set of pseudorandom binary sequences from de Bruijn graphs. Linear 

complexity of the binary sequences so generated is determined using Massey - Berlekamp algorithm [8] and results are analyzed. 

It is shown that such sequences exhibit large linear complexity which is desirable characteristics of random sequences required for 

key sequences in stream cipher systems. Section 2 contains a brief description of de Bruijn graphs we need, and reviews a novel 

method to generates pseudorandom binary sequences, which relies on D-homomorphism between de Bruijn digraphs of different 

orders. Section 3 describes necessary concepts and measures used to quantify linear complexity of the generated binary sequences. 

Section 4 analyzes and gives results. Finally, Section 5 gives conclusion. 

2. Pseudorandom Binary Sequences from de Bruijn Graphs 

The main graphical tool used in the study of de Bruijn sequences are de Bruijn digraphs. Besides its use in the context of the 

de Bruijn sequences, they are also used as models for transportation networks, DNA algorithms, and computer networks to 

mention a few. The properties of de Bruijn digraphs are well discussed in [9, 10]. 
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A homomorphism H between two digraphs 
1G and 

2G is a function that preserves the structure of the digraph. That is, if 

),( 21 xx is an edge in 
1G then ),( 21 HxHx  is also an edge in 2G . For two positive integers n and k, [5] characterizes such 

homomorphisms and describes a family of homomorphisms from )(qB kn
 to )(qBn

 whose inverse assigns to an arbitrary vertex 

disjoint path in )(qBn
 a constant number, kq , of non-overlapping preimage paths in )(qB kn

. We will say that such a 

homomorphism enjoys property D or simply is a D-homomorphism. The following theorem is proved in [7] and they characterize 

D-homomorphisms between binary de Bruijn digraphs. 
 

Theorem 2.1 

A necessary and sufficient condition for a homomorphism 
knD ,
 from )2(knB 

 to )2(nB to have property D is that 

12111 ),...,(),...,(   kkkk xxxhxxxd , where ),...,( 2 kxxh is any Boolean function of k − 1 variables. 

 

The method relies on D-homomorphisms between de Bruijn digraphs of different orders that were defined above. Thus, we 

treat the backbone generator as a cycle in a binary de Bruijn digraph )2(nB . The inverse of the backbone generator by a D-

homomorphism makes a large number of inverse sequences that all have the same size as the original cycle, where the former are 

regarded as paths in the higher order de Bruijn digraph. The method is based on mapping one generalized shift register sequence 

to many distinct sequences, using the inverse of a well designed homomorphism between two de Bruijn digraphs of different 

orders developed in [11]. The significance of the produced sequences is that they are all of the same length as the original, and no 

sequence of consecutive numbers of a certain prescribed length is common to any two sequences produced. 

 

3. Linear Complexity 

Complexity measures of sequences are very much useful in the security analysis of stream ciphers and other applications. 

Periodic sequences should satisfy certain criteria for the suitability as keystream sequences in stream ciphers. One condition for 

suitability is that it should be very hard to reproduce the entire keystream from the knowledge of a portion of it. Another criteria is 

that the sequence must belong to a large class of sequences possessing similar behavior in a suitable sense.  

The linear complexity of a sequence is not only a measure of unpredictability for suitability in cryptographic applications, but 

also of interest in information theory. It is an important complexity measure in the system theoretic approach to stream ciphers. 

The linear complexity L(S) of an ultimately periodic sequence S defined over a finite field of prime order, 
qF , is defined as the 

length of the shortest LFSR that generates the sequence S. In other words, it is the least order of a linear recurrence relation over 

qF  which generates S. 

The linear complexity of a finite sequence is determined using Massey-Berlekamp algorithm [8] which is described as 

follows: 
 

Algorithm 

Input:  

 A binary sequence 
1210 ,...,,,  nssssS of length .n  

Output:  

 The linear complexity )(SL of .)(0, nSLS   

 Step 1: 

 Initialization. .0,1)(,1,0,1)(  NDBmLDC  

 Step 2:  

 While (N < n) do the following: 

  Compute the next discrepancy d:  

  
.2mod)(

1  
L

i iNiN scsd
 

  If d = 1 then do the following: 

  .).()()(),()( mNDDBDCDCDCDT   

  If 2/NL  then ).()(,,1 DTDBNmLNL   

  .1NN  

 Return (L). 

 

Let ,....,, 321 sssS   be an arbitrary sequence of elements defined over , for any integer n , Sn 1 , the nth linear 

complexity )(SLn
 of S is the length of the shortest LFSR that generates the first n terms of S. In terms of linear recurrence 

relation, it is the least order of a linear recurrence relation over  that generates S. Then 0 ≤  ≤ n and   ≤  .  

 

Thus, we can define the linear complexity of an ultimately periodic sequence S in terms of  as 

)()(   1    SLSupSL nn  . 

Some properties of linear complexity of binary sequences are given in the following remark [8]. 
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Remark 

Let S and T be binary sequences. Then 

a. For any n ≥ 1, the linear complexity of the subsequence nS  satisfies nSL n  )(0 . 

b. 0)( nSL  if and only if 
nS is the zero sequence of length n. 

c. nSL n )(  if and only if 1,0,...,0,0,0nS . 

d. If the sequence S is periodic with period N, then NSL )( . 

e. )()()( TLSLTSL  , where TS  denotes the bitwise XOR of the sequences S and T. 

 

To study the statistical performance of the linear complexity of produced sequences, we calculate the Mean, Standard 

deviation, and Variance of linear complexity. Some of the basic concepts and definitions about Mean, Standard deviation, and 

Variance we introduce in this section can be found in [12, 13]. 
 

Mean 

The mean of a numerical variable is computed as the sum of all of the observations divided by the number of observations. 

Let 
nLLLL ,,,, 321  be n linear complexity values of n sequence of the same length. Thus, the mean value or the average, denoted 

by  , of linear complexity is defined as follows: 





n

i

iL
n 1

1


 

The mean is a common way to measure the center of a distribution of data. 
 

Standard deviation and Variance 

The mean describe the center of a data set, but the variability in the data is also important. Thus, we introduce two measures 

of variability: the variance and the standard deviation. Variance of a random variable L , denoted by 2 , is defined as follows: 





n

i

iL
n 1

22 )(
1


 

The variance is roughly the average squared distance from the mean. The standard deviation is the square root of the variance. 

The standard deviation is useful when considering how close the data are to the mean. A low standard deviation shows that the 

values are very close to the mean, whereas high standard deviation shows that the values are spread out over a large range of 

values, around the mean. 

 

4. Analysis and Results 

We now consider the parallel inverse images obtained in [6] as the six different backbone sequences each for sequence of 

lengths of 64bits, 128bits, 256bits, 512bits and 1024bits, i.e., they are of orders 6, 7, 8, 9, and 10 respectively. The linear 

complexities of the produced six sequences are computed using an Online Calculator of Berlekamp-Massey Algorithm developed 

by Bo Zhu [14].  

The statistical performance of linear complexity is obtained by finding  its mean, standard deviation, and variance after the 

linear complexities of six sequences are calculated. The results are given in Table 4.1. 
 

Table 4.1. Linear Complexity of the produced binary sequences from de Bruijn graphs. 
Sequence Order 6 Order 7 Order 8 Order 9 Order 10 

1 32 64 128 256 512 

2 32 65 128 257 513 

3 34 62 129 256 514 

4 33 66 128 256 512 

5 32 64 129 254 514 

6 31 63 128 256 513 

Mean 32.33333 64 128.3333 255.8333 513 

Variance 1.066667 2 0.266667 0.966667 0.8 

Standard Deviation 1.032796 1.414214 0.516398 0.983192 0.894427 
 

We observed that the mean linear complexities for sequences of order 6, 7, 8, 9, and 10 are 32.3333, 64, 128.3333, 255.8333, 

and 513 respectively. And, the corresponding variances are 1.0667, 2, 0.2667, 0.9667, and 0.8000 respectively. While the 

corresponding standard deviations are given as 1.0328, 1.4142, 0.5164, 0.9832, and 0.8944 respectively. 

Clearly, the above results show that the linear complexity value is increasing with the order of the sequence and tends to n/2, 

where n is the sequence length. While, the values of variance and standard deviation are low.  
 

Now, we use Chebychev inequality to obtain bounds on the probability of linear complexities of the sequences. The following 

theorem is proved in [12] and is related to the idea that the variance of a random variable is a measure of how spread out its 

distribution is. 
 

Theorem 4.1 (Chebyshev Inequality).  

Let L be a random variable with mean )(LE and variance )(2 LVar . Then for every number k > 0, 
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,)Pr( 2

2

k
kL   i.e., )Pr( kL  is the probability that L lies outside the range ).()( kLk    This 

probability is always less than or equal to .2

2

k

  

Conversely, the above inequality can be restated as follows: For every number k > 0, ,1)Pr( 2

2

k
kL    

i.e., )Pr( kL  is the probability that L lies inside the range ).()( kLk    This probability is always greater than 

or equal to .1 2

2

k

  

 

If we let k = 9, then the bound on the probability of linear complexity L lying inside the range )9()9(   L for all 

the orders are given in Table 4.2. 
 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

The set of pseudorandom binary sequences obtained from de Bruijn graphs which is based on mapping one generalized shift 

register sequence to many distinct sequences by using the inverse of a well designed homomorphism between two de Bruijn 

digraphs of different orders results in sequences with large linear complexity determined using Massey- Berlekamp algorithm. 

The statistical behaviour of the linear complexity of produced sequences was study by calculating the Mean, Standard 

deviation, and Variance of linear complexity. Six sequences for each orders 6, 7, 8, 9, and 10 with corresponding sequence lengths 

of 64 -, 128 -, 256 -, 512 -, and 1024 - bits respectively are investigated and analyzed. 

We observed from Table 4.2 that the probability that the linear complexity L differ by mean value by 9, i.e., the probability 

that linear complexity L is lying inside the range (256 ± 9) is always greater than or equal to 0.9967. 
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Table 4.2. Statistical results for the produced binary sequences of orders 6, 7, 8, 9 ,and 10 with corresponding lengths of 

64bits, 128bits, 256bits, 512bits and 1024bits respectively. 

 Order 6 Order 7 Order 8 Order 9 Order 10 

Mean,   32.33333 64 128.3333 255.8333 513 

Variance,
2  

1.066667 2 0.266667 0.966667 0.8 
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2

2

11)Pr(  
k

kL  
0.9868 0.9753 0.9967 0.9881 0.9901 

 

 

 


