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1. Introduction 

The studies and analysis of a symmetry properties of a differential equation make sense in solution of differential equations 

see ([1],[7],[8],[10]) . The symmetry classification of an equation which contain arbitrary function dependent on how we can 

choice these function , so , the symmetry properties give these selections ([1],[5],[9]). 

In this paper , the third order of PDE's that give below with one are more   for unknown u, we give the sufficient condition 

to be the admits symmetry is not trivial. Two example sported the idea and procedure .  

2. Preliminary results  

For the sake of simplicity we consider only second order equations for the unknown function  of two 

independent variables x,y (but the extension to more general cases is completely straightforward), and we will deal with quasi-

linear PDE's  of the following form  

                 (1) 

or in a short-hand notation  
 

where  are given (smooth) function, and  are  L arbitrary 

(smooth) functions of  ( in the examples below we will deal with just one or two functions ). It is understood that no 

linear relations exist between  and between . we will exclude from our consideration the rather trivial case when  

are linear functions of  which usually can be more simply and conveniently discussed separately by means of direct 

calculations.  

we will denote their Lie generator by  
 

 

 

where  =   and  is the third prolongation of X . 

 

lemma 1 

For any choice of the functions  , the coefficients of the Lie point symmetry operators admitted by a  PDE of the form (1) 

satisfy the conditions     i.e  

                                                          (2)
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now we show that    

1.   

 

2.    

 

3.    

 
 

 

 

 
 

 

with  

                                        

                                                                                                                                                                                                       (3) 

where the coefficient function   are given by  

 

 

                                                                                                                               (4) 

with  

considering now the determining equation (3) , and observing that the  depend only on x,y and not on u, one immediately 

realizes that , if the 4L+3 functions  defined by  

                                                                                      (5) 

are linearly independent , then (3) can be satisfied if and only if  

                                                                                                           (6) 

Recalling now the definition of kernel of the full ( or principal ) symmetry groups [1] of eq. (1),  i.e. the intersection of all 

symmetry groups admitted by (1) for any arbitrary choice of  , we can then state the following property.  

Lemma  2 

consider (6) characterize the kernel of the symmetry groups of equation (1). 

Indeed , condition (6), together with the other determining equations (not involving  ) , determine the functions  

(i.e. the symmetries admitted by equation (1)), which are independent of the choice of the functions . These symmetries may be 

considered trivial in this context for instance, if all coefficients a,b,  in (1) are independent of y, then such  a symmetry operator 

is  . Some not so obvious examples of symmetries of this type will be presented later .  

Therefore, a first conclusion is that , in order to have nontrivial symmetries (i.e. really dependent on the choice of the 

functions ), a necessary condition is the existence of some linear dependence among the functions (5). Another  relevant remark 

which will emerge from our discussion is the important role played also by the coefficient functions  in the 

determination of the admitted symmetries. 

3.  Conditions for the existence of symmetries . 

Consider the linear space generated by the 4L+3 functions  defined in (5) , and , according to our above remarks, now 

assume that there are some linear relations among these functions. Then the  span a space with dimension   

if this is the case, D coefficients  are forced, according to (3), to belong to the orthogonal -dimensional subspace 

(with respect to the standard scalar in  and the functions  turn out to be subjected to k linear conditions. For 

instance, if there is just one linear relationship between the  , say  

                                                                                                                                          (7)              
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where not all the constants  vanish , then   and the functions  span a 1-dimensinal subspace and must satisfy 

 equations of the form ( assuming that , e.g,   

                                                                                  (8) 

we can then state our main conclusion , which characterizes the crucial determining equation which contains the functions  in 

the following "geometrical" form. 

proposition 1 

Equation (1) admits nontrivial symmetries only if the  function (5) are linearly dependent. If this is the case , 

the  functions (x,y) given by (4) appearing in the determining equation (3) span the subspace orthogonal (with respect to the 

standard scalar product in ) to the dimensional  subspace spanned by the function (5). The admitted symmetries 

are completely determined by imposing this orthodonality condition to the coefficient functions (x,y), together with the other 

determining equations not involving the functions (u). 

Before considering explicit examples, let us remark that the complete symmetry classification must be accompanied by the 

determination of the equivalence group [1] , i.e. the group of the transformations which leave invariant the differential structure of 

the PDE. Standard calculations show easily that , for any fixed choice of the functions  in equation (1), the 

equivalence group includes in particular , expectedly , the scalings  and the translation 

 Other transformations involving also the variables x,y can appear for particular choices of the 

functions  The transformations belonging to the equivalence group will play an important role in performing the 

complete symmetry classification of our equations. 

4.  First example: a generalized Laplace equation: 

To illustrate the main idea and the procedure , and also to clarify some details , we are now going to examples , which can be 

noteworthy also for their different and interesting peculiarities. We start considering the simplest case , where the r.h.s. of (1) 

contains only term  

(then  D=8 ). 

First of all , let us remark that , independent of the form of the equation arbitrarily. For instance, no relation exists between ,  

and 1, and also , having excluded the trivial case of linear  , ,  ,1 . On the other hand , the necessary linear dependence 

between the function  implies immediately that the presence of some symmetry is possible only if  is an exponential or a 

power of . It can also happen that more than one linear relation holds: e.g., if  

 

                                                                                            (9) 

let use consider the following generalization of the classical nonlinear Laplace equation  

                                                                              (10) 

where   is a given function. In this case , the determining equations not containing  imply in particular  

                                                                           (11) 

 

whereas the crucial determining equation (3) involving   is  

                                                                      (12)              

 with the coefficient functions  given by  

 

 

                                                                                         (13)                                                                                  

Let us first discuss the kernel group. The conditions  

characterizing the transformations in the kernel group give now  and the condition  which now 

reads  . Introducing a harmonic function  such that              

 

this condition can be more conveniently transformed into an equation for the single unknown :  

                                                                                                                         (14)                                                                                             
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Solution of this equation clearly depend on the choice of the function . For instance , if  = const., it gives 

 , which , together with (11) , implies that the symmetries in the kernel group are , as expected , only translations 

and rotations of the variables x,y . If  then   

and the kernel contains , apart from the translation generated by  , the transformations generated by  

 

With one has that if  then the kernel contains only the translation generator  , whereas if  it 

also contains the transformations generated by two operators 
  

The first transformation describes the kernel group even if  where  is an arbitrary function. 

It can be remarked, incidentally, that if we reverse the argument for a moment, one has that: given any harmonic function  (and 

then any couple of harmonic conjugate functions ), there are some  

which solve equation (14), and then, with these functions , the kernel group contains precisely the symmetry generated by the 

operator  

Let us now finally perform the symmetry classification of eq.(10). As already remarked, its equivalence group may contain and 

depending on the specific choice of the function  , other transformations possibly involving also x,y. As we shall see , however, 

these are not relevant for the symmetry classification of equation (10). 

According to our procedure, it is immediately seen that just one linear relation between the eight  can exist . For instance, in the 

case  mentioned above, admitting the two linear relations (9),would lead to  i.e. only the kernel symmetries 

. We then assume the existence of a single linear relation: 

                                                                     (15) 

with not all  equal to zero. Observing that  , one has from (8) that  We now distinguish the cases  and 

.  

Let . It is not restrictive to put , and (up to a translation of u ) , which implies  If  , 

then  would imply A = 0 and also  now, if  it remains only  and from 

 one concludes that  . Therefore, we get  i.e. 

 

Using now (8) , which become  , we get    and  

 

The last equation relates the symmetry coefficients  with the specific form of the function . If for instance 

 then but otherwise also i.e. the kernel group. Therefore ,  

must be proportional to x and equation (10) admits the symmetry operator  
 

(and obviously the translation of the variable and  also the translation of and the rotations of in the case , i.e. if  

). 

Let now  Then necessarily and one can put  and also  (possibly up to a scaling of ). Assume 

first  therefore, from (15), 

 

and the conditions (8),(13) for the functions  become now  

 

 

As before , we can consider some examples. If  const.the last equation and then the most general symmetry of 

the equation  is  
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where  are arbitrary harmonic conjugate functions: this is the well known case of the classical Liouville equation , and the 

translation  Assume now then  

 

Introducing the transformation where  satisfies the equation one obtains the new 

equation  

 

where  which has precisely the same form as the equation considered before. Without repeating details, 

it can be interesting to provide just one illustrative example . Let  

 

where It is easy to see that if  this equation admits the symmetries  

 

where  are arbitrary harmonic conjugate function , if instead  

The admitted symmetries are only those in the kernel group. 

The above results concerning eq.(10) can be stated in a complete form as follows. 

proposition  2 

Give a function  consider this equation for the harmonic function  

                                                                                        (16) 

Let  Assume first , for any solution  of (16), the kernel group of the generalized Laplace 

equation (10) is generated by the symmetry operator  

 

If  for any solution  of (16) with C = const.  eq. (10) 

admits the symmetry operator  

 

In particular , if  then  where  are arbitrary harmonic conjugate function , and the case of 

the standard elliptic Liouville equation is recovered . If finally the above case is 

recovered by means of the transformation  where  satisfies the equation . This 

completes the symmetry classification of the  PDE (10), apart from the transformations in the equivalence group. 

5.  An example with two arbitrary functions  

We now consider the case of a PDE of the form (1) with two arbitrary function i.e.  To avoid 

excessive generality, let us restrict our study to a PDE of the following form  

                                                                      (17) 

here is a constant , a given function and . The choice of this equation is motivated and 

suggested by the theory of plasma physics: it is indeed a generalization of the Grad- Schluter-Shafranov equation (see[6]), which 

is obtained putting in (17) and describes the magnetohydrodynamic force balance in a magnetically confined 

toroidal plasma. In this context, u is the so-called magnetic flux variable, x is a radial variable (then , while the two 

arbitrary functions are flux functions related to the plasma pressure and current density profiles.  

The determining equations not involving  give in this case  

 

First of all , the kernel group is immediately seen to be trivial (apart obviously from the translation generated by in the case 

where  depends only on x ; the possible presence of this symmetry will be tacitly understood in the following ). Indeed , from 

(see Lemma 2), one has then the above equation implies and the condition 

 gives finally  

Let us now start assuming that there are exactly two linear relations involving the functions  separately: 
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                                                             (18)          

with not all  equal to zero. 

Let and put  According to proposition 1, the symmetry coefficients given by (4), satisfy then the 

six linear conditions  

(19) 

With  we can put  up to a translation of u. conditions (19) and the expression of the coefficients  give 

 and therefore also ( indeed  otherwise all 

; condition  implies that  must satisfy an equation of the form  

= const) which admits harmonic solution only of the form  On the other hand , 

 imply that  is forced to satisfy  

                                                                                                                  (20) 

This means that if  does not satisfy this condition , no symmetry is allowed; we then assume for  the form  

 

where  is arbitrary. Notice that , with  of this form , a new transformation is included in the equivalence group , namely the 

scaling  We also deduce  , which implies in 

turn  Then we are left with  

 

giving (thanks to some scaling-all these transformations belong indeed to the equivalence group) 

where  

 

with admitted symmetry generated by  

 

Let now  then necessarily  According to proposition 1 , the orthogonality condition now reads (with 

 

 

In this case , one has immediately  then  and  and again From  one has 

which gives Up to a scaling of u , one can choose the equations for 

 are then  

 

giving  and finally from  one deduces the same condition (20) as before for 

the function and            
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