Construction of Balanced and Partially Balanced n-ary t-designs by Block Sum and Product (BSP) Methodology on 2-design

Mr.G.S.Phad ${ }^{1}$ and D.D.Pawar ${ }^{2}$
${ }^{1}$ School of Mathematical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (M.S.), India.
${ }^{2}$ N.E.S.Science College, Nanded (M.S.), India.

ARTICLE INFO

Article history:

Received: 22 October 2016; Received in revised form: 25 November 2016; Accepted: 3 December 2016;

Keywords

t-design,
Balanced n-ary t-design,
Partially Balanced n-ary
t-design,
Incidence matrix,
BSP Methodology,
Polynomial,
Powers of the polynomial.

Introduction

Initially, Tocher (1952) introduced balanced n-ary design. A number of authors had given method for construction of balanced n-ary design. Murthy and Das (1967) constructed balanced n -ary designs using a set of mutually orthogonal Latin squares. Saha and Dey (1973) constructed balanced n -ary designs using difference of sets as well as Agarwal and Das (1887) constructed balanced n-ary designs through BIB and two associate PBIB-triangular design. Agarwal and Sharma (1976) obtained a series of balanced n-ary designs by collapsing certain ($\mathrm{n}-1$) tuplets of blocks suitably picked from the blocks of a BIBD. Saha (1975) gives the method of construction of balanced ternary (3-ary) design.
Definition 1.1: A Balanced Incomplete Block Design (BIBD) is a set X of $\mathrm{V}(\geq 2)$ elements called treatments and a collection of $\mathrm{B}(>0)$ subsets of X , called blocks, such that the following conditions are satisfied:
i) Each block contains exactly K treatments
ii) Each treatment appears in exactly R blocks
iii) Each pair of treatments appears simultaneously in exactly λ blocks.
Definition 1.2: A Partially Balanced Incomplete Block Design (PBIBD) (V, B, R, K $\lambda_{1}, \lambda_{2}, \ldots . \lambda_{\mathrm{m}}$) with m associate classes is a design on a set X , such that the following conditions are satisfied:
i) Each block contains exactly K treatments
ii) Each treatment appears in exactly R blocks
iii) If x and y are the $\mathrm{i}^{\text {th }}$ associates for $1 \leq \mathrm{i} \leq \mathrm{m}$, then they occur together in λ_{i} blocks.
Definition 1.3: A t-(V, $\mathrm{K}, \Lambda_{\mathrm{t}}$) block design (abbreviated t -design) is an incidence structure of treatments and blocks such that the following holds:

Abstract

In this paper we use 2-designs whose incidence matrix will take only binary values and construct a series of balanced and partially balanced n-ary t-designs by using a tool Block Sum and Product (BSP) Methodology. The simple 2- $(6,3,2)$ design used as a parent 2 -design for the procedure. This parent 2-design gives 36 new balanced n-ary t-designs and 3 partially balanced n-ary t-designs. We list out the parameters of newly constructed balanced and partially balanced n-ary t -designs

i) There are V treatments
ii) Each block contains K treatments
iii) For any t treatments there are exactly Λ_{t} blocks that contain all these treatments.
Definition 1.4 : Balanced n-ary t-design is an arrangement of V treatments in B blocks such that:
i) $i^{\text {th }}$ treatment occurs in the $\mathrm{j}^{\text {th }}$ block n_{ij} times;

$$
i=1,2, \ldots, V ; j=1,2, \ldots, B
$$

ii) nij can take 0 or 1 or $2 \ldots$.or ($n-1$) value.
iii) $\quad \sum_{i=1}^{V} n_{i j}=K, \quad \sum_{j=1}^{B} n_{i j}=R, \quad \sum_{j=1}^{B} n_{l j} n_{m j}=\left\{\begin{array}{ccc}\Delta & \text { if } \quad l=m \\ \Lambda_{2} & \text { if } \quad l \neq m\end{array}\right.$
iv) For any t treatments there are exactly Λ_{t} blocks that contain all these treatments.

Further let R_{i} be the number of blocks in which any treatment occurs i-times and K_{i} be the number of treatments which occurs i-times in each block. Then the following relations hold

$$
\begin{gathered}
\sum_{i=0}^{n-1} R_{i}=B, \quad \sum_{i=0}^{n-1} K_{i}=V \\
\sum_{i=0}^{n-1} i R_{i}=R, \quad \sum_{i=0}^{n-1} i K_{i}=K, \quad \sum_{i=0}^{n-1} i^{2} R_{i}=\Delta, \\
\Delta=R K-\Lambda_{2}(V-1)
\end{gathered}
$$

Definition 1.5: Partially Balanced n -ary t -design with m -associate classes is an arrangement of V treatments in B blocks such that:
i) $i^{\text {th }}$ treatment occurs in the $\mathrm{j}^{\text {th }}$ block n_{ij} times;

$$
\mathrm{i}=1,2, \ldots, \mathrm{~V} ; \quad \mathrm{j}=1,2, \ldots, \mathrm{~B}
$$

ii) n_{ij} can take 0 or 1 or $2 \ldots$.or ($\mathrm{n}-1$) value.
iii) $\quad \sum_{i=1}^{V} n_{i j}=K, \quad \sum_{j=1}^{B} n_{i j}=R, \quad \sum_{j=1}^{B} n_{i j}^{2}=\Delta$
iv) With respect to any $(t-1)$ treatment set $\left(i_{1}, i_{2}, \ldots . ., i_{(t-1)}\right)$ the remaining ($V-t+1$) treatments can be classified in m groups such that the $l^{\text {th }}$ group contain N_{l} treatments where,

$$
\sum_{l=1}^{m} N_{l}=(V-t+1)
$$

If i_{t} is any treatment from $l^{t h}$ group then,

$$
\begin{gathered}
\sum_{J=1}^{B} n_{i_{1} j} n_{i_{2} j} \ldots . n_{i_{(t-1)} j} n_{i_{t} j}=\Lambda_{t l} \quad l=1,2, \ldots, m \\
i_{1} \neq i_{2} \neq \ldots \ldots . \neq i_{(t-1)} \neq i_{t}=1,2, \ldots, V
\end{gathered}
$$

- When $m=1$ we get the definition of balanced n-ary t-design
- When $\mathrm{m}=1$ and $\mathrm{n}=2$ we get the definition of classical
t-design
- When $\mathrm{m}=1, \mathrm{n}=2$ and $\mathrm{t}=2$ we get the definition of BIBD
- When $\mathrm{n}=2$ and $\mathrm{t}=2$ we get the definition of PBIBD with m -associate classes.

We used a tool Block Sum and Product (BSP) Methodology (2007) on a 2- $(6,3,2)$ design and constructed new balanced and partially balanced n-ary t-designs. BSP Methodology gives number of designs, according to incidence matrix and parameters of newly constructed design it classified into balanced n -ary t -design or partially balanced n-ary t-design.

Construction of balanced and partially balanced n-ary
t-designs by BSP Methodology on 2-(6, 3, 2) design
Let us consider a simple 2 -design with parameters $\mathrm{V}=6, \mathrm{~B}=10, \mathrm{R}=5, \mathrm{~K}=3, \Lambda_{\mathrm{t}}=2$. To apply BSP Methodology replace $1,2, \ldots \ldots, 6$ treatments by $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . ., \mathrm{X}_{6}$. Take block sum B_{i} then consider product of B_{i}.

Table 1. Parent design and the notation for BSP Methodology.

Block Number (i)	Treatment content in block i			Treatment replaced for BSP			Block sum ($\mathbf{B}_{\mathbf{i}}$) for BSP
1	1	2	3	X_{1}	X_{2}	X_{3}	$\mathrm{B}_{1}=\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}$
2	1	2	4	X_{1}	X_{2}	X_{4}	$\mathrm{B}_{2}=\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{4}$
3	1	3	6	X_{1}	X_{3}	X_{6}	$\mathrm{B}_{3}=\mathrm{X}_{1}+\mathrm{X}_{3}+\mathrm{X}_{6}$
4	1	4	5	X_{1}	X_{4}	X_{5}	$\mathrm{B}_{4}=\mathrm{X}_{1}+\mathrm{X}_{4}+\mathrm{X}_{5}$
5	1	5	6	X_{1}	X_{5}	X_{6}	$\mathrm{B}_{5}=\mathrm{X}_{1}+\mathrm{X}_{5}+\mathrm{X}_{6}$
6	2	3	5	X_{2}	X_{3}	X_{5}	$\mathrm{B}_{6}=\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{5}$
7	2	4	6	X_{2}	X_{4}	X_{6}	$\mathrm{B}_{7}=\mathrm{X}_{2}+\mathrm{X}_{4}+\mathrm{X}_{6}$
8	2	5	6	X_{2}	X_{5}	X_{6}	$\mathrm{B}_{8}=\mathrm{X}_{2}+\mathrm{X}_{5}+\mathrm{X}_{6}$
9	3	4	5	X_{3}	X_{4}	X_{5}	$\mathrm{B}_{9}=\mathrm{X}_{3}+\mathrm{X}_{4}+\mathrm{X}_{5}$
10	3	4	6	X_{3}	X_{4}	X_{6}	$\mathrm{B}_{10}=\mathrm{X}_{3}+\mathrm{X}_{4}+\mathrm{X}_{6}$

will be polynomial of degree 10 of variables $X_{1}, X_{2}, \ldots, X_{6}$. This polynomial contains $K^{B}=3^{10}$ $(=59049)$ terms. Similar types of terms of this polynomial are classified according to powers and new 39 designs are constructed.

Table 2. The description about the polynomial.

In the polynomial, there are 150 terms of the type of the power 531100 and each term is repeated 1 time. The powers of these 150 terms gives columns of the incidence matrix of design no. 1 having $\mathrm{V}=6$ and $\mathrm{B}=150$. Likewise this polynomial gives 39 incidence matrices of new designs. According to incidence matrix and parameters of newly constructed design it classified into balanced n -ary t -design or partially balanced n -ary t -design.

Table 3. Type of design and the parameters of newly constructed design.

Design No.	Type of Design	Parameters of newly constructed design												
1	Balanced 6-ary 4-disgin	R_{0}	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}	\mathbf{R}_{4}	\mathbf{R}_{5}	B	R	Δ	Λ_{31}	N_{1}	Λ_{4}	
		50	50	0	25	0	25	150	250	900	252	${ }^{1}$	150	
		K_{0}	K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	V	K	$\mathrm{\Lambda}_{2}$	Λ_{32}	N_{2}		
		2	2	0	1	0	1	6	10	320	318	2		
2	Partially Balanced 6-ary 3-disgin	R_{0}	R_{1}	\mathbf{R}_{2}		\mathbf{R}_{3}	\mathbf{R}_{4}	R_{5}	B	R	Δ		Λ_{31}	N_{1}
		30	0	10		10	0	10	60	100	380		0	2
		K_{0}	K_{1}	K_{2}		K_{3}	K_{4}	K_{5}	V	K	Λ_{2}		Λ_{32}	N_{2}
		3	0	1		1	0	1	6	10	124		180	2
3	Balanced 5-ary 4-disgin	\mathbf{R}_{0}	R_{1}	R_{2}		R_{3}	R_{4}	B	R	Δ	$\mathbf{\Lambda}_{31}$		N_{1}	Λ_{4}
		50	25	20		35	20	150	250	740	336		2	246
		K_{0}	K_{1}	K_{2}		K_{3}	K_{4}	V	K	A_{2}	A_{32}		N_{2}	
		2	1	1		1	1	6	10	352	426		2	

Mr.G.S.Phad and D.D.Pawar / Elixir Statistics 101 (2016) 43470-43475

Mr.G.S.Phad and D.D.Pawar / Elixir Statistics 101 (2016) 43470-43475

20	Balanced 6-ary 4-disgin	R_{0}	R_{1}	\mathbf{R}_{2}	R_{3}		\mathbf{R}_{4}	\mathbf{R}_{5}	B		R	Δ	Λ_{31}	N_{1}	Λ_{4}
		30	15	30	0		0	15	90		150	510	144	,	120
		K_{0}	K_{1}	K_{2}	K_{3}		K_{4}	K_{5}	V		K	$\mathrm{\Lambda}_{2}$	Λ_{32}	N_{2}	
		2	1	2	0		0	1	6		10	198	252	2	
21	Balanced 5-ary 4-disgin	R ${ }_{0}$	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}		R_{4}	B	R		Δ	Λ_{31}	N_{1}	$\mathbf{\Lambda}_{4}$	
		25	25	0	0		25	75	125		425	132	2	80	
		K_{0}	K_{1}	K_{2}	K_{3}		K_{4}	V	K		$\mathbf{\Lambda}_{2}$	Λ_{32}	N_{2}		
		2	2	0	0		2	6	10		165	168	2		
22	Balanced 5-ary 5-disgin	\mathbf{R}_{0}	R_{1}	\mathbf{R}_{2}	R_{3}		R_{4}	B	R		Δ	Λ_{31}	N_{1}	Λ_{4}	Λ_{5}
		10	30	0	10		10	60	100		280	156	2	172	120
		K_{0}	K_{1}	K_{2}	K_{3}		K_{4}	V	K		A_{2}	$\mathrm{\Lambda}_{32}$	\mathbf{N}_{2}		
		1	3	0	1		1	6	10		144	192	2		
23	Balanced 4-ary 4-disgin	\mathbf{R}_{0}	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}	B	R	Δ	$\mathbf{\Lambda}_{3}$		${ }_{1}$				
		20	0	20	20	60	100	260	180		44				
		$\mathrm{K}_{\mathbf{0}}$	K_{1}	K_{2}	K_{3}	V	K	A_{2}							
		2	0	2	2	6	10	148							
24	Balanced 5-ary 5-disgin	R_{0}	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}		R_{4}	B	R		Δ	Λ_{31}	N_{1}	$\mathbf{\Lambda}_{4}$	Λ_{5}
		5	10	10	0		5	30	50		130	84	2	104	80
		$\mathrm{K}_{\mathbf{0}}$	K_{1}	K_{2}	K_{3}		K_{4}	V	K		A_{2}	Λ_{32}	N_{2}		
		1	2	2	0		1	6	10		74	108	2		
25	Balanced 6-ary 4-disgin	R_{0}	R_{1}	R_{2}	R_{3}		R_{4}	R_{5}	B		R	Δ	Λ_{31}	N_{1}	Λ_{4}
		30	15	30	0		0	15	90		150	510	144	2	120
		K_{0}	K_{1}	K_{2}	K_{3}		K_{4}	K_{5}	V		K	A_{2}	Λ_{32}	N_{2}	
		2	,	2	0		0	1	6		10	198	252	2	
26	Balanced 5-ary 5-disgin	\mathbf{R}_{0}	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}		R_{4}	B	R		Δ	Λ_{31}	N_{1}	Λ_{4}	Λ_{5}
		10	20	20	0		10	60	100		260	180	2	208	160
		$\mathrm{K}_{\mathbf{0}}$	K_{1}	K_{2}	K_{3}		K_{4}	V	K		A_{2}	Λ_{32}	N_{2}		
		,	2	2	0		1	6	10		148	204	2		
27	Balanced 5-ary 5-disgin	R_{0}	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}		R_{4}	B	R		Δ	Λ_{31}	N_{1}	Λ_{4}	Λ_{5}
		10	20	20	0		10	60	100		260	180	1	208	160
		$\mathrm{K}_{\mathbf{0}}$	K_{1}	K_{2}	K_{3}		K_{4}	V	K		A_{2}	Λ_{32}	N_{2}		
		1	2	2	0		1	6	10		148	204	,		
28	Balanced 5-ary 5-disgin	R ${ }_{0}$	R_{1}	R_{2}	R_{3}		R4	B	R		Δ	Λ_{31}	N_{1}	Λ_{4}	Λ_{5}
		5	10	10	0		5	30	50		130	84	2	104	80
		$\mathrm{K}_{\mathbf{0}}$	K_{1}	K_{2}	K_{3}		K_{4}	V	K		A_{2}	Λ_{32}	N_{2}		
		1	2	2	0		1	6	10		74	108	2		
29	Partially Balanced 5-ary 3-disgin	R_{0}	R_{1}	\mathbf{R}_{2}	R_{3}		R_{4}	B	R		Δ	Λ_{31}	N_{1}		
		15	0	0	10		5	30	50		170	0	1		
		$\mathrm{K}_{\mathbf{0}}$	K_{1}	K_{2}	K_{3}		K_{4}	V	K		S_{2}	$\mathbf{\Lambda}_{32}$	N_{2}		
		3	0	0	2		1	6	10		66	108	2		
30	Balanced 4-ary 5-disgin	$\mathrm{R}_{\mathbf{0}}$	R_{1}	\mathbf{R}_{2}	R_{3}		B	R	Δ		$\mathbf{\Lambda}_{31}$	N_{1}	Λ_{4}	Λ_{5}	
		10	20	10	20		60	100	240		180	2	228	180	
		$\mathrm{K}_{\mathbf{0}}$	K_{1}	K_{2}	K_{3}		V	K	A_{2}		Λ_{32}	N_{2}			
		1	2	1	2		6	10	152		228	${ }^{2}$			
31	Balanced 6-ary 5-disgin	\mathbf{R}_{0}	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}	\mathbf{R}_{4}	R_{5}	B		R	Δ	Λ_{31}	N_{1}	$\mathbf{\Lambda}_{4}$	Λ_{5}
		10	30	10	0	0	10	6		00	320	144	2	148	100
		$\mathbf{K}_{\mathbf{0}}$	K_{1}	K_{2}	K_{3}	K_{4}	\mathbf{K}_{5}	V		K	$\mathbf{\Lambda 2}_{2}$	Λ_{32}	\mathbf{N}_{2}		
		1	3	1	0	0	1	6		10	136	168	2		
32	Balanced 4-ary 5-disgin	\mathbf{R}_{0}	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}	B	R			31	N_{1}	Λ_{4}	Λ_{5}		
		5	10	5	10	30	50			96	2	114	90		
		$\mathrm{K}_{\mathbf{0}}$	K_{1}	K_{2}	K_{3}	V	K			32	N_{2}				
		1	2	,	2	6	10			08	2				
33	Balanced 4-ary 5-disgin	R_{0}	R_{1}	\mathbf{R}_{2}	R_{3}	B	R			31	N_{1}	Λ_{4}	Λ_{5}		
		5	10	5	10	30	50			96	2	114	90		
		$\mathrm{K}_{\mathbf{0}}$	K_{1}	K_{2}	K_{3}	V	K			32	N_{2}				
		1	2	1	2	6	10			08	2				
34	Balanced 6-ary 5-disgin	\mathbf{R}_{0}	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}	\mathbf{R}_{4}	R_{5}	B		R	Δ	Λ_{31}	N_{1}	$\mathrm{\Lambda}_{4}$	Λ_{5}
		10	30	10	0	0	10			00	320	144	2	148	100
		$\mathrm{K}_{\mathbf{0}}$	K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	V		K	$\mathbf{\Lambda}_{2}$	Λ_{32}	\mathbf{N}_{2}		
		1	,	1	0	0	1	6		10	136	168	2		
35	Balanced 5-ary 4-disgin	\mathbf{R}_{0}	R_{1}	\mathbf{R}_{2}	R_{3}	\mathbf{R}_{4}	B			Δ	Λ_{31}	N_{1}	Λ_{4}		
		60	30	30	30	30	180			00	312	2	288		
		K_{0}	K_{1}	K_{2}	K_{3}	K_{4}	V			A_{2}	Λ_{32}	\mathbf{N}_{2}			
		2	1	1	1	1	6			20	588	2			

Discussion

The aim of this paper has been introduced a tool Block Sum and Product Methodology (BSP) for construction of design. In this paper we used BSP Methodology tool on 2-($6,3,2$) design as a parent 2-design and obtain a 36 balanced n-ary t-designs and 3 partially balanced n-ary t-designs. Here it is difficult to give incidence matrices of newly constructed designs so we list out the parameters of newly constructed designs. BSP Methodology tool can be used on any 2-design, according to incidence matrix and parameters of newly constructed design it can classified into balanced or partially balanced n-ary t-designs.

Acknowledgment

We are thankful to Dr. N. S. Kapse, Ex-Principal, Sydenham College of Commerce and Economics, Mumbai(MS), India for his valuable guidance and suggestions.

References

[1] Agarwal, B.L. and Sharma, S.D. (1976). Some aspects of construction of balanced n-ary designs. Sankhyā B 38, 199-201.
[2] Agarwal, S.C. and Das, M.N. (1987). A note on construction and application of balanced n-arydesign. Sankhyā B 49, 192-196.
[3] Agarwal, S.C. and Das, M.N. (1990). Use of n-ary block designs in diallel crosses evaluation. Journal of Applied Statistics 17,1, 125-131.
[4] Calvin, L.D. (1954). Doubly balanced incomplete block designs in which treatment effects are correlated. Biometrics 10, 61-68.
[5] Jagtap, N.P. and Pawar, D.D. (2007). Construction of designs using recurring of decimals. Ph.D. Thesis, S.R.T.M.Universiy, Nanded(M.S.), India.
[6] Joshi, D.D. (1987). Linear Estimation and design of experiments. New Age International Publishers.
[7] Murthy, J.S. and [7] Das, M.N. (1967). Balanced n-ary block designs and their uses. Journal of Indian Statistical Association 5, 1-10.
[8] Saha, G.M. and Dey, A. (1973). On construction and uses of balanced n-ary designs. Annuals of the Institute of Statistical Mathematics 25, 1, 439-445.
[9] Saha, G.M. (1975). On construction of balanced ternary designs. Sankhyā B 37, 220-227.
[10] Yates, F (1973). Incomplete randomized blocks. Annuals Eugenics 7, 121-140.

