Application of New Transform " Kamal Transform'’ to Ordinary Differential Equations with Non-Constant Coefficients

Abdelilah K. Hassan Sedeeg ${ }^{1,2}$ and Zahra.I. Adam Mahamoud ${ }^{3,4}$
${ }^{1}$ Mathematics Department Faculty of Sciences and Arts-Almikwah -Albaha University- Saudi Arabia.
${ }^{2}$ Mathematics Department Faculty of Education- Holy Quran and Islamic Sciences University-Sudan.
${ }^{3}$ Mathematics Department Faculty of Sciences and Arts-Bukirayh -Alqassim University- Saudi Arabia.
${ }^{4}$ Mathematics Department Faculty of Education -Omdurman Islamic University-Sudan.

ARTICLE INFO

Article history:

Received: 7 January 2017;
Received in revised form:
5 February 2017;
Accepted: 14 February 2017;

Keywords

Kamal transform,
Ordinary Differential
Equations.

Abstract

In this paper we apply a new integral transform " Kamal transform" to solve ordinary differential equation with non-constant coefficients without resorting to a new frequency domain .

© 2017 Elixir All rights reserved.

1.Introduction

A new integral transform, called Kamal transform defined for functions of exponential order, is proclaimed. We consider function in the set A , defined by

$$
\begin{equation*}
A=\left\{f(t): \exists M, k_{1}, k_{2}>0 .|f(t)|<M e^{\frac{|t|}{k_{j}}}, \text { if } t \in(-1)^{j} \times[0, \infty)\right\} \tag{1}
\end{equation*}
$$

For a given function in the set \boldsymbol{A}, the constant \boldsymbol{M} must be finite, while $\boldsymbol{k}_{\mathbf{1}}$ and $\boldsymbol{k}_{\mathbf{2}}$ may be infinite, the variable \boldsymbol{v} in Kamal transform is used to factor the variable \boldsymbol{t} in the argument of the function $\boldsymbol{f}(\boldsymbol{t})$. Specifically, for $\boldsymbol{f}(\boldsymbol{t})$ in \boldsymbol{A}. Kamal transform is defined by:

$$
\boldsymbol{K}[\boldsymbol{f}(t)]=\int_{0}^{\infty} \boldsymbol{f}(t) \boldsymbol{e}^{\frac{-t}{v}} d t=\boldsymbol{G}(v), \boldsymbol{t} \geq \mathbf{0}, \quad \boldsymbol{k}_{1} \leq \boldsymbol{v} \leq \boldsymbol{k}_{2}
$$

The next theorem very useful in study of differential equations having non-constant coefficients.
Theorem : Let $\boldsymbol{G}(\boldsymbol{v})$ is Kamal transform of $\boldsymbol{f}(\boldsymbol{t})$, then :
${ }^{\text {a) }} \boldsymbol{K}[\boldsymbol{t} \boldsymbol{f}(\boldsymbol{t})]=\boldsymbol{v}^{2} \frac{\boldsymbol{d}}{\boldsymbol{d} v}(\boldsymbol{G}(\boldsymbol{v}))$
${ }^{\text {b) }} \boldsymbol{K}\left[\boldsymbol{t} \boldsymbol{f}^{\prime}(\boldsymbol{t})\right]=v^{2} \frac{d}{d v}\left[\frac{1}{v} G(v)-f(0)\right]$
${ }^{\text {c) }} \boldsymbol{K}\left[\boldsymbol{t} \boldsymbol{f}^{\prime \prime}(\boldsymbol{t})\right]=\boldsymbol{v}^{2} \frac{d}{d v}\left[\frac{1}{v^{2}} \boldsymbol{G}(v)-\frac{1}{v} \boldsymbol{f}(\mathbf{0})-\boldsymbol{f}^{\prime}(0)\right]$
${ }^{\mathrm{d})} \boldsymbol{K}\left[\boldsymbol{t}^{2} \boldsymbol{f}(\boldsymbol{t})\right]=\boldsymbol{v}^{4} \frac{d^{2}}{d v^{2}}(\boldsymbol{G}(\boldsymbol{v}))+\mathbf{2} \boldsymbol{v}^{3} \frac{\boldsymbol{d}}{d v}(\boldsymbol{G}(\boldsymbol{v}))$
${ }^{\text {e) }} \boldsymbol{K}\left[\boldsymbol{t}^{2} \boldsymbol{f}^{\prime}(\boldsymbol{t})\right]=\boldsymbol{v}^{4} \frac{d^{2}}{d v^{2}}\left(\frac{1}{v} G(v)-\boldsymbol{f}(\mathbf{0})\right)+\mathbf{2} \boldsymbol{v}^{3} \frac{d}{d v}\left(\frac{1}{v} G(v)-\boldsymbol{f}(\mathbf{0})\right)$
${ }^{\mathrm{f})} K\left[t^{2} f^{\prime \prime(t)}\right]=v^{4} \frac{d^{2}}{d v^{2}}\left(\frac{1}{v^{2}} G(v)-\frac{1}{v} f(0)-f^{\prime}(0)\right)+2 v^{3} \frac{d}{d v}\left(\frac{1}{v^{2}} G(v)-\frac{1}{v} f(0)-f^{\prime}(0)\right)$
Proof: a) By the definition, we have:

$$
G(v)=\int_{0}^{\infty} f(t) e^{\frac{-t}{v}} d t
$$

Differentiate two sides with respect to v :

$$
\frac{d}{d v}(G(v))=\frac{\partial}{\partial v} \int_{0}^{\infty} e^{\frac{-t}{v}} f(t) d t
$$

And,

$$
G^{\prime}(v)=\int_{0}^{\infty} \frac{\partial}{\partial v}\left(e^{\frac{-t}{v}}\right) f(t) d t=\frac{1}{v^{2}} \int_{0}^{\infty} e^{\frac{-t}{v}} t f(t) d t=\frac{1}{v^{2}} K[t f(t)]^{(3)}
$$

Thus,

$$
\begin{equation*}
K[t f(t)]=v^{2} \frac{d}{d v}(G(v)) \tag{4}
\end{equation*}
$$

To prove (b) and (c), put $\boldsymbol{f}(\boldsymbol{t})=\boldsymbol{f}^{\prime}(\boldsymbol{t})$ and $\boldsymbol{f}(\boldsymbol{t})=\boldsymbol{f}^{\prime \prime}(\boldsymbol{t})$ respectively in Eq.(4) .
d) By differentiating Eq.(3) with respect to \boldsymbol{v}, we get:

$$
\frac{d}{d v}\left(G^{\prime}(v)\right)=\frac{\partial}{\partial v}\left\{\frac{1}{v^{2}}\left(\int_{0}^{\infty} e^{\frac{-t}{v}} t f(t) d t\right)\right\}
$$

And,

$$
G^{\prime \prime}(v)=\frac{1}{v^{2}} \int_{0}^{\infty} \frac{t^{2}}{v^{2}} f(t) e^{\frac{-t}{v}} d t-\frac{2}{v^{3}} \int_{0}^{\infty} t f(t) e^{\frac{-t}{v}} d t
$$

Thus

$$
K\left[t^{2} f(t)\right]=v^{4} \frac{d^{2}}{d v^{2}}(G(v))+2 v^{3} \frac{d}{d v}(G(v))^{(5)}
$$

To prove (e) and $(\mathbf{f}), \operatorname{put} \boldsymbol{f}(\boldsymbol{t})=\boldsymbol{f}^{\prime}(\boldsymbol{t})$ and $\boldsymbol{f}(\boldsymbol{t})=\boldsymbol{f}^{\prime \prime}(\boldsymbol{t})$ respectively in Eq.(5) .

2. Application of Kamal Transform of Ordinary Differential Equations:

In this section we solve for some ordinary differential equations with variables coefficients .

Example 2.1

Let's consider the following ordinary differential equation :

$$
t y^{\prime \prime}+(t+1) y^{\prime}+2 y=e^{-t} \quad, y(0)=0, y^{\prime}(0)=1(6)
$$

Applying Kamal transform to both sides of Eq.(6)
$\boldsymbol{K}\left[\boldsymbol{t} \boldsymbol{y}^{\prime \prime}+(\boldsymbol{t}+\mathbf{1}) \boldsymbol{y}^{\prime}+\mathbf{2 y}\right]=\boldsymbol{K}\left[e^{-t}\right](7)$
Using the differential property of Kamal transform , Eq.(7) can be written as:

$$
v^{2} \frac{d}{d v}\left(\frac{1}{v^{2}} K(y)-\frac{1}{v} y(0)-y^{\prime}(0)\right)+\left\{\frac{1}{v} K(y)-y(0)+v^{2} \frac{d}{d v}\left(\frac{1}{v} K(y)-y(0)\right)\right\}+2 K(y)=\frac{v}{1+v}
$$

Where $\boldsymbol{K}(\boldsymbol{y})$ is Kamal transform of the function $\boldsymbol{y}(\boldsymbol{t})$
Now, applying the initial conditions, we get:

$$
K^{\prime}(y)-\frac{2}{v} K(y)+\frac{1}{v} K(y)+v K^{\prime}(y)-K(y)+2 K(y)=\frac{v}{1+v}
$$

And,

$$
K^{\prime}(y)+\frac{v-1}{v(1+v)} K(y)=\frac{v}{(1+v)^{2}}
$$

This is a linear differential equation for unknown function $\boldsymbol{K}(\boldsymbol{y})$, have the Solution in the form :

$$
\boldsymbol{K}(\boldsymbol{y})=\frac{v^{2}}{(1+v)^{2}}+{\frac{c v}{(1+v)^{2}}}^{(8)}
$$

Now , applying the inverse Kamal transform to Eq.(8) , then we find the solution of Eq.(6) is:

$$
y(t)=K^{-1}\left[\frac{v^{2}}{(1+v)^{2}}+\frac{c v}{(1+v)^{2}}\right]=t e^{-t}, \quad \text { where } c=0
$$

Example 2.2:

Let's consider the ordinary differential equation :

$$
t y^{\prime \prime}+y^{\prime}+t y=0 \quad, y(0)=1 \quad, y^{\prime}(0)=0(9)
$$

Applying Kamal transform to both sides of Eq.(9)

$$
K\left[y^{\prime \prime}+y^{\prime}+t y\right]=0(10)
$$

Using the differential property of Kamal transform , Eq.(10) can be written as:

$$
v^{2} \frac{d}{d v}\left(\frac{1}{v^{2}} K(y)-\frac{1}{v} y(0)-y^{\prime}(0)\right)+\left(\frac{1}{v} K(y)-y(0)\right)+v^{2} \frac{d}{d v}(K(y))=0
$$

Now, applying the initial conditions, we get

$$
K^{\prime}(y)-\frac{2}{v} K(y)+1+\frac{1}{v} K(y)-1+v^{2} K^{\prime}(y)=0
$$

And,
Or

$$
\begin{aligned}
& K^{\prime}(y)\left(1+v^{2}\right)-\frac{1}{v} K(y)=0 \\
& \frac{K^{\prime}(y)}{K(y)}=\frac{1}{v\left(1+v^{2}\right)}=\frac{1}{v}-\frac{v}{\left(1+v^{2}\right)}
\end{aligned}
$$

Thus,

$$
K(y)=\frac{c v}{\sqrt{1+v^{2}}}(11)
$$

Now, applying the inverse Kamal transform to Eq.(11) ,then the solution of Eq.(9) is:
$y(t)=c K^{-1}\left[\frac{v}{\sqrt{1+v^{2}}}\right]=J_{0}(t)$, where $c=1$
Example 2.3:
Let's consider the ordinary differential equation :

$$
t^{2} y^{\prime}+2 t y=\sinh t \quad, y(0)=\frac{1}{2}(12)
$$

Applying Kamal transform to both sides of Eq.(12)
$\boldsymbol{K}\left[\boldsymbol{t}^{2} \boldsymbol{y}^{\prime}+\mathbf{2} \boldsymbol{t} \boldsymbol{y}\right]=\boldsymbol{K}[\sinh \boldsymbol{t}](13)$
Using the differential property of Kamal transform , Eq.(13) can be written as:

$$
v^{4} \frac{d^{2}}{d v^{2}}\left(\frac{1}{v} K(y)-y(0)\right)+2 v^{3} \frac{d}{d v}\left(\frac{1}{v} K(y)-y(0)\right)+2 v^{2} K^{\prime}(y)=\frac{v^{2}}{1-v^{2}}
$$

Now, applying the initial conditions, we get

$$
v^{3} K^{\prime \prime}(y)+2 v^{2} K^{\prime}(y)=\frac{v^{2}}{1-v^{2}}=\sum_{j=1}^{\infty} v^{2 j+2}
$$

And,

$$
v^{3} K^{\prime \prime}(y)+2 v^{2} K^{\prime}(y)=\sum_{j=1}^{\infty} v^{2 j+2}
$$

And,

$$
v^{2} K^{\prime \prime}(y)+2 v K^{\prime}(y)=\sum_{j=1}^{\infty} v^{2 j+1}
$$

Or

$$
\frac{d}{d v}\left(v^{2} K^{\prime}(y)\right)=\sum_{j=1}^{\infty} v^{2 j+1}
$$

Thus,

$$
K(y)=\frac{\sum_{j=1}^{\infty} v^{2 j+1}}{(2 j+2)(2 j+1)}+\frac{c_{1}}{v}+c_{2}^{(14)}
$$

Now, applying the inverse Kamal transform to Eq.(14) , then the solution of Eq.(12) is:
$y(t)=K^{-1}\left[\frac{\sum_{j=1}^{\infty} v^{2 j+1}}{(2 j+2)(2 j+1)}+\frac{c_{1}}{v}+c_{2}\right]=\frac{\sum_{j=1}^{\infty} t^{2 j}}{(2 j+2)!}$, where $c_{1}=c_{2}=0$

Example 2.4

Let's consider the following ordinary differential equation :

$$
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=12 t^{2} \quad, y(0)=y^{\prime}(0)=0(15)
$$

Applying Kamal transform to both sides of Eq.(9)

$$
K\left[t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y\right]=K\left[12 t^{2}\right](16)
$$

Using the differential property of Kamal transform, Eq.(16) can be written as:

$$
\begin{aligned}
\left\{v^{4} \frac{d^{2}}{d v^{2}}\left(\frac{1}{v^{2}} K(y)-\frac{1}{v} y(0)-y^{\prime}(0)\right)+2 v^{3} \frac{d}{d v}\left(\frac{1}{v^{2}} K(y)\right.\right. & \left.\left.-\frac{1}{v} y(0)-y^{\prime}(0)\right)\right\}+ \\
& \left\{4 v^{2} \frac{d}{d v}\left(\frac{1}{v} K(y)-y(0)\right)\right\}+2 K(y)=24 v^{3}
\end{aligned}
$$

Now, applying the initial conditions, we get
And,

$$
\left\{v^{2} K^{\prime \prime}(y)-2 v K^{\prime}(y)+2 K(y)\right\}+4 v K^{\prime}(y)-4 K(y)+2 K(y)=24 v^{3}
$$

or

$$
\frac{d}{d v}\left(v^{2} K^{\prime}(y)\right)=24 v^{3}
$$

And,

$$
K^{\prime}(y)=\frac{1}{v^{2}}\left(\int 24 v^{3} d v+c_{1}\right)
$$

Thus,

$$
K(y)=2 v^{3}+\frac{c_{1}}{v}+c_{2}(17)
$$

Now, applying the inverse Kamal transform to Eq.(17) , then the solution of Eq.(15) is:
$y(t)=K^{-1}\left[2 v^{3}+\frac{c_{1}}{v}+c_{2}\right]=t^{2}$, where $\quad c_{1}=c_{2}=0$

Conclusion

Application of Kamal transform to Solution of ordinary differential equation with variable Coefficients has been demonstrated.

References

[1] Abdelilah Kamal .H. Sedeeg, The New Integral Transform " Kamal Transform " , Advances in Theoretical and Applied Mathematics , Vol.11, No.4, 2016,pp.451-458.
[2] Abdelbagy .A.Alshikh and Mohand M. Abdelrahim. Mahgoub, Solving Ordinary differential equations with variable coefficients, Journal of Progressive Research in Mathematics(JPRM) , Volume 10, Issue 1,November 30, 2016.
[3] Tarig. M. Elzaki and Salih M. Ezaki, On the ELzaki Transform and Ordinary Differential Equation with Variable Coefficients , Advances in Theoretical and Applied Mathematics. ISSN 0973-4554 Volume 6, Number 1 (2011), pp. 41-46
[4] Lokenath Debnath and D. Bhatta. Integral transform and their Application second Edition, Chapman \& Hall /CRC (2006).
[5] G.K.watugala, simudu transform- anew integral transform to Solve differential equation and control engineering problems .Math .Engrg Induct . 6 (1998), no 4,319-329.
[6] A.Kilicman and H.E.Gadain. An application of double Laplace transform and sumudu transform, Lobachevskii J. Math. 30 (3) (2009), pp.214-223.
[7] J. Zhang, Asumudu based algorithm m for solving differential equations, Comp. Sci. J. Moldova 15(3) (2007), pp - 303-313.
[8] Christian Constanda, Solution Techniques for Elementary Partial differential Equations, New York, 2002.
[9] Dean G. Duffy, Transform Methods for solving partial differential Equations, 2 nd Ed, Chapman \& Hall / CRC, Boca Raton, FL, 2004.
[10] Sunethra Weera Koon, Application of Sumudu transform to partial differential equation. INT. J. MATH. EDUC. Scl. TECHNOL, 1994, Vol.25, No2, 277-283.
[11] Hassan Eltayeb and Adem kilicman, A Note on the Sumudu Transforms and differential Equations, Applied Mathematical Sciences, VOL, 4,2010, no.22, 1089-1098.
[12] Kilicman A.H. ELtayeb. A note on Integral transform and Partial Differential Equation, Applied Mathematical Sciences, 4(3) (2010), PP.109-118.
[13] Hassan ELtayeh and Adem kilicman, on Some Applications of a new Integral Transform, Int. Journal of Math. Analysis, Vol, 4, 2010, no.3, 123-132.
[14] A. Aghili, B. Salkhordeh Moghaddam, Laplace transform Pairs of Ndimensions and second order Linear partial differential equations with constant coefficients, Annales Mathematicae et Informaticae, 35 (2008),pp,3-10.
[15] Hassan ELtayeb, Adem kilicman and Brian Fisher, A new integral transform and associated distributions, Integral Transform and special Functions .Vol, co,No, 0 Month 2009, 1-13.
[16] M.G.M.Hussain, F.B.M.Belgacem. Transient Solution of Maxwell's Equations Based on Sumudu Transform, Progress In Electromagnetic Research, PIER,74. 273-289, (2007).

