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Introduction 

Bose [1] introduced the concept of resolvability and affine resolvability. The concept of resolvability and affine resolvability 

was generalized to  - resolvability and affine - resolvability by Shirkhande and Raghavarao [2]. The concept of  - resolvability 

was further generalized to (1, 2, …..,t) resolvability by Kageyama [3] in 1976. A block design is said to be (1, 2, …..,t) – 

resolvable if the blocks can be separated into t sets of mi ( ≥ 2) blocks such that the set consisting of mi blocks contains every 

treatment exactly αi (≥1) times, i.e. the set of mi blocks form a αi - replication set of each treatment (i = 1, 2, …t). Later different 

methods of construction of resolvable and affine resolvable designs have been given in the literature like, Bailey et al. [4], 

Banerjee et al. [5], Caliński et al.[6], Kageyama [7]-[10],  Kageyama et al.[11], [12], Rai et al. [13], Rudra et al. [14], Mukerjee et 

al. [15], Agrawal et al. [16]. 

Let us consider v treatments arranged in b blocks, such that the j
th

 block contains kj experimental units and i
th

 treatment 

appears ri times in the entire design, i = 1, 2, ...,v ; j = 1, 2, …, b. For any block design there exist a incidence matrix ][ ijnN   of 

order bv , where 
ijn denotes the number of experimental units in the j

th
 block getting the i

th
 treatment. When 

ijn = 1 or 0  i and 

j, the design is said to be binary. Otherwise it is said to be nonbinary. In this paper we consider binary block designs only. The 

following additional notations are used   '
21 ,....., bkkkk  is the column vector of block sizes,   '

21 ,.....,, vrrrr 
 
 is the column 

vector of treatment replication, bbK diag  bkkk ,....., 21 , vvR diag  vrrr ,.....,, 21 ,  ir  jk ,n  the total number of 

experimental units, with this rN b 1 and kN v 1' , where 1a is the a×1 vector of ones. 

A balanced incomplete block design is an arrangement of v symbols (treatment) into b sets (blocks) such that (i) each block 

contains k(v) distinct treatments; (ii) each treatment appears in r(  λ)  different blocks and (iii) every pair of distinct treatments 

appears together in exactly λ blocks. Here, the parameters of balanced incomplete block design (v,b,r,k,λ) are related by the 

following relations vr = bk, r (k-1)=λ (v-1) and b ≥ v (Fisher’s inequality).  

In many experimental situations, it is a severe restriction that all blocks in the experiment are of the same size. Variance 

Balanced (VB) designs forms a class of designs that are flexible extensions to balanced incomplete block designs. They provide 

the ability to design an experiment with equal precision among all pairwise comparisons, without being restricted to equal block 

size and equal replication of the treatments.  

The importance of VB designs in the context of experimental material is well known as it yields optimal design apart from 

ensuring simplicity in the analysis. Many practical situations demand designs with varying block sizes (Pearce [17]), or resolvable 

VB designs with unequal replications (Kageyama [18], Mukerjee and Kageyama [19]). 

Rao [20] gave the necessary and sufficient condition for a general block design to be variance balanced. The concept of 

efficiency balanced was introduced by Jones [21] and the nomenclature “Efficiency Balanced” is due to Puri et al. [22] and 

Williams [23].The importance of variance-balance and resolvability in the context of experimental planning is well known; the 

ARTICLE INFO   

Article  history:  

Received: 24 September 2016; 

Received in revised form: 

24 October 2016; 

Accepted: 01 November 2016;

 
Keywords  

Balanced incomplete block 

design,  

α -Resolvable design,  

Affine resolvable design, 

Variance balanced designs, 

Efficiency balanced designs,  

Universal optimal designs,  

Factorial designs. 

 

Some Results on Universal Optimality of Resolvable Designs with 

Unequal Block Sizes 
Bharti Agrawal and Shakti Banerjee   

School of Statistics, Devi Ahilya University, Indore, India. 

 
ABSTRACT 

The optimality of the variance and efficiency balanced affine resolvable designs and 

resolvable designs with unequal block sizes has been checked and found it to be universal 

optimal. A method of constructing variance and efficiency balanced (1, 2, …..,t) 

resolvable balanced incomplete block design with unequal block sizes is also proposed 

using 2
n
-symmetrical factorial designs. Further, it is proposed that the designs 

constructed are universal optimal as well.                                                           

                                                                                                       © 2016 Elixir All rights reserved. 

 

Elixir Statistics 100 (2016) 43360-43370 

Statistics 
 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 

Tele:   

E-mail address: profbhartiagrawal@gmail.com 

         © 2016 Elixir All rights reserved 



Bharti Agrawal and Shakti Banerjee / Elixir Statistics 100 (2016) 43360-43370 43361 

former yields optimal designs apart from ensuring simplicity in the analysis and the latter is helpful among other respects, in the 

recovery of interblock information. For the definition of variance balanced, efficiency balanced and factorial experiments along 

with their properties, refer, Dey [24] and Raghavarao [25]. 

In a given class of designs, one should attempt to choose a design which is good according to some well defined statistical 

criterion. This has led to the study of optimality of experimental designs. Optimal designs are experimental designs that are 

generated based on a particular optimality criterion and are generally optimal only for a specific statistical model. The optimality 

of a design depends on the statistical model and is assessed with respect to a statistical criterion, which is related to the variance 

matrix of the estimator. 

Kiefer [26] introduced Balanced Block Designs (BBD) as a generalization of Balanced Incomplete Block (BIB) designs and 

proved the A-, D- and E-optimality of BBD’s in D (v, b, k), where D (v, b, k) is the class of all connected block designs with v 

treatments, b blocks, and constant block size k. 

Let Cp denote the class of all acceptable designs with reference to P. Cp consists of only connected designs. For any design d 

Cp; let Vd denote the dispersion matrix, using d. Then 

A- optimality A design d
*
  Cp is said to be A-optimal in Cp  if tr (Vd

*
) ≤ tr (Vd) i.e. A-optimality criterion seeks to minimize the 

trace of the inverse of the information matrix. This criterion results in minimizing the average variance of the estimates of the 

regression coefficients. 

D- optimality A design d
*
  Cp  is said to be D-optimal in Cp if det (Vd

*
) ≤ det (Vd ) i.e. D-optimality criterion seeks to minimize 

|(X'X)
-1

|, or equivalently maximize the determinant of the information matrix X'X of the design. 

E- optimality A design d
*
  Cp  is said to be E-optimal in Cp if max (λd

*
 ) ≤  max (λd )  i.e. E-optimality criterion seeks to 

maximizes the minimum eigen value of the information matrix. 

In fact Subsequently, Kiefer [27] proved the stronger result regarding the optimality of balanced block designs, by 

introducing the concept of universal optimality of BBD’s in D (v, b, k). The original concept of universal optimality in Kiefer [33] 

dealt with information matrices with zero row and column sums. 

Let Cd be the C-matrix of a design d. An optimality criterion is a function : Rv  ( ) , where Rv  is the set of ν × ν non-

negative definite matrices with zero row and column sums. A design d* is called  – optimal if it minimizes  ( Cd
* 

) over the 

class of competing designs. A design is said to be universally optimal if  satisfies, 

(i)  is convex. 

(ii)   is non-increasing in the scalar b ≥ 0. 

(iii) is invariant under any simultaneous permutation of rows and columns of C. 

Kiefer [27] obtained a sufficient condition for universal optimality. He proved that the balanced block design (if it exists) is 

universally optimal in the class of all connected designs. If a design is universally optimal then it is A-, D- and E-optimal as well 

and a vice a versa. 

Although a considerable amount of work is available on optimality of designs in D (v, b, k), not much appears to have been 

done on the optimality of designs with unequal block sizes, except by Lee and Jacroux [28-30], Dey and Das [31], Gupta and 

Singh [32], Gupta et al. [33]. 

Kageyama [34] gave the construction method of obtaining affine resolvable variance balanced deigns with unequal block 

sizes by using incidence matrices of known affine resolvable balanced incomplete block designs. Further, Agrawal et al. [35] 

proposed that these constructed designs are efficiency balanced as well. In this paper we proposed that those constructed affine 

resolvable variance and efficiency balanced design with unequal block sizes leading to the universal optimal designs. We have 

also proposed construction methods (1, 2, …..t)-resolvable variance and efficiency balanced designs by using 2
n
-symmetrical 

factorial designs. Further, we proposed that the designs constructed are universal optimal as well.  

2. Method of Construction of Design Matrix-I 

The construction method of obtaining affine resolvable variance balanced deigns with unequal block sizes by using incidence 

matrices of known affine resolvable balanced incomplete block designs were given by Kageyama [34]. The following result is 

from Kageyama [34] 

Proposition 2.1 

 The existence of an affine resolvable balanced incomplete block design D with parameter v = 2k, b = 4k-2, r = 2k-1, k, λ = k-

1 implies the existence of an affine resolvable efficiency balanced block design with unequal block sizes and parameter v* = 4k, b* 

= 6k, r* = 2k+1, kj* = 2 or v, q1l =1(1,…r*), q2l = k(l=3,…r*), qll’ = k(l≠l
’
=3,….r*) and η* = 2k. 

Further, Agrawal et al. [35] proposed that the designs constructed by Kageyama [34] are efficiency balanced as well. The 

following result is from Agrawal et al. [35] 

Proposition 2.2 

The existence of an affine resolvable balanced incomplete block design D with parameter v = 2k, b = 4k-2, r = 2k-1, k, λ = k-1 

implies the existence of an affine resolvable efficiency balanced block design with unequal block sizes and parameter v* = 4k, b* = 

6k, r* = 2k+1, k1* = 2, k2* = 2k, λ* = k, qll = 0(l=1,…,r*), q1l =1(1,…r*), q2l = k(l=3,…r*), qll’ = k(l≠l
’
=3,….r*) and μ*=1/(2k+1). 

In this section we are checking the universal optimality of these designs. 

Theorem 2.3 

The variance and efficiency balanced affine resolvable designs with unequal block sizes given in Kageyama [34] and 

Agrawal et al. [35 ] are universal optimal. 

Proof 

The C-matrix of affine resolvable designs with unequal block sizes given by Kageyama [34] and Agrawal et. al [35] is 
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Let η1, η2, η3,…., η(v-1) be non-zero eigen values of C matrix of the resultant design D . As we know that for variance balanced 

design there will be only one non-zero eigen value with multiplicities (v–1) of C matrix of design D. That is,  η1 = η2 = η3 =….=  

η(v-1) = η =2k, as C– matrix is positive semi-definite. Therefore, 


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Where, η is unique non-zero eigen value of C-matrix with multiplicity (v-1). The trace of the C-matrix of design D* is  

tr (C) = tr (R - NK
-1

N 
‘ 
) = η

 
(v - 1). Then 

A-Optimality 

The design is A-Optimal, since the inequality 
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Holds true, which is the required condition of a variance balanced design to be A-optimal, with equal replication and unequal 

block sizes. Thus the variance and efficiency balanced design constructed is A-optimal. 

D-Optimality  

The design is D-Optimal, since the inequality 
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Holds true, which is the required condition of a variance balanced design to be D-optimal, with equal replication and unequal 

block sizes. Thus the design constructed is D-optimal.  

E-Optimality 

The design is E-Optimal, since the inequality 

)1(

)(
)(




v

Ctr
Min i

 

Holds true, which is the required condition of a variance balanced design to be E-optimal, with equal replication and unequal 

block sizes. Thus the design constructed is E-optimal.  

Since, the variance and efficiency balanced affine resolvable balanced incomplete block design with unequal block sizes 

given by Kageyama [36] and Agrawal et. al [37] are A, D and E-Optimal. Hence the constructed design is the universally optimal. 

Example 2.4 

Consider a variance and efficiency balanced affine resolvable balanced incomplete block design with unequal block sizes and 

parameters v* = 8, b* =12, r* =5, k1* =2, k2* =4, λ*=2, η*=4 and μ* =1/5. The incidence matrix of the design is given as follows  
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C- matrix for the incidence matrix given above can be written as 
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Further, it is simplified as 

C = 4[I8 -  1v1v’] 

The trace of C matrix is comes out to as 28 and non-zero eigen value of C matrix is η
*
=4 with multiplicity 7. 

I) Checking A- Optimality  

Here, the inequality 
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Holds true and hence the design is A-optimal.  

II) Checking D-Optimality  
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Holds true and hence the design is D-optimal.  

III) Checking E-optimality  

Here, the inequality 
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Holds true and hence the design is E-optimal. Since, the constructed affine resolvable design with unequal block sizes is A, D 

and E-Optimal. Hence the constructed design is the universally optimal. 

3. Method of Construction of Design Matrix-II 

Let as consider a 2
n
-factorial design (n ≥ 4). There are 2

n
-treatment combinations and n-main effects are there in the design. 

Now delete the control treatment (i.e. a treatment combination whose level of all factor is zero), highest order treatment 

combination (which is of less importance in estimation point of view) and n- main effects (i.e. a treatment combination, where 

level of one factor is one while level of other factor are zero), which is of less importance as the block size is one. Thus we get 2
n
-

(n+2) treatment combinations. Now consider these 2
n
-(n+2) treatment combinations as blocks for the required design with unequal 

block sizes.  

Theorem 3.1 

The existence of 2
n
-symmetrical factorial experiment implies the existence of equireplicated variance and efficiency balanced 

(1, 2, …..t)-resolvable designs with unequal block sizes, having the parameters 

v
* 
= n, b

* 
= 2

n
-(n+2), r

* 
= 2

n-1
-2, k

* 
= [2,2,…,2;3,3,…,3;4,4,…,4;…..n-1,n-1,…,n-1] and λ

* 
= 2

n-2
-1 

Proof 

Consider 2
n
-symmetrical factorial experiment. This has 2

n
 treatment combinations in all. Considering “n” factors as rows and 

2
n
- treatment combinations as columns. Now deleting the control treatment, highest order treatment combinations and n-main 

effect treatment combinations, we get the 2
n
-(n+2) treatment combinations (which are treated as blocks); then  incidence matrix N

*
 

of the resultant design D
*
 with unequal block sizes is given as 
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n
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Since we have considered rows as treatments and columns as blocks. In N
*
 there are v
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 = n treatments and b
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Here in the present construction method on pooling all i-factor interaction (i=2,3,.…,n-1) treatment combinations, the 

resultant design is (1, 2, …..t)-resolvable design with unequal block sizes in each resolution set. 

Now calculation of variance and efficiency can be done as follows 

A block design is said to be variance balanced iff 
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; where m = 1,2,…..,(n-2)                                                         (5)                                                  

Hence the incidence matrix defined in (1) of design D
*
 gives equireplicated variance balanced design with unequal block 

sizes.  

We know that M-matrix is defined as  

M  =  I - R
-1

C                                                                                (6) 

After simplification we get 
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Since MJ = J, where J is the unit vector of order (v×1). Also M matrix is given as  
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i
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Where µ
*
 is the loss of information, I is the identify matrix of order (v×v), Jv is the unit vector of order (v×1) and 

i

ir
* is the 

total number of experimental units. On simplification we get 
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Comparing (7) and (9) we get, 
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Where θ is defined in (4). Thus the design is efficiency balanced with unequal block sizes. 

Theorem 3.2 

The variance and efficiency balanced (1,2,…..,t)-resolvable balanced incomplete block designs with unequal block sizes 

given in Theorem 3.1 are universal optimal. 

Proof 

The C-matrix of the design is defined as below 
'1NNKRC   

Let η1, η2, η3,…., η(v-1) be non-zero eigen values of C matrix of the resultant design D given in Theorem 3.1. In the 

construction method given above, the C-matrix is 
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Since the design constructed is variance balanced. Therefore, its C-matrix is given as 
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Also we know that for the resultant variance balanced design, there will be only one non-zero eigen value with multiplicities 

(v–1) of C-matrix. That is, η1 = η2 = η3=….= η(v-1) = η, as C– matrix is positive semi-definite. The trace of the C-matrix of design D 

is tr (C) = tr (R - NK
-1

N
 ‘
 ) = η

 
(v-1). Then 

A-Optimality 

The design is A-Optimal, since the inequality 
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Holds true, which is the required condition of a variance balanced design to be A-optimal, with equal replication and unequal 

block sizes. Thus the design constructed here is A-optimal.   

D-Optimality 

The design is D-Optimal, since the inequality 
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Holds true, which is the required condition of a variance balanced design to be D-optimal, with equal replication and unequal 

block sizes. Thus the design constructed here is D-optimal.  

E-Optimality 

The design is E-Optimal, since the inequality 

)1(

)(
)(min




v

Ctr
i

 

Holds true, which is the required condition of a variance balanced design to be E-optimal, with equal replication and unequal 

block sizes. Thus the design constructed here is E-optimal.  

Since, the constructed variance and efficiency balanced (1,2,…..,t)-resolvable balanced incomplete block design with 

unequal block sizes is A, D and E-Optimal and hence the constructed design is the universally optimal. 

Example 3.3 

Let n = 5, then in 2
5
-factorial design after deleting the control treatment, highest order treatment combinations and n-main 

effect treatment combinations; theorem 3.1 yields a (4,6,4)-resolvable  variance and efficiency balanced design with unequal block 

sizes and parameters 
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The incidence matrix N
*
 of the resultant design is given below 
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Obviously the design satisfies the conditions of (1,2,…..,t)-resolvable balanced incomplete block design. Hence the design 

is (4,6,4)-resolvable balanced incomplete block design.  

The C-matrix for the incidence matrix given above can be written as 
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Also we know that 
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Where η
*
 is the unique non – zero eigen value of the C-matrix with multiplicity 4.  

Comparing (11) and (12)  

4
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Thus the design is variance balanced. 

Now the M matrix of the above design is given as 
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Obviously this matrix satisfies the condition of efficiency balanced design i.e. MJ = J; where J is the ν×1 vector of ones. The 

efficiency factor is calculated using the formula 

  ,**** /)1( vv
i

iv JrJrIM 







 

         (14) 

On simplification we get 
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Equating (13) and (15), we get 
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Thus the design if Efficiency balanced. 

The trace of C-matrix given in (11) is comes out to as 45 and non-zero eigen value of C-matrix is 45/4 with multiplicity 4.  

I) Checking A- Optimality  

Here, the inequality 
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Holds true and hence the design is A-optimal.  

II) Checking D-Optimality  

Here, the inequality 
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Holds true and hence the design is D-optimal.  

III) Checking E-optimality  

Here, the inequality 
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Holds true, hence the design is E-optimal. Since, the constructed variance and efficiency balanced (1,2,…..,t)-resolvable 

balanced incomplete block design with unequal block sizes is A, D and E-Optimal. Hence the constructed design is the universally 

optimal. 

4. Method of Construction of Design Matrix-III 

The construction method of obtaining pairwise balanced design which is efficiency and variance balanced by using incidence 

matrices of known balanced incomplete block designs were given by Kageyama et al. [36]. The following result is from 

Kageyama et al. [36]  

Proposition 4.1 

A pairwise balanced design D is efficiency balanced, if its equiblock component Di, i=1,2,….m, is equireplicated and 

efficiency balanced. 

It was already proposed that, if N is the incidence matrix of a variance as well as efficiency balanced incomplete block design 

D and N
c
 is the incidence matrix of complement of the design D, which is also variance as well as efficiency balanced. Then the 

following incidence matrix N
**

 yields an variance and efficiency balanced resolvable design with unequal block sizes 

][** cNNN              (16) 

In this section we obtain the universal optimality of these designs with unequal block sizes 

Theorem 4.2 

The variance and efficiency balanced resolvable design with unequal block sizes, whose incidence matrix is given by (16) are 

universal optimal. 

Proof 

The C-matrix of the resultant resolvable design with unequal block sizes is given as 

C = RIv – NK
-1

N 
’ 

The constructed design D will be A-optimal if it maximizes tr (C).That is, tr (C) =  tr (R - NK
-1

N
 ‘
 ) = η

 
(v-1). 

For a design, it can be shown that the sum of the variances of the estimates of all elementary treatment contrast is proportional 

to the sum of the reciprocals of the non-zero eigen values of C. Let η1, η2, η3,…., η(v-1) be non-zero eigen values of C matrix of the 

resultant design D . As we know that for variance balanced design there will be only one non-zero eigen value with multiplicities 

(v–1) of C matrix. That is, η1 = η2 = η3 =….= η(v-1) = η, as C– matrix is positive semi-definite. Then  

A-Optimality 

The design is A-Optimal, since the inequality 
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Holds true, which is the required condition of a variance balanced design to be A-optimal, with equal replication and unequal 

block sizes. Thus the design constructed is A-optimal.  

D-Optimality 

The design is D-Optimal, since the inequality 
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Holds true, which is the required condition of a variance balanced design to be D-optimal, with equal replication and unequal 

block sizes. Thus the design constructed here is D-optimal.  

E-Optimality 

The design is E-Optimal, since the inequality 

)1(

)(
)(Min 




v

Ctr
i

 

Holds true, which is the required condition of a variance balanced design to be E-optimal, with equal replication and unequal 

block sizes. Thus the design constructed here is E-optimal.  

Since, the constructed variance and efficiency balanced resolvable balanced incomplete block design with unequal block sizes 

are A, D and E-Optimal and hence the constructed design is the universally optimal. 

Example 4.3 

Let us consider a variance and efficiency balanced symmetric balanced incomplete block design D with parameters v = b = 7, 

r = k = 4, λ = 2 and N
c 

 is complement of the design D with parameters v
* 

= b
* 

= 7, r
* 

= k
* 

= 3, λ = 1. Then the incidence matrix 

given in (16) yields resolvable design with unequal block sizes and parameters v
** 

= 7, b
** 

= 14, r
** 

= 7, k1
** 

= 4, k2
** 

= 3 and λ
** 

= 

3. The incidence matrix of the resultant design is given as follows 
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The C-matrix for the incidence matrix given above can be written as 
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Further, it is simplified as 
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The trace of C  matrix is comes out to as 35 and non-zero eigen value of C matrix is η
**

=35/6  with multiplicity 6. 

I) Checking A- Optimality  

Here, the inequality 
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Holds true, thus the design is A-optimal.  

II) Checking D-Optimality  

Here, the inequality 
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Holds true, thus the design is D-optimal.  

III) Checking E-optimality  

Here, the inequality 

6

35

6

35

)17(

)(
)(Min ** 




Ctr
i

 

Holds true, thus the design is E-optimal. Since, the constructed resolvable design with unequal block sizes is A, D and E-

Optimal.  Hence the constructed design is the universally optimal. 

5. Results and Discussion 

The following tables provides a list of universal optimal (1, 2, …..t)-resolvable and affine resolvable designs with unequal 

block sizes for r ≤ 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

S. No. v* b* r* k1
* k2

* k3
* k4

* λ* Type of resolvability Reference 

1 4 10 6 2 3 - - 3 3-resolvable Theorem 3.1 

2 5 25 14 2 3 4 - 7 (4,6,4)-resolvable Theorem 3.1 

3 6 56 30 2 3 4 5 17 (5,10,10,5)-resolvable Theorem 3.1 

4 7 14 7 4 3 - - 3 1-resolvable Theorem 4.2 

5 8 12 5 2 4 - - 2 Affine-1-resolvable Theorem 2.3 

6 11 22 11 6 5 - - 5 1-resolvable Theorem 4.2 

7 15 30 15 8 7 - - 7 1-resolvable Theorem 4.2 

8 16 24 9 2 8 - - 4 Affine-1-resolvable Theorem 2.3 

9 19 38 19 10 9 - - 9 1-resolvable Theorem 4.2 

10 23 46 23 12 11 - - 11 1-resolvable Theorem 4.2 

11 24 36 13 2 12 - - 6 Affine-1-resolvable Theorem 2.3 

12 27 54 27 14 13 - - 13 1-resolvable Theorem 4.2 

13 32 48 17 2 16 - - 8 Affine-1-resolvable Theorem 2.3 

14 40 60 21 2 20 - - 10 Affine-1-resolvable Theorem 2.3 

15 48 72 25 2 24 - - 12 Affine-1-resolvable Theorem 2.3 

16 56 84 29 2 28 - - 14 Affine-1-resolvable Theorem 2.3 
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