44351

Pratibha Mittal / Elixir Appl. Chem. 102 (2017) 44351-44353

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Chemistry

Elixir Appl. Chem. 102 (2017) 44351-44353

Synthesis of Cinnemaldine-aniline and Kinetic study

Pratibha Mittal

The IIS University, Jaipur.

ARTICLE INFO

Article history: Received: 30 November 2016; Received in revised form: 2 January 2017; Accepted: 11 January 2017;

Keywords

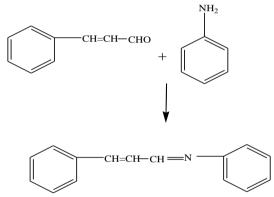
Schiff base, N- cinnemaldine -aniline, kinetics.

ABSTRACT

The second order reaction rate constant for the reaction of Cinnemaldehyde with aniline have been reported in ethanol in the temperature range 303 to 318 k. The rate of reaction is first order with respect to Cinnemaldehyde and first order with respect to aniline. Increase in temperature increases the rate of reaction. The thermodynamic parameters are used to explain the nature of reaction .Suitable reaction mechanism has been suggested for the formation of the Schiff base.

© 2017 Elixir All rights reserved.

Introduction.


The Schiff bases are also called as imines [1], anilis and azomithines. The kinetic studies of Schiff base formation as well as other carbonyl addition reaction have been interested chemists for some time. Schiff bases derived from anilines and its derivative with aromatic aldehyde have a wide variety of applications in biological [2,3] and analytical chemistry[4]. Schiff bases are known to be neoplasm inhibitors [5,6], antiviral[7]. anticonvulsants[8]. antimicrobial [9]. anticancer[10]. plant growth regulator[11] and antituburecular[12], agents.

The study of kinetics of formation and hydrolysis of Schiff bases has received a considerable attention due to its relevance to the transformation (conversion) of >C=0 to >C=N and vice versa in biochemical processes [13-17]..Schiff bases formation involves a two step reaction between the carbonyl compound and the amino compound. First, addition takes place to form a carbinolamine which then undergoes dehydration [18]. Both step are reversible and subject to general acid – base catalyst [19]. Literature survey reveals that a great deal of work has been reported on the complexation of metal ions with Schiff bases for the study of structure and stability of the complexes. The catalytic effect of hydrogen, hydroxyl and metal ions on the

formation and hydrolysis of imines have been studied by several workers[16,17-20]1. In the present work we report here kinetic study and mechanism of the formation of Schiff base, N- Cinnemaldine aniline in ethanol medium spectrophotometrically.

Experimental Section

All chemicals used were of AR grade. Schiff base were prepared by refluxing equimolar quantity of cinnemaldehhyde and aniline in ethanol medium for about three hours. The mixture was cooled and filtered to obtain solid Schiff base and recrystallised from ethanol. The purity was checked by melting point (51 0 C) and TLC.

Results and Discussion

Kinetics of formation of Schiff bases was carried out at equal concentration. The second order rate constant was calculated by using equation of second order at equal concentration and graphical k values determined from the straight line plots of 1/(a-x) verses time.

Reaction order Effect of change in concentration of cinnemaldehyde on the rate of reaction. The kinetic study is carried out at different concentration of cinnemaldehyde $(1 \times 10^{-3} \text{ to } 5 \times 10^{-3} \text{ mol dm}^{-3})$ at constant concentration of aniline $(5 \times 10^{-3} \text{ mol dm}^{-3})$ in ethanol medium at 303 k. The plot of dc/dt against log [A.A] is liner and slope of plot was found to be nearly one, indicates the order with respect to cinnemaldehyde is first order (Table1).

 Table 1. Effect of change in concentration of cinnemaldehyde on the rate of reaction.

[C.A] ×10 ⁻³ (mol dm ⁻³)	[ANI] ×10 ⁻³ (mol dm ⁻³)	k ×10 ⁻³ (mol ⁻¹ dm ³ s ⁻¹)
1	5	11.04
2	5	11.18
3	5	11.28
4	5	11.48
5	5	11.58

Tele: E-mail address: Pratibha.mittal@iisuniv.ac.in

© 2017 Elixir All rights reserved

Effect of change in concentration of aniline on the rate of reaction.

The kinetic study is carried out at different concentration of aniline $(1 \times 10^{-3} \text{ to } 5 \times 10^{-3} \text{ mol } \text{dm}^{-3})$ at constant concentration of cinnemaldehyde $(5 \times 10^{-3} \text{ mol } \text{dm}^{-3})$ in ethanol medium at 303 k. The plot of dc/dt against log [ANI] is liner and slope of plot was found to be nearly one, indicates the order with respect to aniline is first order (Table2).

Table 2. Effect of change in concentration of aniline on therate of reaction.

ANI]×10 ⁻³ (mol dm ⁻³)	[C.A] [×10 ⁻³ (mol dm ⁻³)	$k \times 10^{-3}$ (mol ⁻¹ dm ³ s ⁻¹)
1	5	10.88
2	5	11.08
3	5	11.13
4	5	11.23
5	5	11.3

Effect of temperature on the rate of reaction

Kinetic measurements were carried out at four different temperatures 303,308,313 and 318 k at

constant concentration of [C.A.] $(5 \times 10^{-3} \text{ mol dm-3})$ and aniline $(5 \times 10^{-3} \text{ mol dm-3})$ in ethanol. The

Second order rate constant depends on the reaction temperature [21,22] (Table 3).

The thermodynamic parameters like energy of activation (Ea), enthalpy of activation (Δ H*), entropy of activation (Δ S*), free energy (Δ G*) and frequency factor (A) were calculated Table 4). From the value of thermodynamic parameter it is observed that Δ H*and Δ S*are the important

parameter in controlling the rate of reactions. The negative value of entropy of activation

indicates that activated complex is less probable and rate is slower. The negative values of

entropy of activation show that the intermediate transition state is rigid. The relatively small

values of ΔH^* and the negative ΔS^* values are consistent with the reactions which generally

proceeds through highly organized transitions stats [23]. If both the reactants are likely charged,

the charge density on the surface in the transitions state will be more and hence there can be

increase in solvation leading again to a negative $\Delta S^*[24]$.

Table 3. Effect of temperature on the rate of reaction.

Temp.	54.571 kJ (dm ³ mol ⁻¹ s ⁻¹)
303	11.82
308	16.5
313	23.34
318	34.45

The rate constant values of Schiff base formation at different temperature are listed in the Table-

3. The rate of formation of Schiff bases increases with increasing temperature.

The plot of log k versus 1/T is straight line (Fig 1).

Schiff bases formation involves a two-step reaction between the carbonyl compound and theamino compound. First addition takes place to form a carbinolamine which then undergoes dehydration. Both steps exhibit general acid base catalysis [25, 26] .It was found that the reaction was first order in the carbonyl compounds and first order in amine

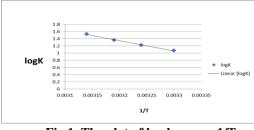


Fig 1. The plot of log k versus 1/T

Spectroscopic studies have revealed that, under mild acidic condition there is a fast disappearance of the carbonyl function followed by a slow appearance of the product [27]. Under mild acidic condition, rapid addition of amine to the carbonyl compound followed by the acid-catalysed dehydration of the adduct is the rate-controlling step. An increase in acidity would promote the reaction because it increases the rate of dehydration step. But with a further increase in acidity the nucleophile (RNH2) may get protonated (RN+H3) and, thus deprived of its lone pair of electrons and is no longer in a position to attack the positive carbonyl carbon (Scheme.1).

Ea	48.571 kJ
А	$1.26 \ge 10^2$
ΔH	42.051 kJ
ΔS^*	-148.964 JK ⁻¹ mol ⁻¹
ΔG^*	77.946 kJ mol ⁻¹

Kinetic measurements

Lambert-Beer's Law

The rate of formation of Schiff base was followed by spectrophotometer at λ_{max} . By using UV VIS, 1601 Shimuadzu spectrophotometer. The basis of the spectrophotometry is Beer's law. This relates the absorbancy of a solution to the concentration of the species present. The prerequisite of the spectrophometry is the validity of the Beer's law. It is possible to ascertain the concentration of a given species in solution if it absorbs radiation of a particular wavelength and obeys Beer's law. True variation of this law can arise when moderately concentrated solutions are used. The law is obeyed only in dilute solutions.

Standard curves

The solution of Schiff base of various concentrations (0.001 M to 0.005 M) was prepared using

ethanol solvent. Using 0.005 M solution, λ max was determined. The absorbance of each coloured

solution was then measured, at this λ max 435 nm. The readings are recorded in Table-5. The plot

of absorbance (optical density) versus concentration of the Schiff bases has been obtained as a

straight line (Fig-3). The plot was used as standard curve for the determination of concentration

of Schiff bases for the kinetic measurements.

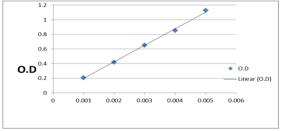


Fig 2. Standard Curve O.D Vs Concentration.

Experimental procedure for kinetic measurements

Cinnemaldehyde solution (20 ml) of desired molarity was taken into 50 ml flask. In another 50 ml flask amine solution (20 ml) of desired molarity were taken. Both the flasks were then allowed to stand in thermostatic water bath to attain the required temperature. Then content of the flask having amine solution transferred to the flask containing cinnemaldehyde. Thus obtained reaction mixture was thoroughly shaken and kept in thermostatic water bath at desired temperature. After mixing, the reaction mixture was transferred to a quartz cell and the increase of absorbance due to Schiff base formation with time was followed against the blank kept in another quartz cell at λ max. At different time intervals solution was employed to determine optical density. From this optical density, concentration (x) of Schiff base present at particular time was determined with the help of the standard curve. It was observed that this method gave reproducible and quantitative result.

Table. 5 The absorbance of each coloured solution was recorded at this λ max 420 nm.

Conc. of S.B.	O.D.
0.001	0.208
0.002	0.419
0.003	0.651
0.004	0.852
0.005	1.126

Methods of calculations of the rate constant

For the equimolar quantities of reactants, value of second order rate constant were calculated using relation

$$K = \frac{1}{t} \frac{x}{a(a-x)}$$

If concentrations of reactants are different, the values of second order rate constants have been calculated by using relation

$$K = \frac{2.30.3 \log b(a-x)}{(a-b) t \log a(b-x)}$$

Where,

t = time in second.

a = initial concentration of cinnemaldehyde.

b = initial concentration of amine.

x = amount of Schiff base formed in time t.

Graphical k values were obtained from the slope of the linear plot of 1/(a-x) versus time (t) for

equal concentration and plot of log [(a-x) / (b-x)] versus time (t) for unequal concentrations.

Order of reaction with respect to cinnemaldehyde

To determine the order of reaction with respect to cinnemaldehyde, the reaction has been carried

out at different concentrations of cinnemaldehyde by keeping the concentration of amine constant

at a particular temperature. van't Hoff's differential method [28] was applied to determine the

order with respect to cinnemaldehyde by equation [29,30].

logdc₁/dt- logdc₂/dt

$n = logC_1 - logC_2$

The amount of product formed (x) was plotted against the time in minutes. From the curve, the

values of dc/dt have been calculated.

Order of reaction with respect to amine

The order of reaction with respect to amine was determined by varying concentration of amine by keeping the concentration

of cinnemaldehyde constant at a particular temperature. The order with respect to amine was determined by applying Van't Hoff's differential method. The values of dc/dt were evaluated by plotting amount of product formed (x) against time (t) in minutes.

From the effect of temperature on the reaction rate the energy of activation E_a , enthalpy of activation (ΔH^*), entropy of activation (ΔS^*), free energy (ΔG^*) and frequency factor (A) were calculated.

References

[1] Jerry March; Advanced Organic Chemistry, Mechanism and Methods of Determining Them, 4th ed. Wiley India Pvt, Ltd. 1992.

[2] SM Jadhav. VA Shelke. AS Munde. SG Shankarwar. TK Chondhekar. J. Coord. Chem., 2010, 63, 4153.

[3] VA Shelke. SM Jadhav. SG Shankarwar. AS Munde. TK Chondhekar. J. Korean Chem. Soc., 2011, 55, 436.

[4] PR Patel and S Zele. Ind. Chem., 1999, 38A, 563.

[5] SP Chatterjee. B Sur and SR Chaudhary. Oncology., 1990, 47(5), 433.

[6] VS Jolly. Orient J. Chem. 1994, 10(3), 297.

- [7] PH Wag. JG Keck and L Michael. J. Med. Chem., 1990, 33(2), 608.
- [8] AL Cates and Rasheed. Pharm. Res., 1984, 6, 271.
- [9] VA Shelke. SM Jadhav. SG Shankarwar. AS Munde. TK Chondhekar. Bull. Chem. Soc. Ethiop., 2011, 25(3), 1.
- [10] KP Sharma. VS Jolly and Phatak. Ultra Sci.Phys.Sci., 1998, 10(2), 263.
- [11] Gaodeng Xuexiao Huaxe Xuebao and D Yin. 1996, 7(1), 91.
- [12] Polasa H. Indian .J. Pharm.Sci., 1985, 47, 202.
- [13] Prabhu DV and Laxmeshwar NB. J. Indian Chem. Soc., 1995, 72, 323.
- [14] .V. Willi, Helv. Chem. Acta., 1956, 39,1193.
- [15] TA Behme and EH. Cordes. J. Am. Chem. Soc., 1965, 87, 260.
- [16] L Reeves. J. Org. Chem., 1965, 30, 3129.
- [17] L Doamaral, WA. Sandstorm and EH. Cordes. J. Am. Chem. Soc., 1966, 88, 2225.
- [18] A Lapworth. J. Chem. Sco., 1903 P Bartlett. J. Am. Chem. Sco., 1932, 54, 2881.
- [19] Kyu Sun Bai and DL Leussing. J. Am. Chem. Soc., 1967, 89, 24.
- [20] AC Dash. B Dash and PK. Mohapatra. J. Chem. Soi. Dalton Trans., 1983, 1503, 1505.
- [21] RS Shettar and ST Nandibewoor. Int. J. Chem. Soc. 2004, 2(3), 419.

[22] Rajeev Kumar Singh and Kaushaiendra Kumar. Int. J. Chem. Sci., 2004, 2(1), 52.

- [23] MR Bruce. J. Phy. Chem., 1964, 68, 1369.
- [24] MU Khan. Sanjaykumar Singh. HD Gupta and PK Singh. Asian Journal of Chem., 2003, 14(2), 595.
- [25] WP Jencks. Progr. Phys. Org. Chem., 1964, 2, 63.
- [26] TC Bruice and SJ Benkovic Bioorganic Mechanisms, WA Benjamin. Inc. New New York, N.Y. 1966
- [27] Santly. H Pine. Organic Chemistry 5th Edition Tata McGraw Hill,Publishing Company Limited New Delhi. 2007, 248.
- [28] Bauer and Exner. Angew Chem. Int. Ed. Eng. 1974, 13, 376.
- [29] AS Kirdanta, VA. Shelke, SG. Shankarwar, AG. Shankarwar and TK Chondhekar, J. Chem. Pharm. Res., 2011, 3(4), 790-796.
- [30] AS Kirdanta, , SG. Shankarwar and TK Chondhekar, Int. J. Chem. Sci., 2010, 8(1), 279-289.