

A.Devika and L.Elvina Mary / Elixir Adv. Math. 101 (2016) 44027-44032 Available online at www.elixirpublishers.com (Elixir International Journal)

Advanced Mathematics

Elixir Adv. Math. 101 (2016) 44027-44032

(1,2) * - α^* - CLOSED SETS IN BITOPOLOGICAL SPACES

A.Devika¹ andL.Elvina Mary²

¹ PSG College of Arts and Science , Coimbatore.

² Nirmala College for Women , Coimbatore.

ARTICLE INFO

Article history: Received: 3 November 2016; Received in revised form: 17 December 2016; Accepted: 27 December 2016; Keywords $(1, 2) * - \alpha^*$ - closed sets $(1, 2) * - \alpha^*$ - space

 $(1,2)^{*}- {}_{g}T_{a^{*}}$ -space.

1.Introduction

The study of bitopological spaces was first initiated by J.C. Kelly [6] in the year 1963. Levine [9] introduced the notions of generalized closed sets and studied their properties. Veronica Vijayan and K.Priya [13] investigated the concept of α^* closed sets in topological space. Lellis Thivagar et al [8] developed the concept of $(1,2)^*$ -semi open sets, $(1, 2)^*$ - α -open sets, $(1, 2)^*$ -generalized closed sets, $(1, 2)^*$ -a-open sets, $(1, 2)^*$ -generalized closed sets, $(1, 2)^*$ -semi generalized closed sets in bitopological spaces. In this paper, we introduce the notion of $(1,2)^*$ - α^* -closed sets and investigate their properties. Further, we study $(1,2)^*$ - T_{α^*} -space, $(1,2)^*$ - ${}_{g}T_{\alpha^*}$ -space

and their properties.

2. Preliminaries

Throughout this paper, X and Y denote the bitopological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) respectively, on which no separation axioms are assumed.

Definition: 2.1 [8] A subset S of a bitopological space X is said to be $\tau_{1,2}$ -open if S=AUB where $\tau_1 \in A$ and $\tau_2 \in B$. A subset S of X is said to be (i) $\tau_{1,2}$ -closed if the complement of S is $\tau_{1,2}$ -open. (ii) $\tau_{1,2}$ -clopen if S is both $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed.

Definition: 2.2 [8] Let S be a subset of the bitopological space X. Then the $\tau_{1,2}$ - interior of S denoted by $\tau_{1,2}$ - int(S) is defined by \cup {G: G \subseteq S and G is $\tau_{1,2}$ - open} and $\tau_{1,2}$ - closure of S denoted by $\tau_{1,2}$ -cl(S) is defined by \cap {F: S \subseteq F and F is

 $\tau_{1,2}$ - closed}.

Definition: 2.3 A subset A of a bitopological space X is said to be

(i) (1,2)*-pre-open [8] if $A \subseteq \tau_{1,2} - int(\tau_{1,2} - cl(A))$.

Tele: E-mail address: elvinamary79@gmail.com

ABSTRACT

The aim of this paper is to introduce a new class of sets called $(1, 2)^{*-} \alpha^{*}$ -closed sets in topological spaces and to study their properties. Further, we define and study $(1,2)^{*-} T_{\alpha^{*}}$ -space, $(1,2)^{*-} {}_{g}T_{\alpha^{*}}$ -space and their properties..

© 2016 Elixir All rights reserved

- (ii) (1,2)*-semiopen [8] if $A \subseteq \tau_{1,2} cl(\tau_{1,2} int(A))$.
- (iii) (1,2)*-regular open [8] if $A = \tau_{1,2} int(\tau_{1,2} cl(A))$.

(iv)(1,2)*- α -open[8]if A $\subseteq \tau_{1,2}$ - int($\tau_{1,2}$ - cl($\tau_{1,2}$ - int(A))). (v) (1,2)*-generalized closed(briefly (1,2)*-g-closed) set[8] if $\tau_{1,2}$ - cl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ open set in X vi)(1,2)*-semi-generalized closed(briefly (1,2)*-sg-closed) set[8] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is (1,2)*-semi-generalized closed(briefly (1,2)*-sg-closed) set[8] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is (1,2)*-semi-generalized closed(briefly (1,2)*-sg-closed) set[8] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is (1,2)*-semi-generalized closed(briefly (1,2)*-sg-closed) set[8] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is (1,2)*-semi-generalized closed(briefly (1,2)*-sg-closed) set[8] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is (1,2)*-semi-generalized closed(briefly (1,2)*-sg-closed) set[8] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is (1,2)*-semi-generalized closed(briefly (1,2)*-sg-closed) set[8] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is (1,2)*-semi-generalized closed(briefly (1,2)*-sg-closed) set[8] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is (1,2)*-semi-generalized closed(briefly (1,2)*-sg-closed) set[8] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is (1,2)*-semi-generalized closed(briefly (1,2)*-sg-closed) set[8] if (1,2)*-sg-closed(briefly (1,2)*-sg-closed) set[8] if (1,2)*-sg-closed(briefly (1,2)*-sg

(vii)(1,2)*-generalized semi closed(briefly (1,2)*-gs-closed) set[2] if (1,2)*- scl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ - open set in X.

(viii)(1,2)*-generalized α - closed(briefly(1,2)*-g α - closed) set[8] if (1,2)*- α cl(A) \subseteq U whenever A \subseteq U and U is (1,2)*- α - open set in X

(ix)(1,2)*- α – generalized closed(briefly (1,2)*- α g-closed) set[8] if (1,2)*- α cl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ – open set in X.

(x)(1,2)*- π generalized closed(briefly (1,2)* - πg - closed) [10] if $\tau_{1,2}$ - cl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ - π - open set in X.

(xi)(1,2)*- π generalized α - closed((briefly (1,2)* - $\pi g \alpha$ - closed) set[2] if (1,2)* - α cl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2} - \pi$ -open set in X.

(xiv)(1,2)*- π generalized pre-closed(briefly (1,2)*- π gpclosed) set[12] if (1,2)*-pcl(A) \subseteq U whenever A \subseteq U and U

is $\tau_{1,2} - \pi$ -open set in X.

 $(xv)(1,2)^*$ -gsp-closed set [4] if $(1,2)^*$ - spcl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ – open set in X.

 $(xvi)(1,2)^*$ -gpr- closed set[7] if $(1,2)^*$ -pcl(A) \subseteq U whenever $A \subset U$ and U is $(1,2)^*$ -regular open set in X.

 $(xvii)(1,2)^{*-}\pi^{*}$ g-closedset[5]ifcl(τ_{12} -int(A)) \subseteq U whenever $A \subseteq U$ and U is $\tau_{12} - \pi$ -open set in X.

(xviii) a (1,2)*- weakly generalized closed[5] (briefly (1,2) *wg- closed) if $\tau_{1,2} - cl(\tau_{1,2} - int(A)) \subseteq U$ whenever A \subseteq U and U is $\tau_{1,2} - \pi$ -open set in X.

The complements of all the above mentioned open sets are called their respective closed sets. The family of all (1,2)*open ((1,2)*-regular open, (1,2)*-semi open, (1,2)*- α -open) sets of Х will be denoted by $(1,2)^{*}$ -O(X)(resp.(1,2)*RO(X), $(1,2)^*-SO(X),(1,2)^*-\alpha O(X))$. The (1,2)*-semi-closure(resp. (1,2)*-preclosure,(1,2)*- α -closure) of a subset A of X is denoted by(1,2)*-scl(A) $(resp.(1,2)*-pcl(A),(1,2)*-\alpha cl(A))$ defined as the intersection of $(1,2)^*$ -semi-closed(resp. $(1,2)^*$ -preclosed, $(1,2)^*\alpha$ all closed) sets containing A.

3. (1,2) * - α^* - closed sets

Definition : 3.1 A subset A of a bitopological space X is called(1,2) * - α^* - closed set if $\tau_{1,2} - cl(A) \subseteq U$ whenever $A \subseteq U$ and U is (1,2) * - α - open in X. The collection of all $(1,2)^* - \alpha^*$ - closed sets in X is denoted by $(1,2)^* - \alpha^* C(X)$

Theorem 3.2

i)Every $\tau_{1,2}$ - closed set is $(1,2)^*$ - α^* - closed set.

ii)Every (1,2)*- α^* -closed set is (1,2)*- g-closed set. iii)Every (1,2)*- α^* -closed set is (1,2)*- gs-closed set. iv)Every (1,2)*- α^* -closed set is (1,2)*- αg -closed set. v) Every $(1,2)^*$ - α^* -closed set is $(1,2)^*$ - α -closed set. vi) Every $(1,2)^*$ - α^* -closed set is $(1,2)^*$ - $g\alpha$ -closed set. vii) Every $(1,2)^*$ - α^* -closed set is $(1,2)^*$ - πg -closed set. viii)Every (1,2)*- α^* -closed set is (1,2)*- $\pi g \alpha$ -closed set. x) Every (1,2)*- α^* -closed set is (1,2)*- gp -closed set.

xi) Every (1,2)*- α^* -closed set is (1,2)*- πgp -closed set. xii) Every (1,2)*- α^* -closed set is (1,2)*- $\pi^* g$ -closed set.

xiii)Every $(1,2)^*$ - α^* -closed set is $(1,2)^*$ - gpr -closed set.

xiv)Every $(1,2)^*$ - α^* -closed set is $(1,2)^*$ - gsp-closed set.

xv)Every (1,2)*- α^* -closed set is (1,2)*- wg -closed set. **Proof:**

i)Straight forward.

ii)Suppose A is $(1,2)^*$ - α^* -closed set and U be any $\tau_{1,2}$ – open set containing A. Since every $\tau_{1,2}$ – open set is $(1,2)^*$ - α -open set and then , $\tau_{1,2} - cl(A) \subseteq U$ for every subset A of X. Thus, $\tau_{1,2} - cl(A) \subseteq U$ and hence A is $(1,2)^*$ -gclosed set.

iii) Suppose A is $(1,2)^*$ - α^* -closed set and U be any $\tau_{1,2}$ - open set containing A. Since every $\tau_{1,2}$ - open set is $(1,2)^*$ - α -open set and then , $\tau_{1,2} - cl(A) \subseteq U$ for every subset A of X. Therefore, $(1,2)^* - scl(A) \subseteq \tau_{1,2} - cl(A) \subseteq U$ and hence A is $(1,2)^*$ - gs-closed set. iv)The proof is obvious.

v)The proof is straight forward, since every $\tau_{1,2}$ -open set is $(1,2)^*$ - α -open set

vi)It is true that $(1,2)^* - \alpha c l(A) \subseteq \tau_{1,2} - c l(A) \subseteq U$, for every subset A of X.

vii) Suppose A is $(1,2)^*$ - α^* -closed set and U be any set containing A. Since $\tau_{1,2} - \pi$ – open every $\tau_{1,2} - \pi$ - open set is $(1,2)^*$ - α -open set and then , $\tau_{1,2} - cl(A) \subseteq U$ for every subset A of X. Thus, $\tau_{1,2} - cl(A) \subseteq U$ and hence A is $(1,2)^*$ -g-closed set.

viii) It is true that $(1,2)^* - \alpha cl(A) \subseteq \tau_{1,2} - cl(A) \subseteq U$, for every subset A of X. ix) The proof is obvious.

x) It is true, since $(1,2)^* - pcl(A) \subseteq \tau_{1,2} - cl(A) \subseteq U$, for evev subset A of X xi)The proof is straight forward.

xii) Suppose A is $(1,2)^*$ - α^* -closed set and U be any $\tau_{1,2} - \pi$ – open set containing A. Since every $\tau_{1,2} - \pi$ - open set is $(1,2)^*$ - α -open set and then , $\tau_{1,2} - cl(\tau_{1,2} - int(A) \subseteq \tau_{1,2} - cl(A) \subseteq U$ for every subset A of X. Thus, $\tau_{1,2} - cl(\tau_{1,2} - int(A)) \subseteq U$ and hence A is $(1,2)^*$ - $\pi^* g$ -closed set. xiii)The proof is obvious. xiv)The proof is obvious. xv)The proof is obvious.

Remark :3.3 The converse of the above results need not be true as seen in the following examples. Example: 3.4

i)Let $\overline{X} = \{a, b, c, d\}$ $\tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{c.d\}\}$ Then the set $\{b, c\}$ is $(1,2)^*$ - α^* - closed set but not $\tau_{1,2}$ – closed.

ii)Let
$$X = \{a, b, c, d\}$$

 $\tau_1 = \{\phi, X, \{a\}, \{d\}, \{a.d\}, \{c, d\}, \{a, c, d\}\},$
 $\tau_2 = \{\phi, X, \{a.c\}\}$
Then the set $\{a, b, d\}$ is $(1,2)^*$ -g- closed set but not $(1,2)^*$ - α^* - closed.

iii) In example 3.4 (ii), $\{a\}and\{a,c\}$ are $(1,2)^*$ -gs- closed set but not $(1,2)^*$ - α^* - closed.

iv)) In example 3.4 (ii), $\{c\}$ is $(1,2)^*$ - αg - closed set but not $(1,2)^{*} - \alpha^{*} - closed.$

v)Let
$$X = \{a, b, c, d\}$$
 $\tau_1 = \{\phi, X, \{a\}, \{b, c, d\}\},$
 $\tau_2 = \{\phi, X, \{c\}, \{a, b, d\}\}$

Then the set $\{b\}$ is $(1,2)^*$ - α - closed set but not $(1,2)^*$ - α^* - closed.

vi) In example 3.4 (ii), $\{c\}$ is $(1,2)^*$ - $g\alpha$ - closed set but not $(1,2)^*$ - α^* - closed.

vii)In example 3.4 (ii), $\{a, b, d\}$ is $(1,2)^*-\pi g$ - closed set but not $(1,2)^*-\alpha^*$ - closed.

viii) In example 3.4 (ii), $\{a\}$ and $\{c\}$ are $(1,2)^*$ - πgs - closed set but not $(1,2)^*$ - α^* - closed.

ix) In example 3.4 (ii), $\{c\}$ is $(1,2)^*$ - $\pi g \alpha$ - closed set but not $(1,2)^*$ - α^* - closed.

x) In example 3.4 (ii), $\{c\}$ is $(1,2)^*$ - gp - closed set but not $(1,2)^*$ - α^* - closed.

xi)In example 3.4 (ii), $\{c\}$ is $(1,2)^*-\pi gp$ - closed set but not $(1,2)^*-\alpha^*$ - closed.

xii) In example 3.4 (ii), $\{a, b, d\}$ is $(1,2)^*$ - π^*g - closed set but not $(1,2)^*$ - α^* - closed.

xiii) In example 3.4 (ii), $\{c\}$ and $\{a, d\}$ are $(1,2)^*$ - gpr-closed set but not $(1,2)^*$ - α^* - closed.

xiv) In example 3.4 (ii), $\{a\}$ is (1,2)*- gsp - closed set but not (1,2)*- α^* - closed.

xv)In example 3.4 (ii), $\{c\}$ and $\{a, b, d\}$ are $(1,2)^*$ - wg - closed set but not $(1,2)^*$ - α^* - closed.

Remark: 3. 5 The following diagram shows the relationships of $(1, 2)^*$ - α^* - closed sets with other known existing sets. A \rightarrow B represents A implies B, but not conversely.

2. $(1, 2)^*$ -g-closed set 3. $(1, 2)^*$ -gs-closed set.

4. $(1, 2)^*$ - ag-closed set

4. $(1, 2)^{*-}$ ug-closed 5. $(1, 2)^{*-}$ α-closed set

6. (1, 2)*- gα-closed set 7. (1, 2)*- πg-closed set

- 8. $(1, 2)^*$ α^* -closed set
- 0. $(1, 2)^*$ a -closed se

9. (1, 2)*- πgα-closed 10. (1, 2)*- gp-closed set

10. $(1, 2)^{*}$ - gp-closed set 11. $(1, 2)^{*}$ - π gp-closed set (1, 2)*- π*g-closed set.
 (1, 2)*- gpr-closed set.
 (1, 2)*- gsp-closed set.
 (1, 2)*- wg-closed set.

Proposition 3.6: Finite union of $(1,2)^* - \alpha^* - \text{closed sets}$ are $(1,2)^* - \alpha^* - \text{closed set}$.

Proof: Let $A \cup B \subseteq U$ where U is α – open. Since A and B are $(1,2)^*$ - α^* – closed sets, $\tau_{1,2} - cl(A) \subseteq U$ and $\tau_{1,2} - cl(B) \subseteq U$. Now $\tau_{1,2} - cl(A \cup B) \subseteq U$. Hence $A \cup B$ is $(1,2)^* - \alpha^*$ – closed set.

Theorem 3.7 : If a subset A of X is both $(1,2)^* - \alpha$ – open and $(1,2)^* - \alpha^*$ – closed, then it is $\tau_{1,2}$ – *closed*.

Proof:Let A be a subset of X which is both $(1,2)^* - \alpha$ - open and $(1,2)^* - \alpha^*$ - closed.Then $\tau_{1,2} - cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^* - \alpha$ - open in X. Also $A \subseteq \tau_{1,2} - cl(A)$.This implies $\tau_{1,2} - cl(A) = A$.Hence A is $\tau_{1,2} - closed$.

Proposition 3.8:For any $x \in X$, its complement $X - \{x\}$ is $(1,2)^* - \alpha^* - \text{closed or } (1,2)^* - \alpha - \text{open.}$

Proof : Suppose $X - \{x\}$ is not $(1,2)^* - \alpha$ - open. Then X is the only $(1,2)^* - \alpha$ - open set containing $X - \{x\}$. That is, $X - \{x\} \subseteq X$ and X is $(1,2)^* - \alpha$ - open. Then, $\tau_{12} - cl(X - \{x\}) \subseteq X$ whenever $X - \{x\} \subseteq X$ and X is $(1,2)^* - \alpha$ - open. This implies $X - \{x\}$ is $(1,2)^* - \alpha^*$ - closed.

Proposition 3.9: If A is $(1,2)^* - \alpha^* - \text{closed}$ and $A \subseteq B \subseteq \tau_{1,2} - cl(A)$, then B is also $(1,2)^* - \alpha^* - \text{closed}$. **Proof**: Let $B \subseteq U$, where U is $(1,2)^* - \alpha - \text{open}$ in X. Then $A \subseteq B$ implies $A \subseteq U$. Since A is $(1,2)^* - \alpha^* - \text{closed}$ implies $\tau_{1,2} - cl(A) \subseteq U$. Given $B \subseteq \tau_{1,2} - cl(A)$ implies $\tau_{1,2} - cl(B) \subseteq \tau_{1,2} - cl(A) \subseteq U \Rightarrow \tau_{1,2} - cl(B) \subseteq U$. Therefore B is $(1,2)^* - \alpha^* - \text{closed}$.

Proposition 3.10: A is $(1,2)^* - \alpha^* - \text{closed set if and only}$ if $\tau_{1,2} - cl(A) - A$ does not contain any $(1,2)^* - \alpha - \text{closed}$ set.

Proof :Necessity : Let F be an $(1,2)^* - \alpha$ - closed.set such that $F \subseteq \tau_{1,2} - cl(A) - A$.Since A is $(1,2)^* - \alpha^*$ - closed, $\tau_{1,2} - cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^* - \alpha$ open in X. Then $A \subseteq X - F$. Since A is $(1,2)^* - \alpha^*$ closed, $\tau_{1,2} - cl(A) \subseteq X - F$ whenever $A \subseteq X - F$ and X - F is $(1,2)^* - \alpha$ - open in X. So $F \subseteq X - \tau_{1,2} - cl(A)$.But

$$F \subseteq \tau_{1,2} - cl(A) - A.$$
 Therefore

 $F \subseteq \left[\left(X - \tau_{1,2} - cl(A) \right) \cap \left(\tau_{1,2} - cl(A) - A \right) \right] = \phi \text{.Thus } F = \phi \text{.}$

Sufficiency: Let A be a subset of X such that $\tau_{1,2} - cl(A) - A$. does not contain any non-empty $(1,2)^*$ - α - closed set. Let U be $(1,2)^* - \alpha$ - open set such that $A \subseteq U$. If $\tau_{1,2} - cl(A) \not\subset U$, then $\tau_{1,2} - cl(A) \cap U^c \neq \phi$ and $\tau_{1,2} - cl(A) \cap U^c$ is $(1,2)^* - \alpha$ - closed set. But $\phi = \tau_{1,2} - cl(A) \cap U^c \subseteq \tau_{1,2} - cl(A) - A$. That is, $\tau_{1,2} - cl(A) - A$ contains a non-empty $(1,2)^* - \alpha$ - closed set which is a contradiction. Therefore $\tau_{1,2} - cl(A) \subseteq U$ and hence A is $(1,2)^* - \alpha$ - closed set. **Proposition 3.11** :If A is $(1,2)^* - \alpha^*$ - closed set ,then $(1,2)^* - \alpha cl(x) \cap A \neq \phi$ holds, for each $x \in \tau_{1,2} - cl(A)$

Proof:Suppose $(1,2)^* - \alpha cl(x) \cap A = \phi$ holds, for each $x \in \tau_{1,2} - cl(A)$. We $A \subseteq X - (1,2)^* - \alpha cl(\{x\}) \cap A \neq \phi$. Since A is $(1,2)^* - \alpha^*$ - closed set, $\tau_{1,2} - cl(A) \subset X - [(1,2)^* - \alpha cl(x)]$ implies $x \notin \tau_{1,2} - cl(A)$, which is a contradiction. Hence $(1,2)^* - \alpha cl(x) \cap A \neq \phi$ holds, for each $x \in \tau_{1,2} - cl(A)$.

4. $(1,2)^* - \alpha^*$ -Open Sets

Definition 4.1 A set $A \subseteq X$ is called $(1,2)^{*-} \alpha^{*}$ -open set iff its complement is $(1,2)^{*-} \alpha^{*}$ -closed set and the collection of all $(1,2)^{*-} \alpha^{*}$ -open sets jnX is denoted by $(1,2)^{*-} \alpha^{*} O(X)$. **Remark 4.2i**) $\tau_{1,2} - cl(X - A) = X - \tau_{1,2} - int(A)$ ii) For any $A \subseteq X, (\tau_{1,2} - int(\tau_{1,2} - cl(A) - A)) = \phi$

Theorem: 4.3 A subset $A \subseteq X$ is $(1,2)^*$ - α^* -open set iff $F \subseteq \tau_{1,2} - int(A)$ wherever F is $(1,2)^*$ - α -closed set such that $F \subseteq A$.

Proof:Let F is $(1,2)^{*-} \alpha$ -closed set such that $F \subseteq A$.Since X-A is $(1,2)^{*-} \alpha$ -closed and $X - A \subseteq X - F$, we have $F \subseteq \tau_{1,2} - \operatorname{int}(A)$.Conversely, $F \subseteq \tau_{1,2} - \operatorname{int}(A)$ where F is $(1,2)^{*-} \alpha$ -closed set and $F \subseteq A$.Since $F \subseteq A$ and X - F is $(1,2)^{*-} \alpha$ -open ,

 $\tau_{1,2} - cl(X - A) = X - \tau_{1,2} - int(A) \subseteq X - F$. Therefor e A is $(1,2)^*$ - α^* -open set.

Theorem :4.4 If $\tau_{1,2} - int(A) \subseteq B \subseteq A$ and A is $(1,2)^*$ - α^* -open set, then B is $(1,2)^*$ - α^* -open set.

Proof $\tau_{1,2} - int(A) \subseteq B \subseteq A \Rightarrow X - A \subseteq X - B \subseteq X - \tau_{1,2} - int(A).$ That is $X - A \subseteq X - B \subseteq \tau_{1,2} - cl(X - A).$ Since X - Ais $(1,2)^{*-} \alpha^{*}$ -closed set, by Theorem 4.3 X - B is $(1,2)^{*-} \alpha^{*}$ -closed set. This implies, B is $(1,2)^{*-} \alpha^{*}$ -open set. **Theorem :4.5** If $A \subseteq X$ is $(1,2)^{*-} \alpha^{*}$ -closed set, then

 $(\tau_{1,2} - cl(A)) - A$ is $(1,2)^* - \alpha^*$ -open set.

Proof:Let A be $(1,2)^*$ - α^* -closed and F be $(1,2)^*$ - α closed set, such that $F \subseteq (\tau_{1,2} - cl(A)) - A$. Then by proposition 3.10,

$$F = \phi. F \subseteq (\tau_{1,2} - \operatorname{int}(\tau_{1,2} - cl(A) - A)) = \phi$$
 This

implies, $(\tau_{1,2} - cl(A)) - A$ is $(1,2)^* - \alpha^*$ -open set.

Theorem :4.6 If A and B are $(1,2)^*$ - α^* -open sets ,then $A \cap B$ is $(1,2)^*$ - α^* -open set.

Proof:Let $X - (A \cap B) = (X - A) \cup (X - B) \subseteq F$, where F is $(1,2)^{*-} \alpha$ -open. Since $X - A \subseteq F, X - B \subseteq F$ and Aand B are $(1,2)^{*-} \alpha^{*}$ -open sets, we have $\tau_{1,2} - cl(X - A) \subseteq F, \tau_{1,2} - cl(X - B) \subseteq F$. So,

$$\tau_{1,2} - cl[X - (A \cap B)] \subseteq F$$
. Therefore $A \cap B$ is $(1,2)^*$ - α^* -
open set.

Theorem:4.7 For any

 $A \subseteq X, \tau_{1,2} - \operatorname{int}(A) \subseteq (1,2)^* - \alpha^* - \operatorname{int}(A) \subseteq A.$

Proof: The proof follows immediately, since every $au_{1,2}$ - open

set is $(1,2)^*$ - α^* -open set.

Definition :4.8 For a subset A of X, we define the $(1,2)^*$ - α^* -closure of A as $(1,2)^*$ - α^* -cl(A) = $\bigcap \{F : A \subseteq F, F \text{ is } (1,2)^* - \alpha^* - closed \text{ in } X \}.$

Lemma :4.9 Let A be a subset of X and $x \in X$. Then $x \in (1,2)^*$ - α^* -cl(A) if and only if $V \cap A \neq \phi$, for every $(1,2)^*$ - α^* -open set V containing x.

Proof:Necessity: Suppose that there exists a $(1,2)^*$ - α^* -open set V containing x such that $V \cap A = \phi$. Since $A \subseteq X - V$, $(1,2)^*$ - α^* -cl(A) $\subseteq X - V$, and this implies $x \notin (1,2)^*$ - α^* -cl(A), a contradiction.

Sufficiency: Suppose that, $x \notin (1,2)^*$ - α^* -cl(A). Then, there exists $(1,2)^*$ - α^* -closed set F containing A such that $x \notin F$. Then $x \in X - F$ and X - F is $(1,2)^*$ - α^* -open. Also, $(X - F) \cap A = \phi$, a contradiction.

Definition :4.10 Let A and B be subset of X. Then A and B are said to be $(1,2)^*$ -separated sets if $A \cap \tau_{1,2} - cl(B) = B \cap \tau_{1,2} - cl(A) = \phi$.

Definition :4.11 A space X is said to be a $(1,2)^*$ - T_{α^*} -space

if every (1,2)*- α^* -closed set is $\tau_{1,2}$ -closed set.

Definition:4.12 Let X be a space and $A \subseteq X$, $(1,2)^*-\alpha^* - int(A)$ is the union of all $(1,2)^*-\alpha^*$ - open sets contained in A.

Theorem:4.13 If A and B are $(1,2)^*$ - separated sets in a $(1,2)^*$ - T_{a^*} -space ,then $A \cup B$ is $(1,2)^*$ - α^* -open.

Proof: Since A and B are $(1,2)^*$ -separated sets, $A \cap \tau_{1,2} - cl(B) = B \cap \tau_{1,2} - cl(A) = \phi$.Let F be a $(1,2)^*$ - α -closed set and

$$F \subseteq A \cup B.F \cap \tau_{1,2} - cl(A) \subseteq (A \cup B) \cap \tau_{1,2} - cl(A) = (A \cap \tau_{1,2} - cl(B)) \cup (B \cap \tau_{1,2} - cl(A)) = A \cup \phi = A.$$
 Sin

ce X is a $(1,2)^*$ - T_{α^*} -space , every $(1,2)^*$ - α^* -closed set is $\tau_{1,2}$ -closed ,F is $\tau_{1,2}$ -closed and F \cap $\tau_{1,2}$ -cl(A) is $\tau_{1,2}$ -closed.But every $\tau_{1,2}$ -closed set is (1,2)*- α^* -closed set .So it is $(1,2)^*$ - α^* -closed.Then A is $(1,2)^*$ - α^* -open. This implies, $F \cap \tau_{1,2} - cl(A) \subseteq (1,2)^*$ - int (A). Similarly, $F \cap \tau_{1,2} - cl(B) \subseteq (1,2)^*$ -int (B).Now, $F \subset (F \cap A) \cup (F \cap B) \subset$ $(F \cap \tau_{1,2} - cl(A)) \cup (F \cap \tau_{1,2} - cl(B)) \subseteq$ $(1,2)^*$ -int (A) $\cup (1,2)^*$ -int (B) $\subset (1,2)^*$ -int (A \cup B). That is, $F \subset (1,2)^*$ -int $(A \cup B)$. Hence, $A \cup B$ is $(1,2)^*$ - α^* -open. Theorem:4.12 Let A be a subset of a space X. Then $X - |(1,2)^* - \alpha^* - int(A)| = (1,2)^* - \alpha^* - cl(X - A).$ **Proof:**Let $x \in X - [(1,2)^* - \alpha^* - \operatorname{int}(A)]$. Then $x \notin (1,2)^* - \alpha^* - \operatorname{int}(A)$. That is, every $(1,2)^* - \alpha^*$ -open set B containing x is such that $B \not\subset A$. This implies, every $(1,2)^{*}$ - α^{*} -open set B containing x intersects X-A. This $x \in (1,2)^* - \alpha^* - cl(X-A)$. Conversely, means, let $x \in (1,2)^* - \alpha^* - cl(X - A)$. Then, every $(1,2)^* - \alpha^*$ -open set B containing x intersects X-A. That is, every $(1,2)^*$ - α^* -open set B containing x is such that B ⊄ A. This implies $x \notin (1,2)^* - \alpha^* - int(A)$. That is, $x \in X - |(1,2)^* - \alpha^* - \operatorname{int}(A)|$. Thus, $(1,2)^*-\alpha^*-cl(X-A) \subseteq X - [(1,2)^*-\alpha^*-int(A)]$. Hence $X - [(1,2)^* - \alpha^* - int(A)] = (1,2)^* - \alpha^* - cl(X - A).$ Similarly, we have $_{X-[(1,2)^*-\alpha^*-cl(A)]} = (1,2)^* - \alpha^*$ -int (X-A). 5.(1,2)* - T_{α^*} - Spaces : **Definition :5.1** A space X is called $(1,2)^*$ - T_{a^*} - space if every

 $(1,2)^* - \alpha^*$ -closed set is τ_{12} closed set.

Definition :5.2 A space X is called $(1,2)^{*-} {}_{g}T_{\alpha^{*}}$ - space if

every(1,2)* -g-closed set is (1,2)* α^* -closed set.

Theorem: 5.3 For a bitopological space (X, τ_1, τ_2) the following conditions are equivalent. (i) X is (1.2)* T space

(i) X is $(1,2)^{*-} T_{\alpha^{*}}^{-}$ -space

(ii) Every singleton of X is either $(1,2)^* - \alpha$ - closed or $\tau_{1,2}$ -Open

Proof:(i) \rightarrow (ii): Let $x \in X$ and assume that $\{x\}$ is not $(1,2)^*$ - α - closed. Then by Proposition 3.8, $X - \{x\}$ is not $(1,2)^*$ -

 α -open and is trivially (1,2)*- α^* -closed set . Since X is (1,2)*- T_{α^*} -space , every (1,2)*- α^* -closed set is

 $au_{1,2}$ -closed. This implies, X-{x} is $au_{1,2}$ -closed and hence {x} is $au_{1,2}$ -open .

(ii) \rightarrow (i): Assume every singleton of X is either

 $(1,2)^* - \alpha$ -closed or $\tau_{1,2}$ -open. Let $A \subset X$ be $(1,2)^* - \alpha$ closed or $\tau_{1,2}$ -open. Obviously $A \subset \tau_{1,2}$ -cl(A) and $x \in \tau_{1,2}$ -cl(A). To prove that $A = \tau_{1,2}$ -cl(A). **Case 1**:Suppose the set $\{x\}$ is $(1,2)^* - \alpha$ -closed. If $x \notin A$,

Case I:Suppose the set $\{x\}$ is $(1,2)^* - \alpha$ -closed. If $x \notin A$ then A \subset X- $\{x\}$.Since A is $(1,2)^* - \alpha$ * closed and X- $\{x\}$ is

 $(1,2)^* - \alpha$ - open, $\tau_{1,2}$ -cl(A) \subset X- $\{x\}$ and

 $x \notin \tau_{1,2}$ -cl(A) which is a contradiction.

Therefore $x \in \tau_{1,2} \operatorname{cl}(A)$.

Case 2:The set $\{x\}$ is $\tau_{1,2}$ -open. Since $x \in \tau_{1,2}$ -cl(A), then $\{x\} \cap A \neq \phi$ implies $x \in A$. In both the cases $,x \in A$. So, $\tau_{1,2}$ -cl(A)= A or equivalently A is $\tau_{1,2}$ -closed. This shows that X is X is $(1,2)^*$ - T_{α^*} -space

Theorem 5.4

(i)(1,2)*- $\alpha^* O(X) \subset (1,2)^* - GO(X)$ (ii)A space is (1,2)*- ${}_{g}T_{\alpha^*}$ -space iff (1,2)*- $\alpha^* O(X) = (1,2)^* - GO(X)$.

Proof:(i)Let A be $(1,2)^*$ - α^* open. Then X–A is $(1,2)^*$ - α^* closed and so $(1,2)^*$ - g- closed. Hence A is $(1,2)^*$ -g-open. Hence $(1,2)^*$ - α^* O(X) $\subset (1,2)^*$ -GO(X)

(ii) Necessity: Let X be $(1,2)^*$ - T_{α^*} -space. Let A $\in (1,2)^*$ -

GO(X). Then X–A is $(1,2)^*$ -g-closed. Since the space X is $(1,2)^*$ - ${}_{g}T_{\alpha^*}$ -space, X–A is $(1,2)^*$ - α^* closed.

The above implies A is $(1,2)^*$ - α^* open in X. Hence $(1,2)^*$ - $\alpha^* O(X)=(1,2)^*-GO(X)$

Sufficiency: Let $(1,2)^*$ - $\alpha^* O(X)=(1,2)^*$ -GO(X). Let A be $(1,2)^*$ -g-closed. Then X–A is $(1,2)^*$ -g-open and X–A $\in (1,2)^*$ - $\alpha^* O(X)$. Hence A is $(1,2)^*$ - α^* closed and hence A is $(1,2)^*$ - $_gT_{\alpha^*}$ -space.

References

[1] M. E. Abd El-Monsef, S. Rose Mary and M. Lellis

Thivager, "On αg -closed sets in topological spaces", Assiut University Journal of Mathematics and Computer science, Vol. 36(1), pp. 43-51, 2007.

[2] Antony Rex Rodrigo.J,Ravi.O, Pandi.A, Santhana.C.M, "On (1,2)*-s-Normal spaces and Pre-(1,2)*-gs- closed functions", Int. J. of Algorithms Computing and Mathematics,Vol.4, No1, pp 29-42,Feb -2011.

[3] I. Arockiarani and K. Mohana, " $(1, 2)^*$ - π g α -closed sets and $(1, 2)^*$ -Quasi- α -normal Spaces in Bitopological settings", Antarctica J. Math., Vol7(3) ,pp 345-355,2010.

[4] J.Dontchev, "On generalizing semi-pre open sets", Mem.Fac.Sci.Kochi Univ.Ser.A.Math.16, pp35-48, 1995.

[5]V.Jeyanthi and C.Janaki, "On $(1,2)^*$ - π wg-closed sets in bitopological spaces", Int. Journal of Math. Archive Vol (5),pp2047-2057,2012.

[6] Kelly.J.C, "Bitopological spaces", proceedings, London, Math.Soc., Vol.13, pp-71-89, 1983.

[7] Lellis Thivagar.M and M.Margaret Nirmala,R.Raja Rajeshwari and E.Ekici, "A | note on (1,2)*- GPR-closed sets", Math .Maced, Vol.4,pp.33-42,2006.

[8] M. Lellis Thivagar, O. Ravi, "On stronger forms of (1, 2)*quotient mappings in bitopological spaces".Internat. J. Math. Game theory and Algebra. Vol. 14(6) pp 481-492, 2004.

[9] Levine.N, "Generalized closed sets in topology", Rend.circ. Mat.Palermo, 19, pp 89-96, 1970.

[10] K. Mohana, I. Arockiarani, " $(1, 2)^*$ - π g-homeomorphims in Bitopological spaces", CiiT Inter. J. Automation and Autonomous System, April 2011.

[11] T.Noiri ,H.Maki and J.Umehara, "Generalized preclosed functions" ,Mem.Fac.Sci.Kochi Univ.Math.Vol 19, pp13-20, 1998.

[12] Park.J.H , "On π gp-closed sets in topological spaces" , Acta , Mathematica Hungarica , Vol 112, (4),pp 257-283.

[13]Veronica Vijayan, Priya.F, " α *-closed sets in topological spaces", IJCA, Vol 4(3) ISSN:2250-1797,pp 49-60, July- August 2013.