$(1,2) *-\alpha^{*}-$ CLOSED SETS IN BITOPOLOGICAL SPACES

A.Devika ${ }^{1}$ andL.Elvina Mary ${ }^{2}$
${ }^{1}$ PSG College of Arts and Science, Coimbatore.
${ }^{2}$ Nirmala College for Women, Coimbatore.

ARTICLE INFO

Article history:

Received: 3 November 2016; Received in revised form:
17 December 2016; Accepted: 27 December 2016;

Keywords

$(1,2) *-\alpha^{*} \quad$ closed sets $(1,2) *-$ α^{*} - open sets,$(1,2)^{*}-T_{\alpha^{*}}-$ space $(1,2) *{ }_{g} T_{\alpha^{*}}$-space.

Abstract

The aim of this paper is to introduce a new class of sets called $(1,2)^{*}-\alpha^{*}$-closed sets in topological spaces and to study their properties. Further, we define and study $(1,2)^{*}-T_{\alpha^{*}}$-space, $(1,2)^{*}{ }_{g} T_{\alpha^{*}}$-space and their properties..

© 2016 Elixir All rights reserved

1.Introduction

The study of bitopological spaces was first initiated by J.C. Kelly [6] in the year 1963. Levine [9] introduced the notions of generalized closed sets and studied their properties. Veronica Vijayan and K.Priya [13] investigated the concept of α^{*} closed sets in topological space. Lellis Thivagar et al [8] developed the concept of $(1,2)^{*}$-semi open sets, $(1,2)^{*}$ - α-open sets, $(1,2)^{*}$-generalized closed sets, $(1,2)^{*}$-semi generalized closed sets and (1, 2)*- α-generalized closed sets in bitopological spaces. In this paper, we introduce the notion of $(1,2)^{*}-\alpha^{*}$-closed sets and investigate their properties. Further, we study $(1,2)^{*}-T_{\alpha^{*}}$ - space,$(1,2)^{*_{-}}{ }_{g} T_{\alpha^{*}}$-space and their properties.

2. Preliminaries

Throughout this paper, X and Y denote the bitopological spaces $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(Y, \sigma_{1}, \sigma_{2}\right)$ respectively, on which no separation axioms are assumed.
Definition: 2.1 [8] A subset S of a bitopological space X is said to be $\tau_{1,2}$-open if $\mathrm{S}=\mathrm{A} \cup \mathrm{B}$ where $\tau_{1} \in \mathrm{~A}$ and $\tau_{2} \in \mathrm{~B} . \mathrm{A}$ subset S of X is said to be (i) $\tau_{1,2}$ - closed if the complement of S is $\tau_{1,2}$-open. (ii) $\tau_{1,2}$-clopen if S is both $\tau_{1,2}$-open and $\tau_{1,2}$-closed.
Definition: 2.2 [8] Let S be a subset of the bitopological space X . Then the $\tau_{1,2}-$ interior of S denoted by $\tau_{1,2}-\operatorname{int}(\mathrm{S})$ is defined by $\cup\left\{\mathrm{G}: \mathrm{G} \subseteq \mathrm{S}\right.$ and G is $\tau_{1,2}$ - open $\}$ and $\tau_{1,2}$ - closure of S denoted by $\tau_{1,2}-\mathrm{cl}(\mathrm{S})$ is defined by $\cap\{\mathrm{F}: \mathrm{S} \subseteq \mathrm{F}$ and F is $\tau_{1,2}$ - closed $\}$.
Definition: 2.3 A subset A of a bitopological space X is said to be
(i) $(1,2)^{*}$-pre-open [8] if $\mathrm{A} \subseteq \tau_{1,2}-\operatorname{int}\left(\tau_{1,2}-\operatorname{cl}(\mathrm{A})\right)$.
(ii) $(1,2)^{*}$-semiopen [8] if $\mathrm{A} \subseteq \tau_{1,2}-\operatorname{cl}\left(\tau_{1,2}-\operatorname{int}(\mathrm{A})\right)$.
(iii) $(1,2)^{*}$-regular open [8] if $\mathrm{A}=\tau_{1,2}-\operatorname{int}\left(\tau_{1,2}-\operatorname{cl}(\mathrm{A})\right)$.
(iv)(1,2)*- α-open[8]if $\mathrm{A} \subseteq \tau_{1,2}-\operatorname{int}\left(\tau_{1,2}-\operatorname{cl}\left(\tau_{1,2}-\operatorname{int}(\mathrm{A})\right)\right)$.
(v) $(1,2)^{*}$-generalized closed(briefly (1,2$)^{*}$-g-closed) set[8] if $\tau_{1,2}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\tau_{1,2}$ open set in X vi)(1,2)*-semi-generalized closed(briefly (1,2)*-sg-closed) set[8] if $(1,2)^{*}$-scl $(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $(1,2)^{*}$ -semi-open set in X .
(vii)(1,2)*-generalized semi closed(briefly (1,2)*-gs-closed) $\operatorname{set}[2]$ if $(1,2)^{*}-\operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ - open set in X .
(viii)(1,2)*-generalized $\alpha-\operatorname{closed}\left(b r i e f l y(1,2)^{*}\right.$-g $\alpha-$ closed) set[8] if $(1,2)^{*}-\alpha \operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $(1,2)^{*}$ α - open set in X
(ix)(1,2)*- α - generalized closed(briefly (1,2)*- α g-closed) $\operatorname{set}[8]$ if $(1,2)^{*}-\alpha \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ - open set in X .
$(\mathrm{x})(1,2)^{*}-\pi$ generalized closed(briefly $(1,2)^{*}-\pi g-$ closed $)$
$[10]$ if $\tau_{1,2}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\tau_{1,2}-\pi$ open set in X.
(xi)(1,2)*- $\quad \pi$ generalized $\quad \alpha-\operatorname{closed}\left(\left(\right.\right.$ briefly $\quad(1,2)^{*}$ $\pi g \alpha$-closed) $\operatorname{set}[2]$ if $(1,2)^{*}-\alpha \operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\tau_{1,2}-\pi$-open set in X .
(xiv)(1,2)*- π generalized pre-closed(briefly (1,2)*- π gpclosed) set[12] if $(1,2)^{*}-\operatorname{pcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\tau_{1,2}-\pi$-open set in X .

Tele:

E-mail address: elvinamary79@gmail.com
$(\mathrm{xv})(1,2)^{*}$-gsp-closed set [4] if $(1,2)^{*}-\operatorname{spcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\tau_{1,2}$ - open set in X .
$(x v i)(1,2)^{*}$-gpr- closed $\operatorname{set}[7]$ if $(1,2)^{*}-\operatorname{pcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $(1,2)^{*}$-regular open set in X .
(xvii)(1,2)*- π^{*} g-closedset[5]ifcl($\left.\tau_{12}-\operatorname{int}(\mathrm{A})\right) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\tau_{12}-\pi$-open set in X .
(xviii) a (1,2)*- weakly generalized closed[5] (briefly $(1,2)$ *- $^{\text {- }}$ wg- closed) if $\tau_{1,2}-\operatorname{cl}\left(\tau_{1,2}-\operatorname{int}(\mathrm{A})\right) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\tau_{1,2}-\pi$-open set in X .

The complements of all the above mentioned open sets are called their respective closed sets. The family of all $(1,2)^{*}$ open $\left((1,2)^{*} \text {-regular open, }(1,2)^{*} \text {-semi open,(} 1,2\right)^{*}$ - α-open) sets of X will be denoted by $(1,2)^{*}$ $\mathrm{O}(\mathrm{X})\left(\right.$ resp. $\left.(1,2) * \mathrm{RO}(\mathrm{X}), \quad(1,2) *-\mathrm{SO}(\mathrm{X}),(1,2)^{*}-\alpha \mathrm{O}(\mathrm{X})\right)$.The $(1,2)^{*}$-semi-closure(resp. (1,2)*-preclosure,(1,2)*- α-closure) of a subset A of X is denoted $b y(1,2)^{*}-\operatorname{scl}(A)$ (resp.(1,2)*-pcl(A),(1,2)*- $\alpha \mathrm{cl}(\mathrm{A})$) defined as the intersection of all $(1,2)^{*}$-semi-closed(resp.(1,2)*-preclosed,(1,2)* α closed) sets containing A.

3. $(1,2) *-\alpha^{*}-$ closed sets

Definition : 3.1 A subset A of a bitopological space X is called $(1,2) *-\alpha^{*}-$ closed set if $\tau_{1,2}-\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2) *-\alpha$ - open in X . The collection of all $(1,2)^{*}-\alpha^{*}$ - closed sets in X is denoted by $(1,2)^{*}-\alpha^{*} C(X)$

Theorem 3.2

i)Every $\tau_{1,2}-$ closed set is $(1,2)^{*}-\alpha^{*}$-closed set .
ii)Every $(1,2)^{*}-\alpha^{*}$-closed set is $(1,2)^{*}$ - g-closed set.
iii)Every $(1,2)^{*}-\alpha^{*}$-closed set is $(1,2)^{*}$ - gs-closed set.
iv)Every $(1,2)^{*}-\alpha^{*}$-closed set is $(1,2)^{*}-\alpha g$-closed set.
v) Every $(1,2)^{*}-\alpha^{*}$-closed set is (1,2)*- α-closed set.
vi) Every $(1,2)^{*}-\alpha^{*}$-closed set is $(1,2)^{*}-g \alpha$-closed set.
vii) Every $(1,2)^{*}-\alpha^{*}$-closed set is $(1,2)^{*}-\pi g$-closed set.
viii)Every $(1,2)^{*}-\alpha^{*}$-closed set is $(1,2)^{*}-\pi g \alpha$-closed set.
x) Every $(1,2) *-\alpha^{*}$-closed set is $(1,2) *-g p$-closed set.
xi) Every $(1,2)^{*}-\alpha^{*}$-closed set is $(1,2)^{*}-\pi g p$-closed set.
xii) Every $(1,2)^{*}-\alpha^{*}$-closed set is $(1,2)^{*}-\pi^{*} g$-closed set.
xiii)Every $(1,2)^{*}-\alpha^{*}$-closed set is $(1,2)^{*}-g p r$-closed set.
xiv)Every $(1,2)^{*}-\alpha^{*}$-closed set is $(1,2)^{*}-g s p$-closed set.
xv)Every $(1,2)^{*}-\alpha^{*}$-closed set is $(1,2)^{*}-w g$-closed set.

Proof:

i)Straight forward.
ii)Suppose A is $(1,2)^{*}-\alpha^{*}$-closed set and U be any $\tau_{1,2}$-open set containing A. Since every $\tau_{1,2}$ - open set is $(1,2)^{*}-\alpha$-open set and then , $\tau_{1,2}-c l(A) \subseteq U$ for every subset A of X . Thus, $\tau_{1,2}-c l(A) \subseteq U$ and hence A is $(1,2)^{*}$ - g closed set.
iii) Suppose A is $(1,2)^{*}$ - α^{*}-closed set and U be any $\tau_{1,2}$ - open set containing A. Since every $\tau_{1,2}$ - open set is
$(1,2)^{*}-\alpha$-open set and then,$\tau_{1,2}-\operatorname{cl}(A) \subseteq U$ for every subset A of X . Therefore, $(1,2)^{*}-\operatorname{scl}(A) \subseteq \tau_{1,2}-\operatorname{cl}(A) \subseteq U$ and hence A is $(1,2)^{*}$ - gs-closed set.
iv)The proof is obvious.
v)The proof is straight forward, since every $\tau_{1,2}$ - open set is $(1,2)^{*}-\alpha$-open set
vi)It is true that,$(1,2)^{*}-\alpha c l(A) \subseteq \tau_{1,2}-c l(A) \subseteq U$, for every subset A of X .
vii) Suppose A is $(1,2)^{*}$ - α^{*}-closed set and U be any $\tau_{1,2}-\pi-$ open \quad set \quad containing \quad A. Since every $\tau_{1,2}-\pi$-open set is $(1,2)^{*}$ - α-open set and then , $\tau_{1,2}-c l(A) \subseteq U$ for every subset $\mathrm{A} \quad$ of X . Thus, $\tau_{1,2}-c l(A) \subseteq U$ and hence A is $(1,2)^{*}$ - g-closed set.
viii) It is true that,$(1,2)^{*}-\operatorname{\alpha cl}(A) \subseteq \tau_{1,2}-\operatorname{cl}(A) \subseteq U$,for every subset A of X .
ix) The proof is obvious.
$\mathrm{x})$ It is true , since $(1,2)^{*}-\operatorname{pcl}(A) \subseteq \tau_{1,2}-\operatorname{cl}(A) \subseteq U$, for evey subset A of X
xi)The proof is straight forward.
xii) Suppose A is $(1,2)^{*}-\alpha^{*}$-closed set and U be any $\tau_{1,2}-\pi$-open set containing A. Since every $\tau_{1,2}-\pi$-open set is $(1,2)^{*}-\alpha$-open set and then , $\tau_{1,2}-\operatorname{cl}\left(\tau_{1,2}-\operatorname{int}(A) \subseteq \tau_{1,2}-\operatorname{cl}(A) \subseteq U\right.$ for \quad every subset A of X . Thus, $\tau_{1,2}-\operatorname{cl}\left(\tau_{1,2}-\operatorname{int}(A)\right) \subseteq U$ and hence A is $(1,2)^{*}-\pi^{*} g$-closed set.
xiii)The proof is obvious.
xiv)The proof is obvious.
xv)The proof is obvious.
Remark :3.3 The converse of the above results need not be true as seen in the following examples.

Example: 3.4

i)Let $X=\{a, b, c, d\} \tau_{1}=\{\phi, X,\{a\}\}, \tau_{2}=\{\phi, X,\{c . d\}\}$ Then the set $\{b, c\}$ is $(1,2)^{*}-\alpha^{*}-$ closed set but not $\tau_{1,2}-$ closed.
ii)Let $X=\{a, b, c, d\}$
$\tau_{1}=\{\phi, X,\{a\},\{d\},\{a . d\},\{c, d\},\{a, c, d\}\}$,
$\tau_{2}=\{\phi, X,\{a . c\}\}$
Then the set $\{a, b, d\}$ is $(1,2)^{*}$-g- closed set but not $(1,2)^{*}$ -$\alpha^{*}-$ closed.
iii) In example 3.4 (ii), $\{a\}$ and $\{a, c\}$ are (1,2)*-gs- closed set but not $(1,2)^{*}-\alpha^{*}-$ closed.
iv)) In example 3.4 (ii), $\{c\}$ is (1,2)*- αg - closed set but not $(1,2)^{*}-\alpha^{*}-$ closed.
v)Let $X=\{a, b, c, d\}$

$$
\tau_{1}=\{\phi, X,\{a\},\{b, c, d\}\}
$$

$\tau_{2}=\{\phi, X,\{c\}\{a, b, d\}\}$

Then the set $\{b\}$ is $(1,2)^{*}-\alpha-$ closed set but not (1,2)*-$\alpha^{*}-$ closed.
vi) In example 3.4 (ii), $\{c\}$ is $(1,2)^{*}$ - $g \alpha$-closed set but not $(1,2)^{*}-\alpha^{*}-$ closed.
vii)In example 3.4 (ii), $\{a, b, d\}$ is $(1,2)^{*}-\pi g$ - closed set but not $(1,2) *-\alpha^{*}-$ closed.
viii) In example 3.4 (ii), $\{a\}$ and $\{c\}$ are (1,2)*- $\pi g s$ - closed set but not $(1,2)^{*}-\alpha^{*}-$ closed.
ix) In example 3.4 (ii), $\{c\}$ is (1,2)*- $\pi g \alpha$-closed set but not $(1,2)^{*}-\alpha^{*}-$ closed.
x) In example 3.4 (ii), $\{c\}$ is (1,2)*- $g p$ - closed set but not $(1,2)^{*}-\alpha^{*}-$ closed.
xi)In example 3.4 (ii), $\{c\}$ is $(1,2)^{*}$ - $\pi g p$ - closed set but not $(1,2)^{*}-\alpha^{*}-$ closed.
xii) In example 3.4 (ii), $\{a, b, d\}$ is $(1,2)^{*}-\pi^{*} g$ - closed set but not $(1,2)^{*}-\alpha^{*}-$ closed.
xiii) In example 3.4 (ii), $\{c\}$ and $\{a, d\}$ are (1,2)*- $g p r$ closed set but not $(1,2)^{*}-\alpha^{*}-$ closed.
xiv) In example 3.4 (ii), $\{a\}$ is $(1,2)^{*}$ - $g s p$ - closed set but not $(1,2)^{*}-\alpha^{*}-$ closed.
xv)In example 3.4 (ii), $\{c\}$ and $\{a, b, d\}$ are (1,2$)^{*}$ - wg closed set but not $(1,2)^{*}-\alpha^{*}-$ closed.
Remark: 3. 5 The following diagram shows the relationships of $(1,2)^{*}-\alpha^{*}$ - closed sets with other known existing sets. $\mathrm{A} \rightarrow \quad \mathrm{B}$ represents A implies B , but not conversely.

1. τ_{12}-closed set
2. (1, 2)*-g-closed set
3. $(1,2)^{*}$-gs-closed set.
4. $(1,2)^{*}$ - α g-closed
5. $(1,2)^{*}-\alpha$-closed set
6. $(1,2)^{*}$ - g α-closed set
7. $(1,2)^{*}-\pi \mathrm{g}$-closed set
8. $(1,2)^{*}-\alpha^{*}$-closed set
9. $(1,2)^{*}-\pi g \alpha$-closed
10. $(1,2)^{*}$ - gp-closed set
11. $(1,2)^{*}$ - π gp-closed set
12. $(1,2)^{*}-\pi^{*}$ g-closed set.
13. (1,2)*- gpr-closed set.
14. $(1,2)^{*}$ - gsp-closed set.
15. $(1,2)^{*}$ - wg-closed set.

Proposition 3.6:Finite union of $(1,2)^{*}-\alpha^{*}-$ closed sets are $(1,2)^{*}-\alpha^{*}-$ closed set .
Proof: Let $A \cup B \subseteq U$ where U is α-open. Since A and B are $(1,2)^{*}$ - α^{*}-closed sets, $\tau_{1,2}-\operatorname{cl}(A) \subseteq U$ and $\tau_{1,2}-\operatorname{cl}(B) \subseteq U \operatorname{Now} \tau_{1,2}-\operatorname{cl}(A \cup B) \subseteq U . \quad$ Hence $A \cup B$ is $(1,2)^{*}-\alpha^{*}-$ closed set.
Theorem 3.7 :If a subset A of X is both $(1,2)^{*}-\alpha-$ open and $(1,2)^{*}-\alpha^{*}-$ closed, then it is $\tau_{1,2}-$ closed .
Proof:Let A be a subset of X which is both $(1,2)^{*}-\alpha-$ open and $(1,2)^{*}-\alpha^{*}-$ closed.Then $\tau_{1,2}-\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and $\quad \mathrm{U}$ is $(1,2)^{*} \quad-\alpha-$ open in X . Also $A \subseteq \tau_{1,2}-\operatorname{cl}(A) \quad$.This implies $\tau_{1,2}-\operatorname{cl}(A)=A$.Hence A is $\tau_{1,2}-$ closed.
Proposition 3.8:For any $x \in X$, its complement $X-\{x\}$ is $(1,2)^{*}-\alpha^{*}-$ closed or $(1,2)^{*}-\alpha-$ open.

Proof :Suppose $X-\{x\}$ is not $(1,2)^{*}-\alpha-$ open.Then X is the only $(1,2)^{*}-\alpha-$ open set containing $X-\{x\}$.That is, $X-\{x\} \subseteq X \quad$ and $\quad X$ is $(1,2)^{*}-\alpha-$ open.Then, $\tau_{12}-c l(X-\{x\}) \subseteq X$ whenever $X-\{x\} \subseteq X$ and X is $(1,2)^{*}-\alpha-$ open.This implies $X-\{x\}$ is $(1,2)^{*}-\alpha^{*}-$ closed.
Proposition 3.9:If A is $(1,2)^{*}-\alpha^{*}-$ closed and $A \subseteq B \subseteq \tau_{1,2}-c l(A)$,then B is also $(1,2)^{*}-\alpha^{*}-$ closed.
Proof :Let $B \subseteq U$, where U is $(1,2)^{*}-\alpha$ - open in X. Then $A \subseteq B$ implies $A \subseteq U$. Since A is $(1,2)^{*}-\alpha^{*}-$ closed implies $\tau_{1,2}-\operatorname{cl}(A) \subseteq U$.Given
$B \subseteq \tau_{1,2}-c l(A)$ implies
$\tau_{1,2}-\operatorname{cl}(B) \subseteq \tau_{1,2}-\operatorname{cl}(A) \subseteq U \Rightarrow \tau_{1,2}-\operatorname{cl}(B) \subseteq U$.Therefo re B is $(1,2)^{*}-\alpha^{*}$ - closed.
Proposition 3.10: A is $(1,2)^{*}-\alpha^{*}-$ closed set if and only if $\tau_{1,2}-\operatorname{cl}(A)-A$ does not contain any $(1,2)^{*}-\alpha-$ closed set.
Proof :Necessity : Let F be an (1,2)* $-\alpha$ - closed.set such that $F \subseteq \tau_{1,2}-\operatorname{cl}(A)-A$.Since A is $(1,2)^{*}-\alpha^{*}-$ closed, $\tau_{1,2}-\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^{*}-\alpha-$ open in X . Then $A \subseteq X-F$. Since A is $(1,2)^{*}-\alpha^{*}-$ closed, $\tau_{1,2}-c l(A) \subseteq X-F$ whenever $A \subseteq X-F$ and $X-F$ is $\quad(1,2)^{*} \quad-\alpha-\quad$ open in \quad. So $F \subseteq X-\tau_{1,2}-c l(A)$. But
$F \subseteq \tau_{1,2}-c l(A)-A$. Therefore
$F \subseteq\left\lfloor\left(X-\tau_{1,2}-c l(A)\right) \cap\left(\tau_{1,2}-c l(A)-A\right)\right\rfloor=\phi$.Thus $F=\phi$.

Sufficiency: Let A be a subset of X such that $\tau_{1,2}-\operatorname{cl}(A)-A$. does not contain any non-empty $(1,2)^{*}-$ α-closed set. Let U be $(1,2)^{*}-\alpha$ - open set such that $A \subseteq U$.If $\tau_{1,2}-c l(A) \not \subset U$, then $\tau_{1,2}-\operatorname{cl}(A) \cap U^{c} \neq \phi$ and $\tau_{1,2}-c l(A) \cap U^{c}$ is $(1,2)^{*}-$ α - closed set. But $\phi=\tau_{1,2}-\operatorname{cl}(A) \cap U^{c} \subseteq \tau_{1,2}-\operatorname{cl}(A)-A$. That
is, $\tau_{1,2}-\operatorname{cl}(A)-A$ contains a non-empty $(1,2)^{*}-\alpha-$ closed set which is a contradiction. Therefore $\tau_{1,2}-\operatorname{cl}(A) \subseteq U$ and hence A is $(1,2)^{*}-\alpha$ - closed set.
Proposition 3.11 :If A is $(1,2)^{*}-\alpha^{*}-$ closed set ,then $(1,2)^{*}-\alpha c l(x) \cap A \neq \phi$ holds, for each $x \in \tau_{1,2}-\operatorname{cl}(A)$ Proof:Suppose $(1,2)^{*}-\alpha c l(x) \cap A=\phi$ holds, for each $x \in \tau_{1,2}-c l(A)$.We $\quad A \subseteq X-(1,2)^{*}-\alpha c l(\{x\}) \cap A \neq \phi$. Since A is $(1,2)^{*}-\alpha^{*}-$ closed set,$\tau_{1,2}-c l(A) \subset X-\left\lfloor(1,2)^{*}-\alpha c l(x)\right]$ implies $x \notin \tau_{1,2}-c l(A)$, which is a contradiction. Hence
$(1,2)^{*}-\alpha c l(x) \cap A \neq \phi$ holds, for each $x \in \tau_{1,2}-c l(A)$.
4. $(1,2) *-\alpha^{*}$-Open Sets

Definition 4.1 A set $\mathrm{A} \subseteq \mathrm{X}$ is called $(1,2)^{*}-\alpha^{*}$-open set iff its complement is $(1,2)^{*}-\alpha^{*}$-closed set and the collection of all $(1,2)^{*}-\alpha^{*}$-open sets jnX is denoted by $(1,2)^{*}-\alpha^{*} \mathrm{O}(\mathrm{X})$.
Remark 4.2i) $\tau_{1,2}-c l(X-A)=X-\tau_{1,2}-\operatorname{int}(A)$
ii) For any $A \subseteq X,\left(\tau_{1,2}-\operatorname{int}\left(\tau_{1,2}-\operatorname{cl}(A)-A\right)\right)=\phi$

Theorem: 4.3 A subset $A \subseteq X$ is $(1,2)^{*}-\alpha^{*}$-open set iff $F \subseteq \tau_{1,2}-\operatorname{int}(A)$ wherever F is $(1,2)^{*}-\alpha$-closed set such that $F \subseteq A$.
Proof:Let F is $(1,2)^{*}-\alpha$-closed set such that $F \subseteq A$. Since X -A is $(1,2)^{*}-\alpha$-closed and $X-A \subseteq X-F$, we have $F \subseteq \tau_{1,2}-\operatorname{int}(A)$.Conversely, $F \subseteq \tau_{1,2}-\operatorname{int}(A)$ where F is $(1,2)^{*}-\alpha$-closed set and $F \subseteq A$.Since $F \subseteq A$ and $X-F$ is $\quad(1,2)^{*}$ - $\quad \alpha$-open $\tau_{1,2}-c l(X-A)=X-\tau_{1,2}-\operatorname{int}(A) \subseteq X-F$.Therefor e A is $(1,2)^{*}-\alpha^{*}$-open set.
Theorem :4.4 If $\tau_{1,2}-\operatorname{int}(A) \subseteq B \subseteq A$ and A is $(1,2)^{*}$ -α^{*}-open set ,then B is $(1,2)^{*}-\alpha^{*}$-open set.

Proof

:Since
$\tau_{1,2}-\operatorname{int}(A) \subseteq B \subseteq A \Rightarrow X-A \subseteq X-B \subseteq X-\tau_{1,2}-\operatorname{int}(A)$.
That is $X-A \subseteq X-B \subseteq \tau_{1,2}-c l(X-A)$. Since $X-A$ is $(1,2)^{*}-\alpha^{*}$-closed set, by Theorem $4.3 X-B$ is $(1,2)^{*}$ -α^{*}-closed set. This implies, B is $(1,2)^{*}-\alpha^{*}$-open set.
Theorem :4.5 If $A \subseteq X$ is $(1,2)^{*}$ - α^{*}-closed set ,then $\left(\tau_{1,2}-c l(A)\right)-A$ is $(1,2)^{*}-\alpha^{*}$-open set.

Proof:Let A be $(1,2)^{*}-\alpha^{*}$-closed and F be $(1,2)^{*}-\alpha-$ closed set, such that $F \subseteq\left(\tau_{1,2}-c l(A)\right)-A$. Then by proposition 3.10,
$F=\phi . F \subseteq\left(\tau_{1,2}-\operatorname{int}\left(\tau_{1,2}-c l(A)-A\right)\right)=\phi \quad$ This implies, $\left(\tau_{1,2}-c l(A)\right)-A$ is $(1,2)^{*}-\alpha^{*}$-open set.
Theorem :4.6 If A and B are $(1,2)^{*}$ - α^{*}-open sets ,then $A \cap B$ is $(1,2)^{*}-\alpha^{*}$-open set.
Proof:Let
$X-(A \cap B)=(X-A) \cup(X-B) \subseteq F$, where $\quad F \quad$ is $(1,2)^{*}$ - α-open. Since $X-A \subseteq F, X-B \subseteq F$ and A and B are $(1,2)^{*}-\alpha^{*}$-open sets, we have $\tau_{1,2}-c l(X-A) \subseteq F, \tau_{1,2}-c l(X-B) \subseteq F . S o$,
$\tau_{1,2}-c l[X-(A \cap B)] \subseteq F$. Therefore,$A \cap B$ is (1,2)*- $\alpha^{*}-$ open set.
Theorem:4.7 For any
$A \subseteq X, \tau_{1,2}-\operatorname{int}(A) \subseteq(1,2)^{*}-\alpha^{*}-\operatorname{int}(A) \subseteq A$.
Proof: The proof follows immediately, since every $\tau_{1,2}$ - open set is $(1,2)^{*}-\alpha^{*}$-open set.
Definition :4.8 For a subset A of X , we define the (1,2$)^{*}$ -α^{*}-closure of A as $(1,2)^{*}-\alpha^{*}-\mathrm{cl}(\mathrm{A})=$ $\cap\left\{F: A \subseteq F, F\right.$ is $(1,2)^{*}-\alpha^{*}$-closed in $\left.X\right\}$.
Lemma :4.9 Let A be a subset of X and $x \in X$.Then $x \in(1,2)^{*}-\alpha^{*}-\operatorname{cl}(\mathrm{A})$ if and only if $V \cap A \neq \phi$, for every $(1,2)^{*}-\alpha^{*}$-open set V containing x.
Proof:Necessity: Suppose that there exists a (1,2)*- α^{*}-open set V containing x such that $V \cap A=\phi$. Since $A \subseteq X-V,(1,2)^{*}-\alpha^{*}-\mathrm{cl}(\mathrm{A}) \subseteq X-V$, and this implies $x \notin(1,2)^{*}-\alpha^{*}-\mathrm{cl}(\mathrm{A})$, a contradiction.
Sufficiency: Suppose that, $x \notin(1,2)^{*}-\alpha^{*}-\mathrm{cl}(\mathrm{A})$.Then, there exists $(1,2)^{*}-\alpha^{*}$-closed set F containing A such that $x \notin \mathrm{~F}$. Then $x \in X-F$ and $X-F$ is $(1,2)^{*}-\alpha^{*}$-open. Also, $(X-F) \cap A=\phi$, a contradiction.
Definition :4.10 Let A and B be subset of X. Then A and B are said to be $(1,2)^{*}$-separated sets if $A \cap \tau_{1,2}-c l(B)=B \cap \tau_{1,2}-\operatorname{cl}(A)=\phi$.
Definition :4.11 A space X is said to be a $(1,2)^{*}-T_{\alpha^{*}}$-space if every $(1,2)^{*}-\alpha^{*}$-closed set is $\tau_{1,2}$ - closed set.
Definition:4.12 Let X be a space and $A \subseteq X,(1,2)^{*}$ -$\alpha^{*}-\operatorname{int}(A)$ is the union of all $(1,2)^{*}-\alpha^{*}-$ open sets contained in A.
Theorem:4.13 If A and B are $(1,2)^{*}$ - separated sets in a $(1,2)^{*}-T_{\alpha^{*}}$-space ,then $A \cup B$ is $(1,2)^{*}-\alpha^{*}$-open.
Proof : Since A and B are $(1,2)^{*}$-separated sets , $A \cap \tau_{1,2}-c l(B)=B \cap \tau_{1,2}-c l(A)=\phi$. Let F be a $(1,2)^{*}{ }_{-}$ α-closed set and
$\mathrm{F} \subseteq \mathrm{A} \cup \mathrm{B} . \mathrm{F} \cap \tau_{1,2}-\mathrm{cl}(A) \subseteq(A \cup B) \cap \tau_{1,2}-c l(A)=$
$\left(A \cap \tau_{1,2}-c l(B)\right) \cup\left(B \cap \tau_{1,2}-c l(A)\right)=A \cup \phi=A$. Sin
ce X is a $(1,2)^{*}-T_{\alpha^{*}}$-space ,every $(1,2)^{*}-\alpha^{*}$-closed set is $\tau_{1,2}$-closed , F is $\tau_{1,2}$ - closed and $\mathrm{F} \cap \tau_{1,2}-\mathrm{cl}(A)$ is $\tau_{1,2}$ - closed.But every $\tau_{1,2}$ - closed set is $(1,2)^{*}-\alpha^{*}$-closed set. So it is $(1,2)^{*}-\alpha^{*}$-closed.Then A is $(1,2)^{*}-\alpha^{*}$-open. This implies, $\mathrm{F} \cap \tau_{1,2}-\mathrm{cl}(A) \subseteq(1,2) *$ - int (A).Similarly,
$\mathrm{F} \cap \tau_{1,2}-\mathrm{cl}(\mathrm{B}) \subseteq(1,2)^{*}$-int (B).Now,
$\mathrm{F} \subseteq(\mathrm{F} \cap \mathrm{A}) \cup(\mathrm{F} \cap \mathrm{B}) \subseteq$
$\left(\mathrm{F} \cap \tau_{1,2}-\operatorname{cl}(\mathrm{A})\right) \cup\left(\mathrm{F} \cap \tau_{1,2}-\operatorname{cl}(\mathrm{B})\right) \subseteq$
$(1,2)^{*}$-int $(\mathrm{A}) \cup(1,2)^{*}-\operatorname{int}(\mathrm{B}) \subseteq(1,2)^{*}-\operatorname{int}(\mathrm{A} \cup \mathrm{B})$.That is, $\mathrm{F} \subseteq(1,2)^{*}$-int $(\mathrm{A} \cup \mathrm{B})$. Hence, $\mathrm{A} \cup \mathrm{B}$ is $(1,2)^{*}-\alpha^{*}$-open.
Theorem:4.12 Let A be a subset of a space X. Then $X-\left[(1,2)^{*}-\alpha^{*}-\operatorname{int}(A)\right]=(1,2)^{*}-\alpha^{*}-\operatorname{cl}(\mathrm{X}-\mathrm{A})$.
Proof:Let $x \in X-\left[(1,2)^{*}-\alpha^{*}-\operatorname{int}(A)\right]$.Then
$x \notin(1,2)^{*}-\alpha^{*}-\operatorname{int}(A)$.That is, every $(1,2)^{*}-\alpha^{*}$-open set B containing x is such that $\mathrm{B} \not \subset \mathrm{A}$. This implies, every $(1,2)^{*}-\alpha^{*}$-open set B containing x intersects X - A . This means, $\quad x \in(1,2)^{*}-\alpha^{*}-\operatorname{cl}(X-A)$.Conversely, let $x \in(1,2)^{*}-\alpha^{*}-\operatorname{cl}(X-A)$. Then, every $(1,2)^{*}-\alpha^{*}$-open set B containing x intersects X -A.
That is, every $(1,2)^{*}-\alpha^{*}$-open set B containing x is such that $\mathrm{B} \not \subset \mathrm{A}$. This implies $x \notin(1,2)^{*}-\alpha^{*}-\operatorname{int}(A)$.That is, $x \in X-\left\lfloor(1,2)^{*}-\alpha^{*}-\operatorname{int}(A)\right]$.
Thus, $(1,2)^{*}-\alpha^{*}-\operatorname{cl}(\mathrm{X}-\mathrm{A}) \subseteq X-\left[(1,2)^{*}-\alpha^{*}-\operatorname{int}(A)\right]$. Hence $X-\left[(1,2)^{*}-\alpha^{*}-\operatorname{int}(A)\right]=(1,2)^{*}-\alpha^{*}-\operatorname{cl}(X-A)$.
 A).

5.(1,2)*- $T_{\alpha^{*}}$ - Spaces :

Definition :5.1 A space X is called $(1,2)^{*}-T_{\alpha^{*}}$ - space if every $(1,2)^{*}-\alpha^{*}$-closed set is τ_{12} closed set.
Definition :5.2 A space X is called $(1,2)^{*}{ }_{-}{ }_{g} T_{\alpha^{*}}$ - space if every $(1,2)^{*}$-g-closed set is $(1,2)^{*} \alpha^{*}$-closed set.
Theorem: 5.3 For a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) the following conditions are equivalent.
(i) X is $(1,2)^{*}-T_{\alpha^{*}}$-space
(ii) Every singleton of X is either $(1,2)^{*}-\alpha$ - closed or $\tau_{1,2}$-Open
Proof:(i) \rightarrow (ii): Let $\mathrm{x} \in \mathrm{X}$ and assume that $\{\mathrm{x}\}$ is not $(1,2)^{*}$ - α - closed. Then by Proposition 3.8, $\mathrm{X}-\{\mathrm{x}\}$ is not $(1,2)^{*}$ -α-open and is trivially $(1,2)^{*}-\alpha^{*}$-closed set . Since X is $(1,2)^{*}-T_{\alpha^{*}}$-space , every $(1,2)^{*}-\alpha^{*}$-closed set is $\tau_{1,2}$-closed. This implies, $\mathrm{X}-\{\mathrm{x}\}$ is $\tau_{1,2}$-closed and hence $\{\mathrm{x}\}$ is $\tau_{1,2}$-open .
(ii) \rightarrow (i): Assume every singleton of X is either
$(1,2)^{*}-\alpha$-closed or $\tau_{1,2}$-open. Let $\mathrm{A} \subset \mathrm{X}$ be $(1,2)^{*}-\alpha-$ closed or $\tau_{1,2}$-open. Obviously $\mathrm{A} \subset \tau_{1,2}-\mathrm{cl}(\mathrm{A})$ and $\mathrm{x} \in$ $\tau_{1,2}-\mathrm{cl}(\mathrm{A})$.
To prove that $\mathrm{A}=\tau_{1,2}-\mathrm{cl}(\mathrm{A})$.
Case 1:Suppose the set $\{x\}$ is $(1,2)^{*}-\alpha$-closed. If $\mathrm{x} \notin \mathrm{A}$, then
$\mathrm{A} \subset \mathrm{X}-\{x\}$. Since A is $(1,2)^{*}-\alpha^{*}$ closed and $\mathrm{X}-\{x\}$ is
$(1,2)^{*}-\alpha-$ open, $\tau_{1,2}-\operatorname{cl}(\mathrm{A}) \subset \mathrm{X}-\{x\}$ and
$\mathrm{x} \notin \tau_{1,2}-\mathrm{cl}(\mathrm{A})$ which is a contradiction.
Therefore $\mathrm{x} \in \tau_{1,2} \operatorname{cl}(\mathrm{~A})$.
Case 2:The set $\{x\}$ is $\tau_{1,2}$-open. Since $\mathrm{x} \in \tau_{1,2}-\mathrm{cl}(\mathrm{A})$, then $\{x\} \cap \mathrm{A} \neq \phi$ implies $\mathrm{x} \in \mathrm{A}$. In both the cases, $\mathrm{x} \in \mathrm{A}$. So , $\tau_{1,2}-\mathrm{cl}(\mathrm{A})=\mathrm{A}$ or equivalently A is $\tau_{1,2}$-closed.This shows that X is X is $(1,2)^{*}-T_{\alpha^{*}}$-space

Theorem 5.4

(i) $(1,2)^{*}-\alpha^{*} \mathrm{O}(\mathrm{X}) \subset(1,2)^{*}-\mathrm{GO}(\mathrm{X})$
(ii)A space is $(1,2)^{*}{ }_{g} T_{\alpha^{*}}$-space iff $(1,2)^{*}-\alpha^{*} \mathrm{O}(\mathrm{X})=(1,2)^{*}-$ GO(X).
Proof:(i)Let A be $(1,2)^{*}-\alpha^{*}$ open. Then $\mathrm{X}-\mathrm{A}$ is $(1,2)^{*}-\alpha^{*}$ closed and so $(1,2)^{*}$ - g - closed. Hence A is $(1,2)^{*}$-g-open.
Hence $(1,2)^{*}-\alpha^{*} \mathrm{O}(\mathrm{X}) \subset(1,2)^{*}-\mathrm{GO}(\mathrm{X})$
(ii)Necessity: Let X be $(1,2)^{*}-T_{\alpha^{*}}$-space. Let A $\in(1,2)^{*}$ $\mathrm{GO}(\mathrm{X})$. Then $\mathrm{X}-\mathrm{A}$ is $(1,2)^{*}$-g-closed. Since the space X is $(1,2) *-{ }_{g} T_{\alpha^{*}}$-space, $\mathrm{X}-\mathrm{A}$ is $(1,2)^{*}-\alpha^{*}$ closed.
The above implies A is $(1,2)^{*}-\alpha^{*}$ open in X . Hence $(1,2)^{*}-$ $\alpha^{*} \mathrm{O}(\mathrm{X})=(1,2)^{*}-\mathrm{GO}(\mathrm{X})$
Sufficiency: Let $(1,2)^{*}-\alpha^{*} \mathrm{O}(\mathrm{X})=(1,2)^{*}-\mathrm{GO}(\mathrm{X})$.
Let A be $(1,2)^{*}$-g-closed. Then $\mathrm{X}-\mathrm{A}$ is $(1,2)^{*}$-g-open and $\mathrm{X}-\mathrm{A} \in(1,2)^{*}-\alpha^{*} \mathrm{O}(\mathrm{X})$.Hence A is $(1,2)^{*}-\alpha^{*}$ closed and hence A is $(1,2)^{*}{ }_{g} T_{\alpha^{*}}$-space.

References

[1] M. E. Abd El-Monsef, S. Rose Mary and M. Lellis
Thivager, "On αg-closed sets in topological spaces", Assiut University Journal of Mathematics and Computer science, Vol. 36(1), pp. 43-51, 2007.
[2] Antony Rex Rodrigo.J,Ravi.O, Pandi.A, Santhana.C.M, "On (1,2)*-s-Normal spaces and Pre-(1,2)*-gs- closed functions", Int. J. of Algorithms Computing and Mathematics,Vol.4, No1, pp 29-42,Feb-2011.
[3] I. Arockiarani and K. Mohana, " $(1,2)^{*}-\pi g \alpha$-closed sets and (1, 2)*-Quasi- α-normal Spaces in Bitopological settings", Antarctica J. Math., Vol7(3) ,pp 345-355,2010.
[4] J.Dontchev, "On generalizing semi-pre open sets",Mem.Fac.Sci.Kochi Univ.Ser.A.Math.16,pp35-48,1995.
[5]V.Jeyanthi and C.Janaki, "On $(1,2)^{*}-\pi$ wg-closed sets in bitopological spaces", Int. Journal of Math. Archive Vol (5),pp2047-2057,2012.
[6] Kelly.J.C, "Bitopological spaces", proceedings, [10] K. Mohana, I. Arockiarani, " $(1,2)^{*}-\pi \mathrm{g}$-homeomorphims London, Math.Soc., Vol.13, pp-71-89, 1983.
[7] Lellis Thivagar.M and M.Margaret Nirmala,R.Raja Rajeshwari and E.Ekici, "A | note on $(1,2)^{*}$ - GPR-closed sets", Math .Maced, Vol.4,pp.33-42,2006.
[8] M. Lellis Thivagar, O. Ravi, "On stronger forms of (1, 2)*quotient mappings in bitopological spaces".Internat. J. Math. Game theory and Algebra. Vol. 14(6) pp 481-492, 2004.
[9] Levine.N, "Generalized closed sets in topology",Rend.circ. Mat.Palermo,19, pp 89-96, 1970. in Bitopological spaces", CiiT Inter. J. Automation and Autonomous System, April 2011.
[11] T.Noiri ,H.Maki and J.Umehara, "Generalized preclosed functions" ,Mem.Fac.Sci.Kochi Univ.Math.Vol 19, pp13-20, 1998.
[12] Park.J.H, "On π gp-closed sets in topological spaces", Acta, Mathematica Hungarica, Vol 112, (4),pp 257-283.
[13]Veronica Vijayan, Priya.F, " α *-closed sets in topological spaces", IJCA, Vol 4(3) ISSN:2250-1797,pp 49-60, July- August 2013.

