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Introduction 

Chlorophenolics are particular class of priority pollutants 

listed by the US EPA under the Clean Water Act [1, 2] and the 

European Decision 2455/ 2001/EC [3]. Chlorophenolics are 

being discharged continually into the aquatic ecosystems by 

various anthropogenic activities, e.g. chlorine pulp bleaching, 

chlorination of drinking water, and incineration [4-6]. 

Chlorophenolics are generated as residual lignin (2.5-4%) 

degradation products during pulp bleaching with chlorination 

processes. The chromophoric and highly oxidised, polymeric 

lignin derivatives produced during pulp bleaching give a dark 

colour to the wastewater [7]. The chlorophenolics which get 

adsorbed on activated charcoal are collectively estimated as 

adsorbable organic halides (AOX) [8]. 

The discharge of pulp bleaching wastewaters with high 

AOX level into the aquatic environment is one of the major 

problems for the paper mills. The high molecular weight 

(HMW >1000 Dalton) (~80%) chlorophenolics are believed to 

be stable and biologically inert [9]. While, the low molecular 

weight (LMW <1000 Dalton) (~20%) fraction is mutagenic 

and toxic. LMW compounds are biorecalcitrant and 

biomagnify [10, 11]. Many chlorophenolics are toxic and 

migrate widely throughout the biosphere and eventually 

concentrate in the adipose tissue of organisms [12]. These 

pollutants pose a serious health concern owing to their 

genotoxicity and high endocrine disrupting potential [13]. 2,4-

dichlorophenol (2,4-DCP), 2,4,5-trichlorophenol (2,4,5-TCP), 

pentachlorophenol (PCP), chlorinated furans, and chloroform 

are carcinogenic, where as chlorocatechols (CC) are strongly 

mutagenic [14]. Thyroid dysfunction, growth retardation, 

decreased fertility, genotoxicity, mutagenicity, feminization or 

masculinization of biota are a few reported adverse health 

effects of chlorophenolics [15]. The chlorophenolics toxicity 

depends on the number and position of chlorine atoms on the 

benzene ring relative to the hydroxyl group [16].  

The wastewater treatment processes (physical and 

biological) utilized by Indian paper mills are inefficient for 

chlorophenolics and colour removal [17]. Hence, adoption of 

advanced oxidation processes (AOPs), e.g. 

Fe(II)/Fe(III)+H2O2, UV/H2O2, UV/O3, 

UV/{Fe(II)/Fe(III)+H2O2}, UV/catalyst/H2O2, is needed. 

AOP’s involve in-situ generation of hydroxyl radicals (OH
•
) 

which are able to convert a wide range of pollutants into 

relatively harmless end products i.e. CO2, H2O, NO3
-
, PO4

3-
, 

and halide ions [18, 19]. The TiO2 photocatalysis has 

demonstrated promising results for the degradation of 

persistent organic pollutants and producing more 

biodegradable and less toxic substances [20, 21].  

The TiO2 irradiation with light (λ < 390 nm), having 

energy ≥3.2eV (band gap energy), produce a hole (h
+
) and 

electron (e
−
) pair in the valence and conduction bands, 

respectively. The e
−
/h

+
 pair can either recombine and dissipate 

the absorbed energy as heat or contribute in pollutants 

degradation reactions. The h
+
 can either directly oxidize the 

adsorbed pollutants or produce OH
• 

radicals (from 

H2Oads/OH
−

ads). OH
•
 can also oxidize pollutants non-

selectively. The e
−

 is captured by adsorbed O2 to form 

superoxide radical (O
•-

2ads). Thus prevent e
−
/h

+
 re-combination. 

The O
•-

2ads
 

can further contribute in pollutant degradation 

reactions [22]. The H2O2 produce more OH
•
 radicals by 

absorbing light. Hence, the addition of H2O2 to the system 

improves the efficiency of the photocatalysis. The work is 

aimed to detect the chlorophenolics in paper mill wastewaters 

and evaluate efficiency of UV/TiO2 and UV/TiO2/H2O2 

processes for their degradation. 
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ABSTRACT 

The release of chlorophenolics in pulp bleaching wastewater is a threat to the aquatic 

ecosystems. The chlorophenolics can migrate throughout the biosphere and pose serious 

health hazard. The work is aimed to detect chlorophenolics using GC-MS and evaluate 

the effectiveness of TiO2 photocatalysis for their degradation in the paper mill 

wastewaters. Four type of chlorophenolics i.e. chlorophenols (CP), chloroguaiacols (CG), 

chlorocatechols (CC), and chlorosyringaldehyde (CSA) are detected in the wastewaters. 

The wastewaters are subjected to photocatalysis with UV radiation under optimum 

conditions (TiO2 = 0.50 g/L, pH = 7.0, time = 4 hr, and H2O2 = 15 mM/L). UV/TiO2/H2O2 

process has been found to be more efficient for the degradation of chlorophenolics with 

68% and 75% removal of chlorophenolics for primary clarified (PC) and biotreated (BT) 

wastewaters, respectively, as compared to UV/TiO2 process. The Monochlorophenols 

(MCP) are removed to the maximum extent followed by di- (DCP) and trichlorophenols 

(TCP).                                                                                  
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Experimental 

Materials 

The primary clarified (PC) and biotreated (BT) 

wastewaters are received from a paper mill which uses 

OCEOPHH (O, C, EOP, and H represent O2 delignification, 

elemental chlorine, O2 and H2O2 reinforced alkaline extraction, 

and hypochlorite stages, respectively) bleaching sequence for 

brightening mixed hardwood (eucalyptus and poplar) kraft 

pulp. TiO2 and H2O2 (30%) (Fisher Scientific, SQ grade) are 

used as photocatalyst and oxidant, respectively. TiO2 powder 

is predominantly anatase (99.97 wt%) (X-ray Diffractometer, 

Bruker AXS D8) with 50-150 nm particle size (FE-SEM) (Fig. 

1). The BET surface area and total pore volume of TiO2 are 

26.11 m
2
/g and 0.0131 m

3
/g, respectively (N2 adsorption, 

Micromeritics: Chemi Soft TPx V1.02). The chlorophenols 

(CP), used as reference compounds, are procured from Aldrich 

(Mil-waukee, USA) and Sigma (St. Louis, USA). 

Chlorocatechols (CC), chloroguaiacols (CG), chlorovanillins 

(CV), chlorosyringols (CS), and chlorosyringaldehydes (CSA) 

are purchased from Helix Biotech Corporation (Richmand, 

B.C. Canada). HPLC grade n-hexane and acetone, and LR 

grade diethyl ether are used as solvents. Analytical grade 

acetic anhydride is used after double distillation. The standard 

stock solutions of individual chlorophenolics are prepared in 

acetone/ water (10:90). The pH of the aqueous solutions and 

wastewaters are adjusted by 1 M NaOH or H2SO4 solution. 

Photocatalysis 

The photocatalysis experiments are performed in a UV 

reactor (timber-framed) fitted with 4 UV tubes each of 18 W. 

The 500 mL wastewater is adjusted to the desired pH, TiO2 

added, and the mixture is magnetically stirred for 30 min in the 

dark before UV irradiation and H2O2 addition, to ensure the 

adsorption/ desorption equilibrium. The photocatalysis 

experiments are carried out under optimum conditions (TiO2 = 

0.5 g/L, pH 7.0, H2O2 15 mM/L, and time = 4 hr) in batch 

mode with complete mixing at ambient conditions [23]. The 

water loss is made up by adding distilled water at the end of 

the experiment. The catalyst separation after photocatalysis is 

achieved by solution pH adjustment to 7.0 and subsequent 

settling for 5 h. The supernatant is collected and analyzed for 

contaminants degradation. The experiments are performed in 

duplicate and average values reported. 

Analytical Methods 

The wastewaters are characterized for biochemical oxygen 

demand (BOD), chemical oxygen demand (COD), colour, pH, 

AOX, and chlorophenolics before and after photocatalysis. 

The colour is measured (465 nm) with a UV-VIS 

spectrophotometer (SPEKOL 2000, Analytic Jena). A pH 

meter (TOSHNIWAL) is used to measure the pH. BOD and 

COD are measured as per standard procedures [24]. The AOX 

is analyzed using Dextar AOX analyzer (ECS 1200, Thermo 

Electron Corporation) by column method. The optimum 

photon flux is estimated to be 2.28 × 10
-6

 qnp/ Einstein s
-1 

at 15 

cm from UV lamps by ferrioxalate actinometer [25].  

The chlorophenolics are analyzed using Gas 

chromatograph (GC) – mass spectrometer (MS) (Trace GC 

Ultra - DSQ, Thermo Electron Corporation). The extraction of 

chlorophenolics from the wastewaters is carried out as per the 

method given by Lindstrom and Nordin [26]. The extracted 

samples are derivatized with acetic anhydride [27]. 

 

(a)                                  (b) 

Figure 1. SEM images of TiO2: (a) 50,000X and (b) 

100,000X 

The readily volatile chlorophenolics acetyle derivative 

(1.0 µL) is injected into the GC column (TR-5 capillary 

column: 30 m x 0.25 mm x 0.25 µm, containing 5% phenyl 

methyl polysiloxane) for the separation of target analytes. The 

GC oven temperature is held at 45 °C (1 min) and raised to 

280 °C (6 °C/min). The final temperature (280 °C) is 

maintained for 25 min. The injector, mass transfer line, and ion 

source temperatures are set at 210 °C, 280 °C, and 200 °C, 

respectively. The helium (He) is used as carrier gas (1 

mL/min). The MS is run in the electron impact ionisation (EI) 

mode (70 eV) with 100 µA emission current. The full scan 

data is acquired by scanning from 42-336 m/z (216.7 amu/sec) 

at fore pressure between 38-45 mTorr. The injection is 

performed in the splitless mode. The chlorophenolics are 

initially detected by matching their mass spectrum with the 

NIST library. Once the main peaks are identified, pure 

standard solutions of chlorophenolics are injected into the GC-

MS for determining retention times (RT) of respective 

chlorophenolics and formation of calibration curve. The 

quantitative analysis is done using calibration curve and by 

extraction efficiency estimation of individual chlorophenolics. 

The gas chromatogram of a mixture of 26 reference 

chlorophenolic compounds is shown in Fig. 2. The respective 

retention time (RT) and mass/charge (m/z) values are depicted 

in Table 1.  

Results and Discussion 

The average analytical characteristics of PC and BT paper 

mill wastewaters utilized for the photocatalysis are 

summarized in Table 2 and 3. The six categories of 

chlorophenolic compounds, i.e. CP, CG, CC, CV, CS, and 

CSA in terms of chemical family, are identified by GC-MS in 

the wastewaters (Fig. 3a and 3c). The CP and CG are the main 

components amongst the identified chlorophenolics. Other 

chlorophenolics are detected in trace amounts (≤1%). TCP are 

the major contributors for PC wastewater followed by DCP 

and MCP. While, for BT wastewater, DCP are present in the 

highest amount followed by TCP and MCP (Fig. 3b and 3d). 

 

Figure 2. Chromatogram showing separation of a mixture 

of pure chlorophenolic compounds 
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Table 1. Retention time (RT) and base peak (m/z) of 

chlorophenolic reference compounds 

S. No. Name of Compound RT (minutes) Base Peak (m/z) 

1. 3-CP 14.20 127.9 

2. 4-CP 14.36 127.9 

3. 2,6-DCP 16.52 161.9 

4. 2,5-DCP 16.96 161.9 

5. 2,4-DCP 16.98 161.8 

6. 2,3-DCP 17.69 161.8 

7. 3,4-DCP 18.27 161.9 

8. 4-CG 18.70 157.9 

9. 2,4,5-TCP 19.07 195.8 

10. 2,3,6-TCP 20.01 195.8 

11. 2,3,5-TCP 20.17 195.9 

12. 2,4,6-TCP 20.31 195.8 

13. 4,5-DCG 21.19 191.9 

14. 2,3,4-TCP 21.23 195.8 

15. 4,6-DCG 22.27 191.9 

16. 3,6-DCC 22.50 177.9 

17. 3,5-DCC 22.77 177.9 

18. 3,4,6-TCG 23.16 225.9 

19. 3,4,5-TCG 24.40 225.8 

20. 4,5,6-TCG 25.07 225.9 

21. 5,6-DCV 25.85 219.9 

22. PCP 26.22 265.7 

23. 2,3,5,6-TCG 26.66 261.8 

24. TCS 26.96 255.8 

25. Tet-CC 28.31 247.8 

26. 2,6-DCSA 28.59 249.9 

Table 2. Average analytical characteristics of PC and BT 

wastewaters 
S. No. Parameter PC  BT  

1. COD (mg/L) 1092 246 

2. BOD (mg/L) 274 29 

3. BOD/COD ratio 0.25 0.12 

4. Color (mg Pt-Co/L) 2066 1012 

5. pH 7.5 7.4 

6. AOX (mg/L) 15.8 6.6 

2,3-DCP and 2,3,5-TCP are identified only in BT 

wastewater. This may be due to their possible dilution in the 

influent of primary clarifier and concentration during 

biological treatment. 2,5-DCP, 4,6-DCG, and 3,4,6-TCG are 

present in higher quantity in BT wastewater in comparison to 

PC wastewater. This may be caused by the possible 

transformation of one compound into another during biological 

treatment or concentration because of treatment system 

residence time [28]. 

The biological treatment is able to meet wastewater 

discharge standards for BOD (30 mg/L) and COD (350 mg/L) 

in case of large pulp and paper news print/ rayon grade plants 

[29]. But, the chlorophenolics and colour persist because of 

low efficiency of biological processes for their degradation. 

The BOD/COD ratio of the wastewaters is low (0.25 for PC 

wastewater and 0.12 for BT wastewater) indicating low 

biodegradability of the organics. Therefore, the photocatalytic 

treatment of PC and BT paper mill wastewaters have been 

investigated with UV/TiO2 and UV/TiO2/H2O2 processes for 

the degradation of chlorophenolics. The initial COD of the 

wastewater should be lower than 800 mg/L for the successful 

catalysis. The excess organic matter tends to recover the 

catalyst surface by adsorption and causes scattering of 

radiation [30]. Therefore, PC wastewater is diluted to 500 

mg/L of COD before photocatalysis while BT wastewater is 

used in original. 

 

Table 3. Chlorophenolics removal (%) for PC and BT 

wastewaters with UV/TiO2 and UV/TiO2/H2O2 processes 

S. No. Name of 

Compound 

Ci± SD 

(µg/L) 

Removal (%) 

UV/TiO2 UV/TiO2/H2O2 

PC* BT PC BT PC BT 

1. 3-CP 2.20 1.70 65 75 73 78 

2. 4-CP 0.90 0.90 74 86 86 91 

3. 2,6-DCP 1.10 1.69 53 64 59 85 

4. 2,5-DCP 0.54 1.12 76 76 ND 79 

5. 2,4-DCP 1.46 1.74 56 68 64 71 

6. 2,3-DCP ND 0.05 ND 80 ND ND 

7. 3,4-DCP 0.59 0.94 75 75 86 78 

8. 4-CG 0.56 1.01 68 69 74 76 

9. 2,4,5-TCP 4.87 3.74 48 58 53 65 

10 2,3,6-TCP 0.06 ND 64 ---- 91 ---- 

11. 2,3,5-TCP ND 0.04 ---- ND ---- ND 

12. 2,4,6-TCP 0.51 0.07 57 71 70 ND 

13. 4,5-DCG 0.97 1.41 67 65 82 68 

14. 2,3,4-TCP 0.09 0.15 67 60 ND 87 

15. 4,6-DCG 0.46 1.73 69 74 88 76 

16. 3,6-DCC 0.11 ND 72 ---- 81 ---- 

17. 3,4,6-TCG 0.40 1.18 51 67 66 75 

18. 4,5,6-TCG 0.02 ND ND ---- ND ---- 

19. 5,6-DCV 0.06 ND 82 ---- ND ---- 

20. TCS 0.03 0.01 ND ND ND ND 

21. 2,6-DCSA 0.16 0.08 71 ND 84 ND 

Total 15.09 17.56 59 68 68 75 

ND – not detected; Ci: Initial concentration; *Concentration 

after dilution to 500 mg/L COD. 
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Figure 3. Proportion (%) of chlorophenolics by chemical 

family and number of attached chlorine atoms for PC (a-b) 

and BT (c-d) wastewaters 

PC Wastewater Treatment 

CV and CS with UV/TiO2/H2O2 process and CS with 

UV/TiO2 process are degraded below detection. The 

UV/TiO2/H2O2 process degraded remaining chlorophenolics in 

the order: CSA >CC >CG >CP (Fig. 4a). 
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Figure 4. Removal (%) of chlorophenolics by chemical 

family (a) and number of attached chlorine atoms (b) for 

PC wastewater 
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Figure 5. Removal (%) of chlorophenolics by chemical 

family (a) and number of attached chlorine atoms (b) for 

BT wastewater 

While, UV/TiO2 process degraded chlorophenolics in the 

order: CV >CC >CSA >CG >CP (Fig. 4a). 2,3,6-TCP is 

degraded to the maximum extent followed by 4-CP and 3,4-

DCP >3-CP >2,4,6-TCP by treatment with UV/TiO2/H2O2 

process. The remaining CP’s are degraded between 53-66%. 

While, UV/TiO2 process degraded 2,5-DCP to the maximum 

extent followed by 3,4-DCP >4-CP >2,3,4-TCP. The 

remaining CP’s are degraded in the range of 48-65%. 

UV/TiO2/H2O2 process degraded CGs in the order 4,6-DCG 

>4,5-DCG >4-CG >3,4,6-TCG. 2,6-DCSA and 3,6-DCC are 

removed up to 84 and 81%, respectively. While, UV/TiO2 

process degraded CGs in the order 4,6-DCG >4-CG >4,5-DCG 

>3,4,6-TCG. 5,6-DCV is degraded up to 82% followed by 3,6-

DCC (72%) and 2,6-DCSA (71%) by treatment with UV/TiO2 

process. 2,5-DCP, 2,3,4-TCP, 4,5,6-TCG,  5,6-DCV, and TCS 

with UV/TiO2/H2O2 process and 4,5,6-TCG and TCS with 

UV/TiO2 process are degraded below detection (Table 3). The 

chlorophenolics degradation followed the order: 4-CP >3-CP, 

2,5-DCP >3,4-DCP >2,4-DCP >2,6-DCP with UV/TiO2 

process and UV/TiO2/H2O2 process degraded the same in the 

order: 2,3,4-TCP >2,3,6-TCP >2,4,6-TCP >2,4,5-TCP. The 

similar orders of degradation of chlorophenolics have been 

reported in the literature [31]. 

BT Wastewater Treatment 

While in case of BT wastewater, CS and CSA are 

degraded below detection after treatment with both the 

processes. The higher degradation of CP and CG is achieved 

with UV/TiO2/H2O2 process as compared to UV/TiO2 process 

(Fig. 5a). 4-CP is degraded up to the maximum extent 

followed by 2,3,4-TCP >2,6-DCP >2,5-DCP after treatment 

with UV/TiO2/H2O2 process. The remaining CP’s are degraded 

in the range of 65-78%. While, UV/TiO2 process degraded 

CPs in the order: 4-CP >2,3-DCP >2,5-DCP >3-CP = 3,4-

DCP. The remaining CP’s are degraded in the range of 58-

71%. Among CG, UV/TiO2/H2O2 process degraded CG’s in 

the order: 4-CG = 4,6-DCG >3,4,6-TCG >4,5-DCG (68%). 

While, UV/TiO2 process degraded CG’s in the order: 4,6-DCG 

>4-CG >3,4,6-TCG >4,5-DCG. 2,3-DCP, 2,3,5-TCP, 2,4,6-

TCP, TCS, 2,6-DCSA and 2,3,5-TCP, TCS, 2,6-DCSA are 

degraded below detection after treatment with UV/TiO2/H2O2 

and UV/TiO2 processes, respectively (Table 3). 

MCP’s are degraded to the maximum extent followed by 

DCP and TCP from PC and BT wastewaters after treatment 

with both the processes (Fig. 4b and 5b). The photocatalytic 

degradation of aromatics depends on the substituent group and 

MCP’s degrade faster than DCP’s or TCP’s [31]. The rate of 

degradation decreases as the number of Cl atoms on the 

phenolic ring increase. The sites on the aromatic ring, which 

are not occupied by Cl atoms, are usually attackd by OH
•
 

radicals. Therefore, higher number of Cl atoms on the aromatic 

ring decreases the reactivity towards the OH
•
 radicals [32, 33]. 

Cl, due to its e
-
 withdrawing nature, decreases the e

-
 density of 

aromatic ring and chlorophenolics reaction ability as the Cl 

content increases [34]. The higher chlorophenolics degradation 

is achieved with UV/TiO2/H2O2 process (PC wastewater: 68% 

and BT wastewater: 75%) as compared with UV/TiO2 (PC 

wastewater: 59% and BT wastewater: 68%) process (Table 3). 

H2O2 can accept conduction band e
−
 thus prevent e

−
/h

+
 re-

combination and can additionally produce OH
•
 radicals easily 

by splitting as compared to H2O. The H2O2 addition has been 

reported to increase rate of reaction by 20-30% [35, 36]. 

The higher chlorophenolics degradation is observed for 

the BT wastewater as compared to the PC wastewater. The 

biological treatment may convert some functional groups of 

organic contaminants to easily oxidisable form which are then 

easily degraded during photocatalysis [37]. This may also be 

caused by the initial low organic load of the BT wastewater as 

compared to the PC wastewater. The BOD/COD ratio 

improved to 0.34 and 0.31 for PC wastewater and 0.22 and 

0.21 for BT wastewater after photocatalysis with 

UV/TiO2/H2O2 and UV/TiO2 processes, respectively [38]. 
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These findings indicate degradation of chloroorganics and 

toxicity decrease.  

Yeber et al. [39] stated that photocatalysis could be an 

excellent pre-oxidation step to the biological treatment as the 

biodegradability of the residual organic matter is improved 

during photocatalysis. The partial mineralisation and structural 

changes in the organic contaminants are the basis for 

BOD/COD ratio improvement, chlorinated phenols and 

toxicity reduction of the wastewaters [40]. The 

chlorophenolics in paper mill wastewaters are degraded to 

different extent after photocatalysis. This may be because of 

the initial contaminant load, differential adsorption over 

catalyst surface, number and position of Cl atoms on the 

aromatic ring and reaction intermediates which compete for 

photoactive sites [41]. 

Conclusion 

Based on the present work, the following conclusions are 

drawn: 

1. The major compounds identified in PC and BT wastewaters 

are DCPs and TCPs which impart high toxicity to paper mill 

wastewaters. 

2. The UV/TiO2/H2O2 process is found to be more effective for 

the degradation of chlorophenolics from the paper mill 

wastewaters.  

3. The photocatalysis improved biodegradability of the 

wastewaters by degradation of toxic compounds. Hence, the 

photocatalysis as a pre-treatment step to biological treatment is 

a good option to improve the biodegradability of the pollutants 

for their further degradation by the biological processes. 
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