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Introduction 

The nature of the dark energy component of the universe [1-3] remains one of the deepest mysteries of cosmology. There is 

certainly no lack of candidates: cosmological constant, quintessence [4-6], k-essence [7-9], phantom energy [10-12]. 

Modifications of the Friedmann equation such as Cardassian expansion [13,14] as well as what might be derived from brane 

cosmology [15-17] have also been used to explain the acceleration of the universe. A particular case of the linear Equation of state 

has used in the cosmological context by Xanthopuolos [18], he considered space-times with two hypersurface orthogonal, space-

like, commuting killing fields. 

The current standard model of cosmology implies the existence of dark energy which accounts for about 70% of the total 

energetic content of the universe, which ac-cording to the observations is spatially flat [19].  Several models have been proposed 

to explain dark energy [20-26]. An alternative consists of to consider a phenomenological decaying dark energy density with 

continuous creation of matter [26] or photons [27,28].The dark energy might decay slowly in the course of the cosmic evolution 

and thus provide the source term for matter and radiation. Different such models have been discussed and strong constraints come 

from accurate measurements of the CMB. Although some authors [29] have suggested cosmological model with anisotropic and 

viscous dark energy in order to explain an anomalous cosmological observation in the cosmic microwave background (CMB) at 

the largest angles.  

Bianchi type models have been studied by several authors in an attempt to understand better the observed small amount of 

anisotropy in the universe. The same models have also been used to examine the role of certain anisotropic sources during the 

formation of the large-scale structures we see in the universe today. Some Bianchi cosmologies, for example, are natural hosts of 

large-scale magnetic fields and therefore, their study can shed light on the implications of cosmic magnetism for galaxy formation. 

The simplest Bianchi family that contains the flat FRW universe as a special case are the type-I space-times. 

Measuring the equation of state for dark energy is one of the biggest efforts in observational cosmology today. The DE model has 

been characterized in a conventional manner by the equation of state (EoS) parameter 




p


which is not necessarily constant, 

where  is the energy density and p  is the fluid pressure [9]. The present data seem to slightly favour an evolving dark energy 

with EoS 1  around the present epoch and 1  in the near past. Obviously,   cannot cross 1  for quintessence or 

phantom alone. Some efforts have been made to build a dark energy model whose EoS can cross the phantom divide. The simplest 

DE candidate is the vacuum energy ( 1 ), which is mathematically equivalent to the cosmological constant ( ). The other 

conventional alternatives, which can be described by minimally coupled scalar fields, are quintessence ( 1 ) [30], phantom 

energy ( 1 ) [31] and quintom (that can across from phantom region to quintessence region as evolved) and have time 

dependent EoS parameter. Some other limits obtained from observational results coming from SNe Ia data [32] and combination 

of SNe Ia data with CMBR anisotropy and galaxy clustering statistics [33] are 62.067.1    and 79.033.1   , 

respectively. The latest results in 2009, obtained after a combination of cosmological datasets coming from CMB anisotropies,
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ABSTRACT 

We discuss two dark energy models on LRS Bianchi Type-I magnetized anisotropic 

space –time with a variable equation of state (EoS). The EoS for dark energy   is found 

to be time dependent and its existing range for derive models is in good agreement with 

the recent observations. Using the suitable condition, the anisotropic models approach to 

isotropic scenario. We also find that during the evolution of the universe, the EoS 

parameter for DE changes from 1  to 1  in first model whereas from 

1  to 1  in second model which is consistent with recent observations. The 

cosmological constant   is found to be a positive decreasing function of time and it 

approaches a small positive value at late time (i.e. the present epoch) which is 

corroborated by results from recent supernovae Ia observations. The physical and 

geometric properties are also discussed.                                                                                   
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 luminosity distances of high redshift type Ia supernovae and galaxy clustering, constrain the dark energy EoS to 

92.044.1    at 68% confidence level [34,35], However, it is not at all obligatory to use a constant value of  . Due to 

lack of the observational evidence in making a distinction between constant and variable  , usually the equation of state 

parameter is considered as a constant [36,37,4] with phase wise value 
1,

3

1
,0,1  and

 for vacuum fluid, dust fluid, radiation 

and stiff dominated universe respectively. But in general,   is a function of time or redshift [38,39,40]. Some literature are also 

available on models with varying fields, such as cosmological models with variable EoS parameter in Kaluza-Klein metric and 

wormhole [41,42]. In recent years various form of time dependent  have been used for variable   models by Mukhopadhyay et 

al. [43]. In well –known reviews on modified gravity [44,45],it is clearly indicated that any modified gravity may be represented 

as effective fluid with time dependent  . 

In Principle, once the metric is generalized to Bianchi types, the EoS parameter of the fluid can be generalized in a way 

conveniently to wield anisotropy with the considered metric . In such model, where both the metric and EoS parameter of the fluid  

are allowed to exhibit an anisotropic character, the universe can  exhibit non-trivial isotropization histories and it can be examined 

whether the metric and/or the EoS parameter of fluid evolve toward isotropy. We may say about two main classes of such models; 

according to whether this anisotropization occurs at an early time or at late times of the universe, The former class can be related 

with the inflation field , which drives the inflation, which drives the late time acceleration of the universe. In the context of the 

former class, the generic inflationary model can be modified in a way to end inflation with a slightly anisotropic spatial geometry. 

 Bianchi type-I universe is the prime candidate for studying the possible effects of an anisotropy in the early universe on present-

day observations, there are few other models (for example, 
0VIB  ), which describe an anisotropic space-time and generate 

interest among physicists.[46-49]. Pradhan and Bali [50] and Bali et al. [51] have studied 
0VIB   space time in connection with 

massive strings. Recently Amirhashchi et al.[52] presented dark energy models in an anisotropic 
0VIB   space –time by 

considering constant deceleration parameter. In this paper, we have investigated two new LRS Bianchi type-I magnetized dark 

energy  models  with variable equation of state  . The discussion of the paper is as follows: 

In section.2, the metric and the field equations are described. In section 3 deals with the solutions of the field equations in two 

different cases .Section 4 deals with physical and geometric behavior of the models. In section 5, we describe an other dark energy 

model and its physical aspects. Finally, conclusions are summarized in the last Section 6. 

2. Metric and Field Equations: 

We  consider the LRS Bianchi Type-I metric in the following  form 

)( 2222222 dzdybdxadtds                                                                                                                                     (1) 

where the scale factors a and b are functions of cosmic time only.  

The energy momentum tensor for anisotropic dark energy with magnetic field is given by 
i

j

EMi

j

DEi

j TTT                                                                                                                                                                             (2) 

where 

 i

j

j

iEDED

i

j

DE pguupT  )(                                                                                                                                             (3) 

where iu is the flow vector satisfying 

1ji

ij uug                                                                                                                                                                                   (4) 

i

j

EM T  is the electromagnetic field tensor which is given by 









 





FFggFFT ijjiij

EM

4

1

4

1                                                                                                                                 (5) 

where 
ijF  is the electromagnetic field tensor which satisfies the Maxwell equations  

   0)(,0];[  gFF ij

ij 
                                                                                                                                          (6) 

In commoving coordinates, the incident magnetic field is taken along x-axis, with the help of Maxwell equations (6), the only 

non-vanishing component of 
ijF  is  

.23 MconstF                                                                                                                                                                           (7) 

By preserving the diagonal form of the energy momentum tensor in a consistent  way with the above metric, the simplest 

generalization of EoS parameter of perfect fluid may be to determine it separately on each spatial axis. Therefore the energy 

momentum tensor of perfect fluid is taken as 

],,,[ 3

3

2

2

1

1

0

0 TTTTdiagT j

i                                                                                                                                                         (8) 

Thus, one may parameterize it as follows 
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where   is the energy density of the fluid 
zyx ppp ,,  are the pressures and 

zyx  ,,  are the directional EoS parameters 

along the zyx ,,  respectively,  


 p

t )(
 is the deviation free EoS parameter of the fluid. We have parameterized the 

deviation from isotropy by setting  x
 and then introducing skewness parameter   which is the deviation from   along 

both  y and z-axes.   and   are not necessarily constants and might be function of the cosmic time t . 

The  Einstein‘s field equations   are 

ijijij TRgR 8
2

1


                                                                                                                                                                (10) 

where the symbols have their usual meaning. 

By adopting commoving coordinates, Einstein‘s field equation (10), for the Kontowski-Sachs space-time, the field equations 

take the form 

4

2

2

2

444 8
2
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b

b

ba
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 

                                                                                                                                                    (11)          
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                                                                                                                                               (13)   

where a subscript 4 indicates differentiation with respect to t. 

3. Solutions of the field equations 

 The spatial volume for the model (1) is given by 
23 abRV                                                                                                                                                                              (14) 

where  R is the mean scale factor. The mean Hubble parameter H  is given as 









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b

b
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a

V
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1                                                                                                                                           (15) 

The directional Hubble parameters in the directions of x,y and z respectively may be defined as 

b

b
HHand

a

a
H zyx

44 
                                                                                                                                   (16) 

The volumetric deceleration parameter q , the scalar expansion   , shear scalar 2 and the average anisotropy parameter 
mA  are 

defined by 

2

4

44

R

RR
q 

                                                                                                                                                                           (17) 

b

b
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                                                                                                                                                                              (18) 
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                                                                                                                                                              (20) 

where ),,( zyxiH i   represents the directional Hubble parameter in the direction of zandyx, , respectively. 0mA  

corresponds to isotropic expansion. 

Initially we apply the law of variation for Hubble parameter for the LRS Bianchi Type –I metric may be given by 

32 )(

n

abDH



                                                                                                                                                                            (21) 
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where 00  nandD  are constants.  Such type of relations have firstly been considered by Berman [53], Berman and 

Gomide [54]  for solving FRW models. Letter on many authors have used this law to study FRW and Bianchi type models. 

 On integrating, after equating (15)  and (21), we obtain 

0)(

3

1

2  nforcnDtab n

                                                                                                                                       (22) 

here 
1c  is positive constants of integration. The values for the deceleration parameter for the mean scale factor as: 

1 nq                                                                                                                                                                                    (23) 

which is constant. The sign of q  indicates where the model inflates or  not.  The positive sign of q  i.e. 10  n   indicates 

inflation. It is  remarkable to mention here that through the current observations of SNe  Ia and CMBR favors accelerating models 

)0( q , but both do not altogether rule out the deceleration ones which are also consistent with these observations [55] 

Now we assume that the expansion )(  is proportional to shear )( , this condition lead to 






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
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where 

31

132

0

0








m

 and 
0  are arbitrary constants. Above equation, after integration, reduces to 

mba   

where    is an integrating constant. Here , for simplicity and without any loss of generality, we assume 1 . Hence we have 

mba                                                                                                                                                                                            (24) 

The motivation behind assuming this condition is explained with reference to Thorne[56], the observations of the velocity-

red-shift relation for extragalactic sources suggest that Hubble expansion of the universe is isotropic today within 30  percent   

[57,58]. To put more precisely, red- shift studies place the limit 

3.0
H

 ,  

On the ratio of shear   to Hubble constant H in the neighborhood of our Galaxy today. Collins et al.  [59] have pointed out 

that for spatially homogeneous metric, the normal congruence to the homogeneous expansion satisfies that the  condition 



   is 

constant. 

Using (24) (14) in (15), we obtain the expressions for metric function as follows 

mlcnDtb

1

1)( 
                                                                                                                                                                         (25) 

lcnDta

1

1)( 
                                                                                                                                                                            (26) 

where 
1c  is an integrating constant 

Hence the model (1)  reduces to 

)()()( 22

2

1

2

2

1

22 dzdycnDtdxcnDtdtds mll 
                                                                                               (27) 

4. Physical aspects of dark energy model 

The expressions for the Hubble parameter H, scalar of expansion   ,shear scalar   

and the average anisotropy parameter 
mA  for the model (27) are given by 
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3
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Using equation (11) , the energy density of the fluid is obtain as  

mlcnDtMcnDt
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Using equation (13) , the EoS parameter is obtained as 
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                                                                                               (32) 

Using  equation (12), the skewness parameter   are computed as 
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                                                                 (33) 

From (32), it is observed that the equation of state parameter   is time dependent, it can be function of redshift z or scale factor 

R  as well. The redshift dependence of  can be linear like 

zz ')( 0                                                                                                                                                                          (34) 

with 

0

'
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
zdz

d


(see [60,61]) or nonlinear as 

z

z
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1
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                                                                                                                                                                    (35) 

[62,63]. So  as for as the scale factor dependence of   is concern. The parametrization 

)1()( 0 RR R                                                                                                                                                             (36) 

where 
0  is the present value )1( R  and 

R  is the measure of the time variation  '  is widely used in the literature [64] 

So, if the present work is compare with experimental results [31,32,33,34], then one can conclude hat the limit of   provided by  

(32) may accommodated with the acceptable range of EoS parameter . Also it is observed that at ,ctt   vanishes, where 
ct
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a critical time given by 
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Thus, for this particular time , our model represents a dusty universe. We also note that earlier real matter at 
ctt  , where 0  

later on at 
ctt  , where 0  converted to the dark energy dominated phase of universe. 

For the value of   to be in consistent with observation [31], we have the following general condition 
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For this constrain, we obtain 62.067.1     which is in good agreement with the limit obtained from observational 

results coming from SNe Ia data [31]. 

For the value of   to be in consistent with observation [12] , we have the following general condition 

,43 ttt                                                                                                                                                                                    (40) 
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For this constrain, we obtain 79.033.1     which is in good agreement with the limit obtained from observational 

results coming from SNe Ia data [31] with CMB anisotropy and galaxy clustering statistics [32]. 

For the value of   to be in consistent with observation [33,34] , we have the following general condition 
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For this constrain, we obtain 79.033.1     which is in good agreement with the limit obtained from observational 

results  [33,34]. 

 From (31), we note that energy density of the fluid )(t  is a decreasing function of time and 0  when 
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Here   is a positive  decreasing function of time and it approaches to zero as t . 

In absence of any curvature, matter energy density 
m  and dark energy 

  are related by the equation 
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Using (28) and (31) in (47), the cosmological constant is obtained as 
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From (48), we observe that   is decreasing function of time and it is always positive when 
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We observe that cosmological  parameter is decreasing function of time and it approaches a small positive value at late time 

(i.e. At present epoch). Recent cosmological observations[65,2]; [3,66,67] suggest the  existence of a positive cosmological 

constant   with the magnitude   .10 123
3


c

Gh  These observations on magnitude and red-shift of type Ia supernova suggest 

that our universe may be an accelerating one with induced cosmological density through the cosmological  - term. Thus, the 

nature of   in our derive DE model is supported by recent observations. 

From (28)-(29) , it can be seen that all the kinematical  parameters  andH ,,  diverge at the initial singularity. There is a 

Point Type singularity [48] at 

nD

c
t 1

 in the model .  The mean anisotropic parameter is constant and it increases. Thus, the 

dynamics of the mean anisotropy parameter depends on the value of n  . Since 

,tan
2

2

tcons


  the models does not approach  

isotropy through the whole evolution of the universe. 

 5. Other dark energy model 

Now we take the  following ansatz for  the scale factor, where the increase in terms of time evolution is  
ttetR )(                                                                                                                                                                                      (50) 

By the above choice of scale factor yields a time dependent deceleration parameter. We define the deceleration parameter q   as 

usual, 
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Using (50) into (51), we find 
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Using (24) and  (51)  in (15), we obtain the expressions for metric functions as follows 
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Hence the model (1) reduces to  
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The expressions for the Hubble parameter H   , scalar of expansion  , shear   and the average anisotropy parameter 
mA  for 

the model (55) are given by 
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Where 

m

m
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3

2
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. Since 

0
2

2




  for all values of m  except for 1m , hence the model is anisotropic except for 1m . 

The dynamics of the mean anisotropic parameter depends on the value of .m  The mean anisotropic parameter is constant. We 

observed that when  mAm ,0  and for 0,1  mAm . Thus, the observed isotropy of the universe can be achieved in 

phantom model. 

The energy density of the fluid can be find by using  (53)  and (54) in (11) 

rmtteM
t

t

rm

m
4

2

2

22
)(

1)12(
8










 


                                                                                                                                  (59) 

Using (53) , (54) and (59) in (13) , the EoS parameter   is obtained as 
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Using (53), (54), (59) and (60) in (12), the skew parameter   are computed as 
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So, if the present work is compared with experimental  results  [31,32,33,34], then one can conclude that the limit of   

provided by (60) may accommodated with the acceptable range of EoS parameter. Also it is observed that at 

vanishestt c ,   , where 
ct

 is a critical time given by the following  relation  
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Thus for this particular time, our model represents a dusty universe, We also note that the earlier real matter at 
ctt  , where 

0  later on at 
ctt  , where 0  converted to the dark energy dominated phase of universe. 

From (59), we note that energy density of the fluid )(t  is a decreasing function of time and 0  when 
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Here   is a positive decreasing function of time and it approaches to zero as t . 

Using (56),(59) in (47), the cosmological constant is obtained as 
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From (64), we observe that   is a decreasing function of time and it is always positive when 
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We observe that cosmological parameter is decreasing function of time and it approaches a small positive value at  late time. Thus 

,the  nature of    in this derived DE model is also in good agreement with recent observations [1,2,68,69,70]. 

6. Conclusion 

On getting motivated from increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the 

observed anisotropy in the Wilkinson microwave anisotropy probe (WMAP) data, we have discussed some features of the Bianchi 

type- 
0VI  universes in the presence of a fluid that wields an anisotropic EoS parameter in general relativity. A new class of 

anisotropic LRS Bianchi type –I magnetized  Dark energy models with variable EoS parameter  has been  investigated by using 

time dependent deceleration parameter. In literature it is a plebeian practice to consider constant deceleration parameter. Now for 

a universe which was decelerating in past and acceleration at present epoch, the DP must show signature flipping as already 

discussed in Section 2 . Therefore our consideration of  DP to be variable is physically justified. 

Our Power law solution represents the singular model where the spatial scale factors and volume scalar vanish at 

nD

c
t 2

. All 

the physical parameters are infinite at this initial epoch  and tend to zero as t . There is  a point Type singularity [48] at 

nD

c
t 2

 in the model. 

It is observed that, in early stage, the EoS parameter   is positive i.e.  the universe was matter dominated in early stage but 

in late time, the universe is evolving with negative values i. e. the present epoch . DE model  presents the dynamics of EoS 

parameter   provided by (32) whose range is in good agreement with the acceptable range by the recent observations [31-34]. 

The existence of DE, in  whatever form , is needed to reconcile the measured geometry of space with the total amount of matter in 

the universe, DE models present the dynamics of EoS parameter   provided by (32) and  (60) whose range is in good agreement 

with the acceptable range by the recent observations [31-34] .It can be easily seen that in both DE models . Thus , our both 

anisotropic parameter vanishes at .1m  Thus, our both anisotropic models  approach to isotropy at .1m   It is already 
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discussed in previous section , we obtain cosmological constant dominated universe, quintessence and  phantom fluid dominated 

universe [45], representing different phases of the universe through- out the evolving process. 

Our DE model is of great importance in the sense that the nature of decaying vacuum energy )(t  is supported by recent 

cosmological observations. Though there are many suspects (candidates) such as cosmological constant, vacuum energy, scalar 

field, brane world, cosmological nuclear-energy, etc. as reported in the vast literature for DE, the proposed model in this paper 

favors EoS parameter as a possible suspect for the DE. 

Acknowledgement  

The author is grateful to the referee for valuable suggestion.                                                      

References 

[1] Riess A. G., et al.,  ―Observational Evidence from supernovae for an accelerating universe and cosmological constant,‖ The 

Astronomical Journal, Vol. 116, No. 3,  p. 1009 (1998),.   

[2] Perlmutter S., et al., ―Measurements of Ω and from 42 High-Redshift Supernovae,‖ The Astronomical Journal, Vol. 517, No. 

2, p. 565 (1999).  

[3] Sahni V., ―Dark Matter and Dark Energy,‖ Cornell University Library, Ithaca, (2004).  

[4] Ratra B. and Peebles P. J. E., ―Cosmological Consequences of a Rolling Homogeneous Scalar Field,‖ Physical Review D, Vol. 

37, No. 12, pp. 3406-3427 (1988).  

[5] Caldwell R. R., Dave R. and Steinhardt P. J., ―Cosmo-logical Imprint of an Energy Component with General equation of 

state,‖ Physical Review Letters, Vol. 80, No. 8, pp. 1582-1585 (1998).  

[6] Barreiro T.,  ― Quinte Sence  Arinsing from Exponential  Potential‖ Review D, Vol. 61, No. 12, pp. 127301-127305 (2000).  

[7] Armendariz-Picon C., Damour T. and Mukhanov V., ―K -Inflation,‖ Physical Letters B, Vol. 458pp. 209-218.  

[8] Armendariz-Picon C., Mukhanov V. and Steinhardt P. J., ―Essentials of K-Essence,‖ Physical Review D, Vol No. 10, pp. 

103510-103523 (2001).  

[9] Gonzalez-Diaz P. F., ―K-Essential Phantom Energy :Dooms-day around the Corner?‖ Physical L 1-2, pp. 1-4(2004).  

[10] Caldwell R. R., ―A Phantom Menace? Cosmological Con-sequences of Dark Energy Component with Super Negative 

Equation of State,‖ Physical Letters B, Vol. 545, pp. 23-29 (2002).  

[11] Carroll S. M., Hoffman M. and  Trodden M., ―Can the Dark Energy Equation-of-State Parameter be less than–1?‖ Physical 

Letters D, Vol. 68, No. 2, pp. 23509- 23520 (2003).  

[12] Elizalde E., Nojiri S.and Odintsov S. D., ―Late-Time Cosmology in a (Phantom) scalar-Tensor theory:Dark Energy and the 

Cosmic Speed up,‖ Physical Letters D, Vol. 70, No. 4, pp. 043539-043559 (2004).  

[13] Freese  K. and Lewis M., ―Cardassian  Expansion Model in which the Universe is Flat, Matter Dominated and Accelerating,‖ 

Physical Letters B, Vol. 540, No. 1-2, pp. 1-8 (2002).  

[14] Gondolo P. and Freese K., ―Fluid Interpretation of Car-dassian Expansion,‖ Physical Letters D, Vol. 68, N, pp. 063509-

063519 (2003).  

[15] Deffayet C., Dval G. R.,  ―Accelerated Universe from Gravity Leaking to Extra Dimensions‖ Physical Letters D, Vol. 65, No. 

4, pp. 044023- 044032 (2002).  

[16] Dvali G., Gabadadze G. and Porrati M., ―4D Gravity on a Brane in 5D Minkowski Space,‖ Physical L 485, No. 1-3, pp. 208-

214 (2000).  

[17] Dvali G. and Turner M. S., ―Dark Energy as a Modification of the Friedmann Equation,‖ Cornell University Library, Ithaca 

(2003) 

[18] Xanthopuolos B. C., ―Perfect Fluids Satisfying a less than Extremely Relativistic Equation of State‖ Mathematical Physics, 

Vol. 28, No. 4, pp. 905-913 (1987).  

[19] Spergel D. N., et al., ―Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for 

Cosmology,‖ The Astrophysical Journal Supplement Series, Vol. 170, No. 2, pp. 377-408 (2007).  

[20] Peebles J.E., ―Cosmological constant and Dark Energy,‖ Reviews of Modern Physics, Vol. 75, No. 32, pp. 559-606 (2003).  

[21] Padmanabhan T., ―Cosmological Constant—The weight the Vacuum,‖ Physics Reports, Vol. 380, No. 5-6, pp. 235-320 

(2003). 

[22] Tortora E. and  Demianski M., ―Two Viable  Quintessence Models of the Universe: Confrontations of Theoretical Prediction 

with Observational Data,‖ Astronomy & Astro-physics, Vol. 431, No. 1, pp. 27-44 (2005).  

[23] Cardone V. F., et al., ―Some Astrophysical Implications of Dark Matter and Gas Profiles in a New Galaxy Cluster Model,‖ 

Astronomy & Astrophysics, Vol. 429, No. 1,  pp. 49-64 (2005). 

[24] Peebles P. J. E. and Rathra B., ―Cosmology with a Time- Variable Cosmological ‗Constant‘,‖ Astrophysical Journal, Part 2 

Letters, Vol. 325, No. 2, pp. L17-L20 (1988). 

[25] Sahni V. and A. A. S ― The case for a Positive cosmological Λ-Term,‖ International Journal of Modern Physics D, Vol. 9, 

No.4, pp. 373-443 (2000).  

[26] Ma Y.-Z., ―Variable cosmological Constant Model: The Reconstuction Equations and Constraints from Current 

Observational Data,‖ Nuclear Physics B, Vol. 804, No. 1-2, pp. 262-285 (2008).  

[27] Lima J. A. S., et al., ―Is the Radiation Temperature- Red- shift Relation of the Standard Cosmology in Accordance with the 

Data?‖ Monthly Notices of the Royal Astronomical Society, Vol. 312, No.4,.page No.747-752 (2000). 

[28] Lima J. A. S. and Alcaniz J. S., ―Angular size in quintessence cosmology,‖ Astronomy & Astrophysics, Vol. 348, No. 1, pp. 

1-5 (1999). 

[29]Koivisto .T. and Mota D. F., ―Accelerating Cosmologies with an Anisotropic Equation of State,‖ Astrophysical Journal , Vol. 

679, No. 1, pp. 1-5 (2008).  

[30].Steinhardt, P.J., Wang, L.M., Zlatev, I: ―Cosmological Tracking Solution‖, Phys. Rev. D59, 023504 (1999)



Amrapali P. Wasnik et al./ Elixir Space Sci. 103 (2017) 45758-45767 45767 

[31]. Knop, R.K., et al.: ―New Constariants : andmn  ,  from an Independent Set of Unique  Redshift Supernovae 

Observed with the Hubble Space Telescope‖, Atrophys. J. 598, 102 (2003) 

[32]. Tegmark,M., et al.: ― The Three Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey‖, Astrophys. 

J. 606, 702 (2004b) 

[33]. Hinshaw, G.,et al.: (WMAP Collaboration): Five Year Wilkinson Microwave Anisotropy Probe (WMAP) Observation: Data 

Processing, SkybMaps and Basic Results‖, Astrophys. J. Suppl. Ser. 180, 225        (2009) 

[34]. Komatsu, E., et al.: ‖Five –Year, Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological 

Interpretation ―,Astrophys, J. Suppl. Ser. 180, 330(2009) 

[35]. Kujat, J., et al.: ―  Prospects for Determinig the Equation of State of the Dark Energy: What can be Learned from Multiple 

Observable?‖, Astrophys. J. 572, 1(2002) 

[36]. Bartelmann, M., et al.:‖ Equation of Dark Matter Haloes in a Variety of Dark- Energy Cosmologies‖,  New Astron. Rev. 49, 

199(2005) 

[37]. Yadav, A.K.: ―Some Anisotropic Dark Energy Models in Bianchi Type-V Space Time‖, Astrophys. Space Sci. (2011) 

doi:10.1007/s10509-011-0745-3. 

[38].Jimenez, R..: ― The Value of the Equation of State of Dark Energy‖, New Astron. Rev. 47, 761 (2003) 

[39]. Das, A., et al.:‖ Cosmological with Decaying Tachyon Matter‖, Phys. Rev. D72, 043528(2005) 

[40]. Rahaman, F., Bhui, B. C.:‖,Cosmological Model with a Viscous Fluid in a Kaluza- Klein Metric‖, Astrophys. Space Sci. 

301,47 (2006) 

[41]. Mukhopadhyay, U., Ghosh,P.P, Choudhury, S.B.D.:‖  - CDM Universe: A Phenomenological Approach with Many 

Possiblities‖, Int. J. Mod. Phys. D17, 301 (2008) 

[42]. Setare, M.R. : ― The Holographic Dark Energy in Non- Flat Brans- Dicke Cosmology‖, Phys. Lett.B 644, 99(2007a) 

[43]. Setare, M. R. :‖ Interacting Holographic Phantom‖, Eur. Phys. J. C 50, 991(2007b) 

[44]. Setare, M.R. : ― Interacting Holographic Generalized Chaplygin Gas Model‖, Phys.Lett. B654,1 (2007c) 

[45] Setare, M. R. , Saridakis, E. N.:‖ Holographic Dark Energy With Varying Gravitational Constant‖, Int. J.Mod. Phys. D 

18,549 (2009) 

[46]. Nojiri,S., Odintsov, S.D.:‖ Introduction to Modified Gravity and Gravitational Alternative for Dark Energy‖, Int. J. Geo. 

Methods Mod. Phys. 4, 115 , arXiv:hep-th/0601213v5(2007) 

[47]. Nojiri,S., Odintsov, S.D.: ‖ Unified Cosmic History in Modified Gravity from F® Theory to Lorentz Non- Invarient Models 

―,Phys. Rep. 505, 59 ,arXiv:1011.0544v4[gr-qc]. 

[48].Weaver, M.: ―Dynamics of Magnets Bianchi VIo Cosmologies ―, Class. Quantum Gravity 17,  421 (2000) 

[49]. Ibanez, J., Vander Hoogen, R. J. Coley, A. A. :Isotropization of Scalar Field Bianchi Models with an Exponential Potential‖,  

Phys. Rev. D 51, 928 

[50]. Socorro, J., Medina, E. R. : ― Supersymmetric  Quantum Mechanics for Bianchi Class  A Models‖, Phys. Rev. D61,  087702 

(2000) 

[51]. Radinschi, I.:  Energy Associated with the Bianchi Type VIo Universe ―,Chin. J. Phys. 39, 393(2001). 

[52]. Pradhan , A. Bali, R. : ― Magnetized Bianchi Type $S VI-{0}$ Barotropic Massive String Universe with Decaying  Vacuum 

Energy Density $^$‖, Electron. J. Theor. Phys. 5, 91 (2008) 

[53]. Bali, R. ,Pradhan A., Amirhashchi, H.:‖Bianchi Type VIo Magnetized Barotropic  Bulk Viscous Fluid  Massive string 

Universe in General Relativity‖,  Int. J. Theor. Phys. 47, 2594(2008) 

[54]. Amirhashchi, H. ,Pradhan, A. Saha, B. : ― Variable Equation of State fot Bianchi Type VIo Dark Energy Models‖, 

Astrophys. Sapce Sci. 333, 295(2011c) 

[55]. Berman, M. S. :‖ Special Law of Variation for Hubble Parameters ―,  Nuovo Cimento B 74, 182(1983) 

[56].Berman, M. S. ,Gomide, F. M. : ― Cosmological  Models with Constant Deceleration Parameter ―, Gen . Relativ. Gravit, 20, 

191(1988) 

[57]. Vishwakarma, R.G.: ― A Study of Angular Size Redshift Relation for Models in which Lambda Decays as the Energy 

Density ―, Class. Quant. Gravity 18, 1159-1172(2000) 

[58]. Thorne, K. S. : ― Primardial Element Formation, Primordial Magnetic Fields and the Isotropy of the Universe ―, Astrophys. 

J. 148,51(1967) 

[59]. Kantowski,R., Sachs, R.K.:‖ Some Spatially Homogeneous Anisotropic Relativistic Cosmological Models‖, J. Math. Phys. 

7, 433(1966). 

[60]. Kristian, J. , Sachs, R. K.:‖ Observations in Cosmology‖ , Astrophys. J. 143, 379(1966) 

[61].Collins, C. B., Glass, E. N., Wilkinson, D. A.:  Exact Spatially Homogeneous Cosmologies ―,Gen.  Relativ. Gravit. 12, 

805(1980) 

[62]. Huterer, D., Turner, M. S.:‖ Probing Dark Energy: Methods and Stradegies.‖, Phys., Rev. D64, 123527(2001) 

[63]. Weller, J., Albrecht, A,: ‖ Future Supernovae Observation as a Probe of Dark Energy‖, Phys. Rev. D 65, 103512(2002) 

[64].Chevallier, M., Polarski, D:  Accelerating Universe with Scaling Dark Matter ―,Int. J. Mod. Phys. D10, 213(2001) 

[65]. Linder, E. V.: ― Exploring the Expansion History of the Universe‖, Phys. Rev. Lett. 90, 91301(2003) 

[66]. Linder, E. V.: ― The Dyanamics of Quintessence, the Quintessence of Dynamics‖, Gen. Relaiv. Gravit. 40329(2008) 

[67]. MacCallum, M. A. H.:  ― A Class of Homogeneous Cosmological Model III: Asymptotic Behavior Communications ―, 

Math. Phys. 20, 57(1997) 

[68].Perlmutter, S.,et al.(Supernova Cosmology Project Collaboration),‖Measurements of  and  from 42 High- Redshift 

Supernovae‖ Astrophys. J. 517, 5 (1999). 

[69]. Tonry,J.L.,et al. (SDSScollaboration): ―Cosmological Results From High-z Supernovae‖, Astrophys.J.594,1(2003) 

[70]. Riess, A. G., et al. (Supernova Cosmology Project Collaboration):Type Ia Supernovae Discoveries at 1z    from the 

Hubble Space Telescope: Evidence for past Deceleration and Constraint on Dark Energy Evalution‖,  Astrophys.J.607,665 (2004). 


