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Introduction

Perfect domination is closely related to Perfect Codes. Perfect Codes have been used in Coding Theory. In this paper we
study the effect of removing a vertex from the graph on perfect domination. In particular we characterize those vertices whose
removal increases the perfect domination number of a graph.
Preliminaries
Definition-1: Perfect Dominating Set [2].

Asubset S of 7 () is said to be a perfect dominating set if for each vertex v not in S, v is adjacent to exactly one vertex of S.

Definition-2: Minimal Perfect Dominating Set.
A perfect dominating set S of the graph ¢ is said to be minimal perfect dominating set if for each vertex vin S, § — {v} is

not a perfect dominating set.
Definition-3: Minimum Perfect Dominating Set.
A perfect dominating set with smallest cardinality is called minimum perfect dominating set. It is called Yof set of the
graph @,
Definition-4: Perfect Domination Number.
The cardinality of a minimum perfect dominating set is called the perfect domination number of the graph ¢ It is denoted by

Ypf(G)-
Definition-5: Perfect Private Neighborhood.
Let S be a subset of /(@) and 1y € §- Then the perfect private neighborhood of v with respect to S is denoted as P, [v,S]

and defined as
v,if vis adjacent to no
vertex of S
Pyv,S1={weV(@ —-S;Nw)nS={v}}u or
vis adjacent to at least

two vertices of S
Main Results
Theorem-1: A perfect dominating set S of ¢ is minimal perfect dominating set if and only if for each vertex v in S pr [v, S] is

non-empty.
Proof: Suppose S is minimal perfect dominating set of G and ¢ g §. Therefore there is a vertex w not in § — {3,} such that
either w is adjacent to no vertex of § — {45} or w is adjacent to at least two vertices of § — {9},

If w = p then this implies that 3 ¢ pr[v, S]-
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If w = v then it is impossible that w is adjacent to at least two vertices of § — {9} because S is perfect dominating set.
Therefore w is not adjacent to any vertex of § — {v}. Since S is a perfect dominating set and w is adjacent to only v in S. That is
Nw)NnS = {v}.Thus,w € P,¢[v,S].
Conversely suppose 39 € § and P, [v, §] contains some vertex of w of @,
If w = p then wis either adjacent to at least two vertices of § — {yy}or w is adjacent to no vertex of § — {3} Thus, § — {3}
is not a perfect dominating set.
If w = vthen N(w) N § = {v]} implies that w is not adjacent to any vertex of § — {3,},
Thus, in all cases § — {¢y} is not a perfect dominating set if ¢ € §, Thus, S is minimal perfect dominating set of the graphG, m
Now we define the following symbols.
Vor = = {v € V(®): vp(6) < vpr(G — 1)},
pf = {v €V(G): 7,5(6) > v, (6 —)}.
pf = {v EV(G): Vpr(G) = vpr(G — v)}.
Note that the above sets are mutually disjoint and their union is V(G).
Lemma-2: Let v € V(G) and suppose v is a pendent vertex and has a neighbor w of degree at least two. If v € Vor then

Ypf(G —v) = Ypf(G) -1
Proof: Let g, be a minimum perfect dominating set of ¢ — {p}. If w € §, then §, is a perfect dominating set of G with
|S,] < ypf(G)_That is }’pf(G) < |8, < Ypf(G)l this is a contradiction. Therefore y, ¢ §, . Let § = § J{w]. Then
§ is a minimum perfect dominating set of . Then § is a minimum perfect dominating set of ¢ Therefore Ypf(G) =|S| =
IS1|+1=v,(G—v)+1m
Theorem-3: Let v be a vertex of G then ) ¢ V;f if and only if the following conditions are satisfied.
(1) v belongs to every ypfset of G.
(2) No subset § of G — {1} which is either disjoint from J[p] or intersects N[p] in at least two vertices and |§| <
)’pf(G) can be a perfectly dominating set of G — {9},
Proof: (1) Suppose ¢ € V;f- LetShea Yof set of G which does not contain q, then § is a perfect dominating set of G — {9},
Therefore }’pf(G -v)<|S| = }’pf(G)- Thus, p ¢ V;f' This is a contradiction. Thus 9y must belong to every Yof set of

?2') If there is a set § which satisfies the condition stated in (2). Then g is a perfect dominating set of G — {v} and therefore
Ypf(G —-v) < ypf(G)_This is a contradiction.

Conversely assume that conditions (1) and (2) hold.

Suppose ¢ ¢ ng_ Let S be a minimum perfect dominating set of G — {1}, Then |§| = Ypf(G)'

Suppose Vv is not adjacent to any vertex of S. Then S is disjoint from N[v], |S| = Ypf(G) and S is a perfect dominating set of
G — {v}.This violates (2).

Suppose Vv is adjacent to exactly one vertex of S then S is a minimum perfect dominating set of ¢ not containing v which violates

0.

Suppose v is adjacent to at least two vertices of S. Then § n N[v] in at least two vertices and S is a perfect dominating set of
— ith = hich again viol 2). Th 0 implies (1 2) violated.

G — {v} with |§| = Ypf(G)l which again violates (2). Thus, 4, ¢ fo implies (1) or (2) violated

Suppose p € V;f' Let g, be a minimum perfect dominating set of G — {3}, Then |§ | < }’pf(G)- If v is not adjacent to any

vertex of S, then as above (2) is violated. If v is adjacent to exactly one vertex of S then Slis a perfect dominating set of ¢ with

1S,] < Ypf(G)r which is contradiction.

If v is adjacent to at least two vertices of g, then § N N[p] in at least two vertices, |§, | < )’pf(G) and g is a perfect

dominating set of G — {v}, which again violates (2).Thus, ¢ € Y, implies that (2) is violated.

pf

Thus, v does not belongs to VOfand Vs Hence pyp e y+ o

Theorem-4: Let v be a pendent vertex which has the neighbor w of degree at least two then ¢ ¢ V;_;f if and only if there is
Yof set S containing w and not containing v such that P, (w,S] = {v}.

Proof: Suppose p € v;fLet §, be a minimum perfect dominating set of G — {p}, Then by Lemma-2, y =g, . Let § =
S, U {w} ThenSis Yof set containing w.

Since g, is a perfect dominating set of G — {9}, w is adjacent to some vertex of g . Therefore wepr[w, S]. i xisany
vertex different from v such that x is adjacent to w then x is also adjacent to some vertex of S, because S, is a perfect
dominating set of G — {9}. Thus, xepr[w, S]- Further v is adjacent to only w of S therefore pr[W, S] = {v}.
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Conversely, suppose there is a Yof set S containing w such that P, [w,S] = {v}.Lets, = § — {w}. Letx be any vertex of

G — {v}which is not in § — {4,}. Since xEpr[w, S, x must be adjacent to some unique vertex of § . Thus, § is a

minimum perfect dominating set of G — {p} with |§,| < }’pf(G)- Thus, p € v, |

Theorem-5: Let §, and g, be two disjoint perfect dominating sets of Gthen |§,| = |S,|-

Proof: For every vertex x in g there is a unique vertex (x) in §, which is adjacent to x. Also for every vertex y in g, there is

a unique vertex q(y) in §, which is adjacent to y. It may be noted these functions are inverse of each other. Therefore|§ | =

|S2|-m _ o

Corollary-6: If in a graph @ there are perfect dominating sets §, and §, suchthat |§. | = |S,|then§ NS, = @. m

Corollary-7: Let ¢ be a graph with n vertices. If there is a perfect dominating set S with S| < nor S| = ™ then V(G)—-S is
2 2

not a perfect dominating set. g
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