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1. Introduction

The studies and analysis of a symmetry properties of a differential equation make sense in solution of differential equations
see ([11,[71,[8].[10]) . The symmetry classification of an equation which contain arbitrary function dependent on how we can
choice these function , so , the symmetry properties give these selections ([1],[5],[9]).
In this paper , the third order of PDE's that give below with one are more F_f (uj for unknown u, we give the sufficient condition

to be the admits symmetry is not trivial. Two example sported the idea and procedure .
2. Preliminary results
For the sake of simplicity we consider only second order equations for the unknown function 4; — u(:w: :},] of two
»

independent variables x,y (but the extension to more general cases is completely straightforward), and we will deal with quasi-
linear PDE's of the following form

T 1
Ayq Uy T Aol + Qg0+ Aoty + byu,. + bzux}. + bau}.}. = Xy oy Fplu) (1)
or in a short-hand notation
e[u] = a,F,(w) | | |
where aij — al_j (x’ },j , bi — bi Ex’ }’], ay = ay (x’ }’) are given (smooth) function, and FJE (’LL] are L arbitrary

smooth) functions of in the examples below we will deal with just one or two functions . It is understood that no
u Fy(u

YEN

linear relations exist between a, and between Ff. we will exclude from our consideration the rather trivial case when F_E (uj
are linear functions of 4, which usually can be more simply and conveniently discussed separately by means of direct
»

calculations.
we will denote their Lie generator by

d d d
X =8¢0y Frs n(x, v, u) 3y +o(x,y,w) 5u
X3(A)|pz0 =0
where &zg[u] — (I_EF_E (u) and 3 is the third prolongation of X .

lemma 1
For any choice of the functions F:E , the coefficients of the Lie point symmetry operators admitted by a PDE of the form (1)

satisfy the conditions ‘fu =1, = 0 Oy = n ie
u? )
§=¢(y)n=n(xy),¢=Ay)+uB(xy) + ?C(x, V)
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now we show that ¥3(A) lazg =0
Lo &(x,y)elu] — apFp(w)] = —a,Fp(u) = —a,é, Fp(u) — Ea,, Fp(u)

2 Qe y)lelu] - asFy(w] = —(amF, (W) = —aum,Fy(w) —nag,Fy ()

A(xy) +uB(x,y) + 5 C(xy) el — apFy(w)]

Alx, y)[e[ul — asFp(u)] = e[A] — a, AF p(u)

uB (x, y)[e[u] — azF;(u)] = uz[B] — a,uBF';(u) — a;BF,;(u)

- - -
& &

u u ue
EC(x,}rj[E[u] —a,F(u)] = EE[C] - a_FECF'_F[u] — ay;uCF;(u)
with pr = % ,sum over( £=1,..,L)

s
pr o, ¥) Fe () + py oy G ydufe () + ooy o o) F o) + gy, G, y)uF () + pog oo (e, ) Fp 4 oy (s ydud®
+ pap ezl yu +pyp a0yl =0

where the coefficient function p, (x,y) (i = 1, ...,4L + 3) are given by ®3)
P:= _[‘fx + "?}-)fx-.ﬂ —fay, —MNag, Pry1 = —gC Py = —ad
Pypsq = —agB ,Pypyy = _ﬂf__pg sPyiq = %s[ﬂ]

_ Pypsz = £[B] Py sz = 2[4] (4)
with ¢ = % =2 etc (£=1,.. ,L)

dx
considering now the determining equation (3) , and observing that the D, depend only on x,y and not on u, one immediately

realizes that , if the 4L+3 functions f: defined by

f =(F; ,uF; ,F'y ,uF'; W*F';,u* ,u,1) {=1,..,L) (5)
are linearly independent , then (3) can be satisfied if and only if
p; =0 (i=1,.. 4L +3) (6)

Recalling now the definition of kernel of the full ( or principal ) symmetry groups [1] of eq. (1), i.e. the intersection of all
symmetry groups admitted by (1) for any arbitrary choice of F, (u), we can then state the following property.

Lemma 2
consider (6) characterize the kernel of the symmetry groups of equation (1).
Indeed , condition (6), together with the other determining equations (not involving F ) , determine the functions &, 5, 4, B, C

(i.e. the symmetries admitted by equation (1)), which are independent of the choice of the functions F,. These symmetries may be
considered trivial in this context for instance, if all coefficients a,b,q in (1) are independent of y, then such a symmetry operator
is a/’ﬁ . Some not so obvious examples of symmetries of this type will be presented later .

¥

Therefore, a first conclusion is that , in order to have nontrivial symmetries (i.e. really dependent on the choice of the
functions F;), a necessary condition is the existence of some linear dependence among the functions (5). Another relevant remark

which will emerge from our discussion is the important role played also by the coefficient functions g, (x,y) in the

determination of the admitted symmetries.
3. Conditions for the existence of symmetries .
Consider the linear space generated by the 4L+3 functions f; defined in (5) , and , according to our above remarks, now

assume that there are some linear relations among these functions. Then the fz span a space with dimension jr == D = 4L, L+ 3
if this is the case, D coefficients p, are forced, according to (3), to belong to the orthogonal (D — K]-dimensional subspace
(with respect to the standard scalar in RD:], and the functions;;i(x,};r] turn out to be subjected to k linear conditions. For
instance, if there is just one linear relationship between the fisay

= (7

D af

i=1
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where not all the constants ,1!. vanish , then k = p — 1 and the functions p; sPan a 1-dimensinal subspace and must satisfy
D — 1 equations of the form ( assuming that , e.g, ,15 = ﬂ]
P1dp = APy 0pdp = A3Pp e, Pp_yAp = Ap_ 1Py . (8)
we can then state our main conclusion , which characterizes the crucial determining equation which contains the functions F in
the following "geometrical” form. )
proposition 1

Equation (1) admits nontrivial symmetries only if the p = 4], £+ 3 function (5) are linearly dependent. If this is the case ,
the D functions p.(x,y) given by (4) appearing in the determining equation (3) span the subspace orthogonal (with respect to the
standard scalar product in B) to the ; —dimensional (K = D) subspace spanned by the function (5). The admitted symmetries
are completely determined by imposing this orthodonality condition to the coefficient functions pi(x,y), together with the other
determining equations not involving the functions F,(u).
Before considering explicit examples, let us remark that the complete symmetry classification must be accompanied by the
determination of the equivalence group [1] , i.e. the group of the transformations which leave invariant the differential structure of
the PDE. Standard calculations show easily that , for any fixed choice of the functions a;; b Lay in equation (1), the
equivalence group includes in particular , expectedly , the scalings 1 — cu, F;, — ¢ F, and the translation
u—ut cD[c, €y = .ggn_gt_j_ Other transformations involving also the variables X,y can abpear for-particular choices of the
functions a;; by Lay . The transformations belonging to the equivalence group will play an important role in performing the
complete symmetry classification of our equations.
4. First example: a generalized Laplace equation:

To illustrate the main idea and the procedure , and also to clarify some details , we are now going to examples , which can be
noteworthy also for their different and interesting peculiarities. We start considering the simplest case , where the r.h.s. of (1)

contains only term g (xJ }rjp(u]

(then D=8).

First of all , let us remark that , independent of the form of the equation arbitrarily. For instance, no relation exists between 12,14
and 1, and also , having excluded the trivial case of linear F , 1%,z ,1 . On the other hand , the necessary linear dependence
between the function £, implies immediately that the presence of some symmetry is possible only if F(w) is an exponential or a

. . ] . 3
power of 14. It can also happen that more than one linear relation holds: e.g., if F= La? +u, then both relations

'LLH
F———u=0
3

F'—u? —1=0 and 3F —uF' —2u=20 9)
let use consider the following generalization of the classical nonlinear Laplace equation

A= Viu—a(x,y)F(u) =0 (10)
where g/( x, y) is a given function. In this case , the determining equations not containing F imply in particular

Ee =1y &y =1 C = const (11)

whereas the crucial determining equation (3) involving F is
pyF + pouF +pyF' + pyuF + pouF' + pu” +pou+py =0 (12)
with the coefficient functions P, (x,v) given by
(X
py = —ayB ,ps = TGy Pe T vic=0 ,p,=V°B

P = V°A (13)
Let us first discuss the kernel group. The conditions p; =0 [L' =1,.., 5]

characterizing the transformations in the kernel group givenow 4 = B = ¢ = @ = (0 and the condition p; =0 ‘which now
reads gf[fx +TF>-) + [‘f‘x—ﬂx +ﬂfx.§-‘,>-) =g - [Introducing a harmonic function ¢ = g(x,y) such that
¢.=¢ Lo,=-7

this condition can be more conveniently transformed into an equation for the single unknown g:

@s [qux o ¢}'}') + LT qb:t‘ - cx-?_.}'qby =0 (14)
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Solution of this equation clearly depend on the choice of the function ay(x, y). For instance , if g, = const, it gives
_ =0, which , together with (11) , implies that the symmetries in the kernel group are , as expected , only translations
x T 1

and rotations of the variables x,y . If gz = exp(ﬂx:] then ¢ = exp(—x] (ci cosy + 5 sin }r] + c3¥ + Cay
and the kernel contains , apart from the translation generated by d /fﬁ , the transformations generated by
¥y

d d d d
X, = expl—x (cosv——sinv—) . X, = expl—x (sinv—+cnsv—).
1 p(—) © dx T dy < p(—x) T dx T dy
With o = x™ ,one has that if + 2= —2 then the kernel contains only the translation generator a};a , whereas if ¥ = —2 it
Vv

also contains the transformations generated by two operators
g 2_ 8 — 2,8
Xy = 2xy—— (x*— v ]a}_ and X, xax-i-}ra}_.
. . . . Ry 5 . . .
The first transformation describes the kernel group even if o — 4 ‘B(x_ﬁ + v ’where 3 is an arbitrary function.

It can be remarked, incidentally, that if we reverse the argument for a moment, one has that: given any harmonic function ¢ (and
then any couple of harmonic conjugate functions &, 7), there are some a(x,v)
which solve equation (14), and then, with these functions g, the kernel group contains precisely the symmetry generated by the

operator g g

Pty = (5) + 0 (53)
Let us now finally perform the symmetry classification of eq.(10). As already remarked, its equivalence group may contain and
depending on the specific choice of the function ¢ , other transformations possibly involving also x,y. As we shall see , however,

these are not relevant for the symmetry classification of equation (10).
According to our procedure, it is immediately seen that just one linear relation between the eight f;can exist . For instance, in the

case o _ u® tu mentioned above, admitting the two linear relations (9),would lead to p;, =0, i.e. only the kernel symmetries
3

. We then assume the existence of a single linear relation:

AMF+ A uF+ A F + A uF + AW F + A + A,u+ A =0 (15)

with not all ,12. equal to zero. Observing that p, =0, one has from (8) that ,1?_ We now distinguish the cases ,14 = 0 and

Ag=0

Let A, = 0.1t is not restrictive to put As =1, and (up to a translation of u) A =0 which implies Agpy = 0. If Ag # 0,
then p; =0 would imply A = 0 and also Py =0= F‘:rls , now, if p, = p, =0 it remains only Dy =0 and from
,Il,spl = jips = (7 one concludes that ,ILS = (3 . Therefore, we get;{ip +uF' ' =g, ie
F(u) =u*with k=—-1;, (k= 01).
Using now (8) , which become p, + kp, =0, p, = p3 =p; = p; =p, = 0, weget 4 = =0 and
kayB + [fx + ?,'r}.)af + (fcx&x —|-'r;rrx__¢J}.) =0.
The last equation relates the symmetry coefficients &, ¢, B with the specific form of the function g HERYL If for instance
g =x", then kB + {x + n, = 0, but B most be #+ 0, otherwise also pe=p, =0, i.e. the kernel group. Therefore , &
must be proportional to x and equation (10) admits the symmetry operator

d d a
X = k(x—-l—v—)— r+ 2)Ju—

dx ~ dy ( ) du
(and obviously the translation of the variable and y, also the translation of x and the rotations of x, y in the case + = 0, i.e. if
& = const.).
Let now ,14 = (. Then necessarily ,13 = 0, and one can put ,13 = 1 and also ,11 = 1 (possibly up to a scaling of ;). Assume
first 4 z =0, therefore, from (15),
F(u) = exp(—u)
and the conditions (8),(13) for the functions D, become now
ps=—aB=0 ,p; =Viu=0 and p, =p; ie.
[fx +?,'r}.)cxd_¢+ (fcxh —|-'r;n:x£}.) = ayA.
As before , we can consider some examples. If o = const.the last equation &+ n, = A and then the most general symmetry of

the equation 3y = exp(—u) is

K= ot (Et ) —
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where &,y are arbitrary harmonic conjugate functions: this is the well known case of the classical Liouville equation , and the

translation i_ Assume now As # 0, then
dzx
F(u) = exp(—u) —1;.
Introducing the transformation u — wu + i, where i = {i(x, y) satisfies the equation V3{i + A, = 0, one obtains the new
equation
Viu— & exp(—u) =0
where (x,y) = a exp(—1), which has precisely the same form as the equation considered before. Without repeating details,
it can be interesting to provide just one illustrative example . Let

Viu— Ea (exp(—u)+1)=0

where kxz const. Itis easy to see that if }; = 3 this equation admits the symmetries
d d 3 d

X=8otn—+ (Gt — 385

where &, ¢ are arbitrary harmonic conjugate function , if instead k. = 3,

The admitted symmetries are only those in the kernel group.
The above results concerning eq.(10) can be stated in a complete form as follows.
proposition 2
Give a function g = g (x,};r], consider this equation for the harmonic function ¢ = ¢[x, };r]

g [qux + 'qb;,-:;) + €L qu - af,}'qb}' - a-FC =0 (16)
Let & = ., N= _q{,}_ . Assume first ¢ = 0, for any solution ¢ of (16), the kernel group of the generalized Laplace

equation (10) is generated by the symmetry operator

If F(u) =u* ,forany solution ¢ of (16) with C = const. = 0, eq. (10)
admits the symmetry operator
d d d
X = k(fa -I-T;ra—}r) -I-E'(x,}r:]a.
In particular , if @, = const. then & =&+ n, where &, 17 are arbitrary harmonic conjugate function , and the case of
the standard elliptic Liouville equation is recovered . If finally F(u] = exp[—u] Ny, (c = cgﬂ_gt_]’the above case is
recovered by means of the transformation ¢ — 1 4 i, Where 1 = ﬂ[x, }r] satisfies the equation ¥3i; — cay; =0 This

completes the symmetry classification of the PDE (10), apart from the transformations in the equivalence group.
5. An example with two arbitrary functions
We now consider the case of a PDE of the form (1) with two arbitrary function F, (u], ie. L=2,D =13. To avoid

excessive generality, let us restrict our study to a PDE of the following form
a
Uy T Ty + x_guxx = cx[x,}r] Fy (T.L] + (T.L]

here bi = % a0 is a constant , a, = cx(x, }r]a given function and a, =1 The choice of this equation is motivated and

a7

X
suggested by the theory of plasma physics: it is indeed a generalization of the Grad- Schluter-Shafranov equation (see[6]), which
is obtained putting in (17) @ = —1 ,& = x ¥ , and describes the magnetohydrodynamic force balance in a magnetically confined

toroidal plasma. In this context, u is the so-called magnetic flux variable, x is a radial variable (then x = 0), while the two
arbitrary functions F, (w), F, () are flux functions related to the plasma pressure and current density profiles.
The determining equations not involving F, (1) give in this case

3
{e =My .8y = —M,, and B=£+b .b = const.
x

First of all , the kernel group is immediately seen to be trivial (apart obviously from the translation generated by @ in the case
ay "

where g depends only on x ; the possible presence of this symmetry will be tacitly understood in the following ). Indeed , from

p; = O(see Lemma 2), one has 4 = B = ¢ = 0, then the above equation implies F= (—_b) % and the condition
3 ¥

ps =0witha, =1 gives finally & = 0.

Let us now start assuming that there are exactly two linear relations involving the functions F, and F, separately:

AFy +AquFy, + AP A uF +AuPF' At A u+ A, =0



44342 Sameer Qasim Hasan and WissamSalman Abd / Elixir Appl. Math. 102C (2017) 44337-44343

AF + AquF, + A F', 4 AguF', + A guP Py pgu® +pgut py =0 (18)
with not all Ai,p,z. equal to zero.

Let}l,?}l,Ei # 0, and put A, =A;=1 According to proposition 1, the symmetry coefficients D; L given by (4), satisfy then the
six linear conditions

P1=AD7, P2 = AaPg, 03 = A3D7 .04 = A4Ds , D5 = AsP7 .06 = AgDs (19)
Ps = AoP7 P10 = A1oPe P11 = A11D7 + H11Pe D12
= A1507 + fy3Ds P13 = AaDr + eaDs

With A, #0, wecanput i_=0,uptoa translation of u. conditions (19) and the expression of the coefficients p; give

ps =0,A=0,then p; = py3 =0 and therefore also Ag=Ay3 =y = 0 ( indeed Dby = 0, otherwise all
p; = 0); condition P, = A,pg implies that #( x, ) must satisfy an equation of the form £, = kcé—l- k,

(kg .k, = const) which admits harmonic solution only of the form & = cx ,c = const. On the other hand ,

A= 21 1, =Ez imply that g is forced to satisfy

Pr ° e
xa, +ya, (20)
— =1 = const.

o
This means that if g does not satisfy this condition , no symmetry is allowed; we then assume for g the form

a(x,) = x"BC)
where f is arbitrary. Notice that , with & of this form , a new transformation is included in the equivalence group , namely the
scalingx = cx , vy = cy ,F, = cﬂ‘?‘pl F, = c'EFE . We also deduce B = const = 0, p,, = 0, which implies in
turn;{12 =y, = 0. Then we are left with

AFy +uF', =0 ,A,F,+uF', =0

giving (thanks to some scaling-all these transformations belong indeed to the equivalence group)
F, = e By = w %= where
24T

c 3

—Al=1—E[3+Tj=1+ ,—A; =1+— with b= —cqg
g

with admitted symmetry generated by

X=x—+y——qu—.
xﬂx+}ra}r quau

Let now ,1? = ,18 = (. then necessarily 1515 = 0. According to proposition 1, the orthogonality condition now reads (with
Ag=4,=1)
Py = A05 .05 = AP P = A3Ps Py = Ay .07 = P = 0,05 = AgP5 Py = A1Pe»  Pry

= AP + P 0 Piz = AP H H0Pe P = AgaPs R -
In this case , one has immediately B = 0, then Py, =0 and ,112 =y, = 0, and again & = cx.From B, = p, One has

3¢, = A= const ,Which gives p,. = 4,, = py; = 0. Up to a scaling of u , one can choose 4, = 1, the equations for

F, ,F, are then

AFy+F =0, F,+F',=0

giving F, = exp(—llu] , B, = exp(—u], and finally from 11 = % one deduces the same condition (20) as before for
)

the function g(x, y), and =1+ G)
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