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1. Introduction 

The analysis of transport phenomena within system that used density and temperature gradients by using the Boltzmann 

transport equation is a powerful tool. The transport equation was applied to analyze of the diffusion coefficient, relationship 

between them, and the general currents within a system. 

2. Transport Equation Derivation       

Assume the system contains in each place a local rang, which is the thermal velocities taken by an equilibrium equation 

distribution function, where the temperature is depended and varies from place to place at the system with non-uniform particle 

density and temperature, nevertheless, a non-equilibrium distribution function determines the probability of a particle within the 

system .The transport equation enables application of properties of equilibrium system to study the non-equilibrium system. 

Assume the medium contains the randomly moving particles with a temperature gradient with the x-axis at an angle θ at 

instant the particle collides with the medium, after the collision the thermal velocity ν of the particle will be   xTxf
o

,  at the 

collision point as shown in Figure [1,2,3]. 

 

Figure 1. Moving of particle within a medium in a   direction. 

     The projection of  on the axis is: 

)cos(x                                                                                      (1) 

the particle probability dp, that collides with the medium is proportional to d


, ns and σs: 

 ssnpddp                                (2) 

Where  

 


1
ssn                 (3)
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Substitute  equation (3) into (2) yields: 



pd
dp                                                                                            (4) 

where d refer the distance element which is the particle travelled through the medium, ns refers to the density of scattering 

centers, σs refers the scattering cross section, the sum over S account for all different types centers and  refers the mean free 

path. 

     The last collision of the particle before reaching cross section plane at  was along  d
'
 at position '(

' 
), therefore, 

probability according to the above equations is: 

   


 

 ddP exp

                                                                            (5) 

since  

     










 dP

 

this mean, , is the probable distance which the particle travelers through the medium. 

     At adding the local velocity distribution at all d along the line up to  would be obtain the particle velocity distribution ν, at 

the cross section plane , wherefore each distribution is multiplied by the probability that the particle comes from that distance, 

equation(5) gives: 

 
   
















dPf

F

o ,

,                                                                            (6) 

where 
 

 and fo(', ) were the local equilibrium distribution at ' . It will be use the first terms of Taylor series, when the 

equilibrium distribution does not change along the mean free bath   which is: 

          





 








 oo

oo

ff
ff ,,                                                       (7) 

The acting of force on the particle caused the change in velocity, such as the electric field or gravitation field for a change particle 

considers the force acts in x-axis, hence the velocity change gives: 

 

     

   



cos2

2
22





a
                                                                       (8) 

where m

eE
a 

 refers to the particle acceleration, E is the electric field. Substituting equation (8) and equation (7) into equation 

(6), integrating over ', and finally substituting χ and  for  according to equation (1) yields: 

      



























 oo fa

x

f
xfxf cos,,,                                                            (9)  

equation (9) is the non-equilibrium distribution and called the linear Boltzmann transport equation in a somewhat non-traditional 

form. The distribution fo(x,v) is the local equilibrium distribution which is given by Maxwell-Boltzmann or Fermi-Dirac 

distribution. The external forces and medium properties enter through the acceleration a and mean free path  respectively. The 

general form of equation (9) is : 

 


 

ff
faf

t

f o 



                                                                         (10) 

which is including a constant relaxation time . 

where  

 





                                                                                                 (11)    
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3. Particles Currents  

      The particle moves through the medium will cross a plane section at χ during t with a velocity ν if its distance from the plane 

is less than
   4,3,2cos t

. Hence the current of the particle is obtained by summing all the velocity of all directions 

is space according to the distribution probability for each velocity which is:  

        ddxfJn sincos,,2 2                                                          (12) 

substitute the equation (9)into Equation(12) gives : 

         

    

  



















dd
fa

d
f

ddxfJ

o

o
on

sincos2

sincos2sin2cos,

22

222





                           (13) 

where 
  0, xf

o as indicator in equation(9), and  , 

hence equation(13) gives: 











































































d
f

m

eE
d

x

f

d
fa

d
x

f

d
fa

d
x

f
J

oo

oo

oo
n

23

22

22

3

4

3

4
0

3

4

3

4
0







                                                      (14) 

where Jn is called the particle current . 

     From the above with each particle there is energy associated with it,u which is : 

2

2

1
mU 

 
since the energy current Ju and according to the probability of the distribution becomes: 

       ddxfmJu sincos,, 23
                                       (15) 

substitution of the distribution function equation(9) into equation(15) gives : 

 







ddvvv
x

f

v

a
m

ddvvv
x

f
mdvvvvxfm

ddvv
v

f

v

a

x

f
vxfmu

)sin()(cos

)sin(cos)sin()cos(),(

)sin()cos()cos(),(

2230

22302
3

0

2300
0


















































                                                 (16) 

 from equation(9), 
  0, xf

o  and the trigonometric integral is:  

 , wherefore, equation(16) gives:  

 
















   dvv

v

f

m

eE
dvv

x

f
Ju

400

3

4 
                                                               (17)      

where m

eE
a 

   and  Ju  is called the energy current . 

when applied the Maxwell-Boltzmann distribution you can calculate the currents as follow : 

    


















kT

m

kT

m
xnuxfo

2
exp

2
,

2
2

3




                                                                (18) 

where n(x) refers to the particle density. Using the normalization condition to 

n(x) refers to the particle density. Using the normalization condition to calculate the pre-exponential factor indicators in 

equation(18),which is : 
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



0

24 ndf
o


    

from equation (18) gives :  

  































kT

m

kT

m

kT

m
xn

v

f 

 2
exp

2

2
2

3

0

                                                            (19)   

 xn
kT

m

kT

m

x

f























2
exp

2

2

0
2
3





                                                                                                                                  (20) 

equations (14,18,19 and 20) were obtained: 

   

 

 

 

























































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


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
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
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





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





























































































































d
x

f
df

kT

eE

df
m

eE
d

x

f

d
kT

m

kT

m
xn

m

eE
d

x

f

d
kT

m

kT

m
xn

m

eE
d

x

f

d
kT

m

kT

m

kT

m
xn

m

eE
d

x

f

d
kT

m

kT

m

kT

m
xn

m

eE
d

x

f
J

o
o

o
o

o

o

o

o
n

33

33

3
2

2

3

3

3
2

2

3

3

3
2

2

3

3

2
2

2

3

3

3

4

3

4

2
exp

23

4

2
exp

23

4

2
exp

23

4

2

2

2
exp

23

4












                               (21) 

from equation(21) obtained the integral: 

 

2

1

3
2

2

3

3

2

2
exp

2




























 

m

kTn

d
kT

m

kT

m
xndfo









                                                         (22) 

substitute the equation (22)into equation (21) gives: 

   
 











































2

1

2

1

2

1

2

1

23

4

23

4

kTn
dx

d

kT

eEn

m

m

kTn

dx

d

kT

eE
Jn










                                                                                                                           (23) 

by mathematical simplify according to the above gives : 

 

 
    

















 2

3

2

1

2

1

23

8
kTn

dx

d
eEkT

m

Ju



                                                                                                                           (24) 

the relation between equation(23) and equation(24) gives: 
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























dx

dT
n

m

kT
TJkJ nu

2

1

23

4
2





                                                                      (25) 

this equation is proportional to the temperature gradient and independent of the particle current; The energy current Ju is a sum of 

convection term and the heat conduction term . 

The charge density does not depend on the temperature in case of the electrical conductors but not in semiconductors, 

wherefore the electrical current Jq from equation (23) becomes: 

 











dx

dT

e

k
E

mT

ne
eJJ nq

2
)2(3

4

2

1

2



                                                                                                                                    (26) 

Transport Parameters: 

A – The diffusivity D [5, 6, and 7], from equation (23) yields: 

 

 

 

  














dx

dn

kT

kTeEm

m

kT
Jn

2

3

2

1

2

1

2

1

23

4




                                                                       (27) 

 

at, , E=0,  yields:      

 

 

  dx

dn

m

kT
Jn

2

1

2

1

23

4






                                                                                                                                                                (28) 

where, 

2

1

23

4










m

kT
D




                                                                                                                                                                      (29) 

 

substitution equation (29) into equation(28) gives: 

dx

dn
DJ

n


 

Equation (29) is called the diffusivity D. The electrical conductivity was obtained from equation (26) and equation (27) give: 

nq
eJJ  , at   , and

0
dx

dn , 

2

1

)2(3

4 2

mT

nEe
Jq






                                                                                                                                                                          (30) 

 

EJq 
                                                                                                (31) 

where  

 

2

1

2

)(3

4

mkT

ne


                                                                                                                                                                 (32) 

 

1

91039.2 nK





                                                                                                                                                               (33) 



D

kT

e
K 

1

                                                                                                                                                                              (34) 
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2

1

8










m

kT




                                                                                                                                                               (35) 

hence  was called the electrical conductivity. 

From the equation (25), at Jn=0 gives: 

 

 

dx

dT
nk

m

kT
J

u

2

1

23

8













  

dx

dT
kJ

u


  

where 
 

 
 

nk
m

kT
K

2

1

23

8













                                                                                                                                                 (36) 

where K is called the thermal conductivity .By comparing these coefficient yields: 

  2

2 









e

k
kT

K



                                                                                                                                                              (37) 

where   



K  is called the wiedemann-Franz law, 

and another formula is : 











ne

DD



                                                                                                                                                                 (38) 

this equation is called Einstein relation. 

5 - Calculations of E, D/µ,L  

      For the electron distribution function f (r,ν,t), considering elastic collision only. From a two term expansion of Boltzmann's 

equation in an expansion of f using spherical harmonics about the direction f1 in velocity space. The truncated expansion: 

     trf
V

trftrf
o

,,,,,,
1



 

                                                                                                                           (39) 

according to the equation (1), the Boltzmann equation take the form [8, 9,and 10 ]: 
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where ν refers to the electron velocity ,, refers to the operator e refers to the electronic charge (negative number), m is the 

electron mass, M is the ion or neutral particle mass, E is the applied electric field, k is the Boltzmann's constant, Tg is the gas 

temperature, B  is the magnetic field,  is equal to 2m/M, ν(ν,r) is the collisions frequency for momentum transfer between 

electron and heavy particles so.e refers to the zeroth –order electron-electron collision term and s1.e refers to the first-order electron-

electron collision term. 

The solution of the Boltzmann transport equation was yield the transport coefficients such as, the electric field E, and the ratio 

of the diffusion coefficient to the mobility D . From equations (33) and (34) were utilized to get the mean free path  . 

where ν refers to the electron velocity ,, refers to the operator e refers to the electronic charge (negative number), m is the 

electron mass, M is the ion or neutral particle mass, E is the applied electric field, k is the Boltzmann's constant, Tg is the gas 

temperature, B  is the magnetic field,  is equal to 2m/M, ν(ν,r) is the collisions frequency for momentum transfer between 

electron and heavy particles so.e refers to the zeroth –order electron-electron collision term and s1.e refers to the first-order electron-

electron collision term. 
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    The solution of the Boltzmann transport equation was yield the transport coefficients such as, the electric field E, and the 

ratio of the diffusion coefficient to the mobility D . From equations (33) and (34) were utilized to get the mean free path  . 

6. Conclusion 

A- The general currents in a medium with particle were calculated by using the numerically solution of the Boltzmann transport  

     equation. 

B- The calculation of the transport coefficient such as, electric thermal conductivity and diffusivity were verified the      

wiedemann-Fraz and Einstein law. 

C- Boltzmann transport equation expresses the non-equilibrium distribution in terms of local equilibrium distribution, which is     

the transport equation enables application of properties of equilibrium systems.  

D- The equation can describe macroscopic phenomena, such as the electrical conductivity, Hall effect and diffusion process. 

E- The equation has properly generalized, for other systems such as, electron transport, photon transport in super fluids and      

radiative transport in planetary. 

F- The equation still has much use and applicability. 

7. Results and Discussion 

 From the currents in the equation (23-25) are calculation directly, the transport coefficients and currents at 300 k
o
. 

      Figure (2) was showing the increasing of the diffusivity with mean free path i.e., the mean free path between the collisions 

is large. 

      Figure (3) appears the electrical current was increase with mean free path but decreased with the mean free path as 

showing in figure(4). 

      Figure (5) was showing the electrical current decreased with electrical field, but it was increasing with electrical field in 

form ramp as showing in figure (6).  

      Figure(7) was offer the increasing of the electrical current with the electrical conductivity, otherwise decrease with 

electrical conductivity as seen in figure(8). 

      Figure(9) and(10) were brought out that the electrical conductivity and the thermal conductivity are increasing with mean 

free path respectively. 

      Figure(11) and (12) were referred that diffusivity to the mobility were constant with increasing of the diffusivity and 

electrical conductivity respectively. These figures were implemented the Wiedmann-Franz law, which is: 
2
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and Einstein relation which is: 

e

kTDneD




 

by comparing these coefficients which are diffusivity, electrical conductivity and thermal conductivity. 

      Figure (13) was seen that the Townsent's energy factor was increased with the diffusivity to the mobility ratio.  

 

                   Fig 2 . The diffusivity,D, versus the mean free path, L, for the gases N2 and Ar. 
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          Fig 3. The electrical current, Jq, as a function of the mean free path, L, for the gas Ar. 

 

 

Fig 4.The electrical current, Jq, as a function of the mean free path, L, for the Nitrogen gas, N2. 

 

        Fig 5 . The electrical current, Jq, as a function of the electrical field, E, for the Argon    

                     gas, Ar. 
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Fig 6 . The electrical current, Jq, as a function of the electrical field, E,      

                                      for the Nitrogen gas, N2. 

 

Fig 7.The electrical current, Jq, as a function of the electrical conductivity, σ(ρ),  

                               for the Argon gas, Ar. 

 

        Fig 8. The electrical current, Jq, as a function of the electrical conductivity,σ(ρ), for the  

                     Nitrogen gas, N2. 
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               Fig 9. The electrical conductivity,σ as a function the mean free path, L for the  

                            Argon and Nitrogen gases. 

 

Fig 10. The thermal conductivity,K as a function the mean free  path, L for the Argon  

                         and Nitrogen gases. 
 

            Fig 11. The diffusivity to the mobility,D/ μ, ratio as a function of the  diffusivity for  

                           the Argon and Nitrogen gases. 



Mohammed Mohsin Shneter et al./ Elixir Appl. Math. 101 (2016) 44107-44117 44117 

 

           Fig 12 . The diffusivity to the mobility,D/ μ, ratio as a function of the electrical  

                           conductivity,σ for the Argon and Nitrogen gases. 

 

          Fig 13. The Townsend's energy factor, k, as a function of the diffusivity to the  

                          mobility, D/μ  ratio for the Argon and Nitrogen gases. 
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