
P V K Sandeep / Elixir Inform. Tech. 103 (2017) 45705-45711 45705

Introduction

In the medical domain, we see that clinics and hospitals

collect a large amount of patient data. To access this data and

to make decisions based on this, the novice nurses would

definitely require some guidance from the senior nurses. This

is fairly due to the inexperience of the novice nurses and also

high patient loads. Hence it would be ideal to have a decision

support system which makes faster and accurate decisions.

Also the novice nurses can have digital access to all the real-

time patient data.

The promise of clinical decision support (CDS) systems is

to provide tools for physicians, nurses, staff, patients or other

stake holders with general knowledge and patient specific

information, intelligently collected, filtered, collated, and

presented in a timely fashion to enhance health, safety and

patient outcomes. Such CDS systems would include a variety

of computer supported tools for data collection, data fusion,

condition alerts and reminders, clinical guidelines, care order

sets, patient data reports, diagnostic support and clinical

workflow assistants to name a few. Some targeted CDS

systems have been effective in improving outcomes and

reducing errors at some healthcare institutions by making

needed medical knowledge readily available to knowledgeable

healthcare providers. At the same time CDS systems have

proven quite problematic and have not therefore become

readily available at most sites.

The discussions in this paper are focused on N-CODES

(Nursing Computer Decision Support), a project done at the

University of Massachusetts Dartmouth by nurses and

engineers together to develop a hand-held device to aid the

Clinical decision support. The results of this paper are

achieved by using the „Improve‟ data library, a database built

for the N-CODES.

This paper also discusses in detail about the patient case

indexing and frequent case tree algorithm to find frequently

occurring patient cases.

Overview of N-CODES

As the patient acuity increases and cost-effective

treatment becomes mandatory, the novice nurses often end up

in a perplexed situation wherein they must take complex

decisions almost on regular basis [6]. N-CODES (Nursing

Computer Decision Support System), project at the University

of Massachusetts Dartmouth addresses this problem by

developing a prototype to provide some clinical knowledge

through an interactive device using wireless access. N-

CODES is an intelligent handheld device which takes in

patient information and provides a diagnostic for decision

support after evaluating the patient‟s condition using the given

information. The architecture of the N-CODES system can be

seen in Figure 1.

Figure 1. NCODES Architecture [4].

Tele: +91 – 800 888 5484

E-mail address: sandeep5484@gmail.com

 © 2017 Elixir All rights reserved

ARTICLE INFO

Article history:

Received: 2 January 2017;

Received in revised form:

4 February 2017;

Accepted: 14 February 2017;

Keywords

Data mining,

Clinical Decision Support

Systems,

Frequent Case Tree,

Rule Based indexing,

Medical informatics,

Hand-held devices.

Frequent Case Tree Algorithm to support patient case indexing in a

handheld Clinical Decision Support system
P V K Sandeep

Electronics and Computer Engg (ECM) Department, SreeNidhi Institute of Science and Technology, Hyderabad, Telangana,

India.

ABSTRACT

In modern world, decision support systems are gaining increased popularity in various

domains, including medical informatics and engineering. Digital access to the patient

case data in would help the novice nurses in making faster and accurate decisions. The

discussions in this paper are based on N-CODES (Nursing Computer Decision Support),

an interactive handheld device which takes in patient data and delivers clinical

knowledge i.e. it provides a diagnostic for decision support by the filtered and collated

data. The focus of this paper is mainly on one aspect, the indexing of patient specific

cases, and individual rule fragments. „Improve‟ data library has been used, which

contains instances of each possible patient class in the clinical decision support system

(CDS). These classes are organized into frequent case (FC) trees by developing an

algorithm which will find the frequently occurring rules. This algorithm will support the

patient case indexing by organizing cases into rule vectors consisting of rule instances for

a specific case ending with an intervention and also will aid in determining similarity of

new cases with stored exemplar cases.

 © 2017 Elixir All rights reserved.

Elixir Inform. Tech. 103 (2017) 45705-45711

Information Technology

Available online at www.elixirpublishers.com (Elixir International Journal)

P V K Sandeep / Elixir Inform. Tech. 103 (2017) 45705-45711 45706

Three main functions of the handheld device are [1]:

• Enabling the patient information to be downloaded from the

server

• Enabling continuous use of patient information stored on the

PDA

• Collecting extra information such as vital signs and other

assessments

After all the information is collected, it is then used to

assist the nurse in proper evaluation and making appropriate

interventions with the help of the previous and existing cases.

NCODES uses the guidance of an expert rule-based engine to

provide intelligent decision support. It also uses the clinical

information as a knowledge base to guide through the patient

treatment process. The system provides the user with some

advice and also the reason behind this advice.

The inference engine ensures that the nurse can transit

between states to browse through the information given to the

system. Using the given inputs, process rules and the case

history, the inference process computes the next possible valid

state and gives an output which is reliable for the patient

assessment.

The system‟s decision making capability is realized by the

traversal of the decision tree from baseline assessment to pain

assessment to cough assessment and more specifically to the

refined assessment. This is of course dependent upon the rules

existing in the database. The framework follows rule based

reasoning considering logical rules as basic modules and the

production rules as relationships amongst rule clusters [1].

NCODES pronounces these as rules and process rules.

Rule-based Systems

A rule-based system (RBS) consists of a rule-base

(permanent data), an inference engine (process), and a

workspace or working memory (temporary data). The RBS

uses facts to represent knowledge. Facts are those which

consist of rules in logic (for reasoning) and production rules

(working memory + rule base). The production rules express

the knowledge of a human expert, thus making RBS to solve

similar problems on its own. A rule base typically consists of

rules which contribute to the domain knowledge [6].

The RBS compares facts about a new problem that are stored in

a knowledge base against a stored set of rules. When there is a

match, the rule will fire. This rule can be enabled in such a

manner that it can fire another rule thus creating a chaining

effect. The process continues until there are no more rules to

fire and the output is presented to the user. The advantage with

RBS is the simplicity of input variables. In general a rule is

supposed to be of the format

If <condition clause> Then <action clause>

The condition clause checks the state of the temporary

data. If the condition is satisfied then the consequent set of

actions are triggered by the action clause.

Case-Based Reasoning

Case-Based Reasoning (CBR) is a problem solving

technology which looks for a similar problem in a case-base

and retrieves the solution of this past case. The retrieved

solution is then used as a starting point to find the solution of

the actual problem. CBR can be described as a cyclic process

comprising of:

 Case Retrieval: Retrieving most similar case

 Case Reuse: To attempt to solve the problem

 Revising proposed solution

 Retaining the new solution as part of a new case

Figure 2. Rule-Based System [6].

To understand CBR, we need to know something about

problem and solution. Both, problems and solutions are

represented in some data structure as attribute-value vectors.

Certain variables, instantiated for an actual situation may occur

in problem as well as solution but it usually important for the

problem to find appropriate variable for the description of the

solution [9].

A case is a contextualized piece of knowledge representing

an experience [10]. The basic idea of a case is to record an

episode where a problem is solved. This includes partially

solved problems too. A case is represented as an ordered pair

(problem, solution) [9] which can be further refined to say that

a case is a collection of rules. A set of cases collected together

for retrieval purposes is termed as a Case Base. A case base

represents some class of past experience.

Indexing

In the modern world, enormous amount of data is being

collected in most of the domains including medical,

engineering, military and business. All the data collected is

stored in a database. As the size of a database increases, data

retrieval becomes tougher because it takes agonizingly large

period of time. In order to avoid this, most database systems

use indexes to speed up the retrieval of data. An Index is a

computational data structure which could be kept in the

memory for a faster searching. This makes the computer to

avoid searching each and every record stored in the database.

Indexes are employed even in CBR to speed up the retrieval

process. When employing an index in a CBR, it should [10]:

• Be predictive

• Address the purposes of the case

• Be abstract enough to allow for widening the future use of

case-base

• Be concrete enough to be recognized in the future

The information in a case is stored as indexed and un-

indexed information. The method used to select an index can

be either manual or automatic. Choosing indexes manually

involves deciding a case‟s purpose with respect to the aims of

the system and deciding under what circumstances the case will

be useful. For practical applications, indexes can be chosen

automatically, manually or by both techniques but most of the

CBR tools presently on the market are seen supporting

automatic identification of case indexes [10]. One aspect of this

paper is to propose an algorithm to build indexes. Indexes are

built for the frequent rules and frequent cases which have been

extracted from the existing patient database known as the

Improve Data Library.

P V K Sandeep / Elixir Inform. Tech. 103 (2017) 45705-45711 45707

The „Improve‟ Data Library will be discussed later in

detail. Also, how the frequent rules and frequent cases are

extracted and how they are further used to construct the

frequent case tree will be discussed in next sections.

Frequent Case Tree (FC Tree)

This section discusses the basic concepts of a Frequent

Case Tree (FC Tree). An FC tree is basically a compressed

representation of the input data. It is a tree structure which

consists of nodes. Each node has the item name, the frequency

count and the node link. An FC tree is similar to an n-ary tree

where a node is linked to any number of nodes. The

construction of an FC tree involves reading a case from the

case index and mapping onto a path in the FC tree. Since

different cases can have several rules in common, the paths

may overlap. More number of overlaps implies more

compression in the FC-tree structure. This makes it to use less

memory and fit easily into the database thus allowing us to

extract frequent items directly from the structure in database.

In the current paper, case frequency is used to point into the

forest of trees the most frequently accessed items and over time

provide information on possible mutations to the FC tree to

examine and changing the composition of cases in FC tree.

This paper shows an algorithm sophisticated enough to extract

the frequent items and map them onto a path in the FC tree.

The procedure involved in the algorithm will be discussed in

detail in a later section.

Consider an ontology base which consists of all the cases

that have occurred to date. Each case in ontology is an

individual representation of a disease related group (DRG).

There is every possibility that a set of rules in one case can

match with a set of rules in some other case. This can be

proved using the hit ratio algorithm which will be discussed in

later section. These similar cases can be prioritized so that

nurses can refer to these cases to draw conclusions. This

method is known as Best Evidence Case Practice. Thus

prioritized outcomes can be sent to the inference engine. When

building the initial FC tree using the ontology, „1‟ leaf (case)

would be present for each case of ontology. Thus N leafs would

be present.

‘Improve’ Data Library

The dataset used for publishing the results of this paper has

been taken from the “Improve Data Library”. IMPROVE

(Improving Control of Patient Status in Critical Care) project

began in October 1994 with a goal to improve the on-line

assessment and management of the patient state in critical care

and also to improve the operating theatre environments by

applying innovative nonlinear, linear, multivariate and

knowledge based algorithms [5]. The data library was obtained

in the second phase of the project and the actual collection and

annotation of the data was carried out at the Department of

Intensive Care of Kuopio University Hospital (KUH) at

Finland. The project ended in January 1997 with the

accomplishments of two tasks i.e. collection of patient data and

utilization of this data library for the development of bio-signal

interpretation methods. The dataset contains the recordings of

59 patients which were obtained from episodes of roughly 24

hours of observation. For 7 of these patients, their EEG has

also been recorded in addition to the current recordings. Out of

these 59, some of them were admitted more than once but each

admission was considered as a separate recording. Out of these

59 patients, 7 were admitted twice and 1 was admitted thrice

[1].

To ensure quality in the measured data and also to check

for any missing annotations, video monitoring has been done.

All the data is collected by the Improve data collection system

and the recorded signals were stored in some temporary files on

the hard disk. The CIMS (Clinical information management

system) records all the data from the annotations, patient

monitors, nursing actions and the lab results and stores in the

CIMS database [1].

Disorders Included in the Data Library

As part of the „Improve‟ project, a survey group known as

the clinical task group was set up. One of the objectives of this

group was to define the clinical disorders. The other objectives

include supervision of the data collection, conducting quality

control of the annotation process and to do the interim and final

analysis of the library. After conducting a survey in three ICUs,

they were able to define four categories of disorders.

Hypovolaemia, Cardiac Failure, High Flow State and O2

content related problems are the four major disorders which

have been included in the data library. Each main group was

again divided into subgroups. According to the disorders in

ICU, a patient can be classified into one or more of these four

disorders [1]. In this section we discuss the criteria required to

classify the patient into a particular disorder.

Hypovolaemia

1. Inadequate venous return, low CVP and signs of insufficient

flow [5]

 Primary criteria [5]:

 Low filling pressure in relation to the patient‟s

cardiovascular performance

 Low cardiac index < 2.0

 Low peripheral temperature, Tp < 32.5 °C excluding local

vascular disorders

 Secondary criteria [5]:

 Metabolic signs of tissue hypoxia ( 1 - 2 h) & metabolic

acidosis

 pH < 7.35 & BE <  4

 Lactataemia > 2 mmol/L

 O2 consumption, SvO2  65 %, extraction ratio > 0.40

2. Adequate venous return and no signs of insufficient flow [5]

 Criteria [5]:

 Adequate PCWP  6 and MAP  65 mmHg

 Continuous volume replacement > 1000 ml/h or need of

episodical volume replacement with higher infusion rate.

Figure 3. Improve Data Library Collection System [1].

Cardiac failure

1. Inadequate flow and metabolic signs of tissue hypoxia [5]

 Primary criteria [5]:

P V K Sandeep / Elixir Inform. Tech. 103 (2017) 45705-45711 45708

 Low CI and high /normal filling pressure (CI < 2.0 ;

PCWP >10)

 Metabolic signs of tissue hypoxia as above

 Secondary criteria [5]:

 Low urine output (optional)  0.5  1.0 ml/kg/h, over 2h

 Low Tp

2. Inadequate flow, no signs of tissue hypoxia [5]

 Criteria [5]:

 Low CI and high/normal filling pressures PCWP > 10

(primary criteria)

 Low urine output (optional)

 Low Tp

3. Acceptable flow and continuous need of exceptional support

[5]

 Primary criteria [5]:

 Low/normal CI, CI > 2.0, need for high filling pressures

and PCWP >10

 Low/normal CI and normal/high filling pressure + need

of vasodilatations

 Need of inotropic drugs

Cardiac failure is defined separately for left and right

ventricular failures based on clinical judgment.

High flow state

1. Abnormally high flow and need of vasoactive treatment to

maintain perfusion pressure (dopamine, norepinephrine) for

low SVRi, SVRi < 120 [5]

 Primary criteria [5]:

 High CI > 4.0 and dopamine or norepinephrine

 Tp normal or high Tp > 32.5 c

2. Abnormally high flow, acceptable perfusion pressure and

signs of tissue hypoxia [5]

 Criteria [5]:

 High CI & Metabolic signs of tissue hypoxia

 Need to increase DO2 by inotropic drugs

 Low O2 extraction

 O2 consumption, SvO2  65 %, extraction ratio > 0.40

 Tp normal or high

3. Abnormal high flow & acceptable perfusion pressure [5]

 Primary criteria [5]:

 High CI, 4.0

 Tp normal or high  32.5

 Low O2 extraction

Oxygen content related problems

1. Desaturation [5]

 Primary criteria [5]:

 Low SaO2 < 90 and oxygen mask

 High respiratory frequency and/or manifestation of

efforts and distress

 Metabolic signs of tissue hypoxia

2. Acute ventilatory failure and Desaturation [5]

 Criteria [5]:

 Low pH  7.35 and high PaCO2  6.0 kPa

 Low SaO2 < 90

3. Desaturation, signs of tissue hypoxia and need for

maximum ventilatory support [5]

 Primary criteria [5]:

 Low SaO2

 Low High PaO

FiO

2

2

 < 150 mmHg

 Metabolic signs of tissue hypoxia

 Secondary criteria [5]:

Need of inotropic drugs (to increase O2 delivery)

4. Normal content with maximum ventilatory support [5]

 Criteria [5]:

 Normal SaO2 > 90

 PaO

FiO

2

2

 < 200 mmHg

 No signs of tissue hypoxia or need of inotropic drugs

5. Normal content with routine ventilatory support [5]

 Criteria [5]:

 Normal/low SaO2 , SaO2 < 90

 Normal/high PaCO2, PaCO2 > 4.5 kPa

 No signs of tissue hypoxia or need of inotropic drugs

Table 1 lists some of the abbreviations used while describing

the disorders.

Table 1. List of Abbreviations used to describe disorders.

[5]

Abbreviation Description

MAP Mean arterial pressure

CVP Central venous pressure

Tp Peripheral temperature

HR Heart rate

ResF Respiratory frequency

CI Cardiac index

PCWP Pulmonary capillary wedge pressure

SVRi Systemic vascular resistance index

PaO2 Arterial oxygen tension

FiO2 Fraction of inspired oxygen

aB-pH Arterial pH

DO2, VO2 Oxygen delivery, oxygen consumption

ExO2 Oxygen extraction

aB-BE Base excess

Lact Blood lactate concentration

Process Rules and Decision Trees

To develop an algorithm, it is important that we have some

use cases for each patient episode. But in order to build a use

case for a patient episode it is required that we have a decision

tree and also develop some process rules. Decision tree is a

powerful and popular tool used for classification and

prediction. In general it is considered as a data structure or

rather a tree structure used in particular for classification tasks,

where each node is either a leaf node or a decision node. A

decision tree can be used to classify an example by starting at

the root of the tree and moving through until it reaches a leaf

node. The leaves represent classes whereas each non-leaf node

represents an attribute whose value is used as a label for an

edge starting from a node.

A path in the decision tree represents an implication saying

that an object with specific feature values belongs to a certain

class. A decision tree is considered advantageous in that it

represents rules which can readily be expressed and understood

by a common man i.e. a decision tree can be transformed into

process rules. The rules formed from such a tree are of the type

If-Then. A rule can be created for each path from the root to the

leaf node. The attributes in the path form a conjunction for the

If part. The leaf node which is the outcome of the If clause

forms the Then part. Thus rules can be helpful in classifying

given data or predicting outcome of an unknown sample [1].

The other advantages of a decision tree include:

 Simple to understand and interpret

 Able to generate understandable rules

 Able to handle both continuous, categorical variables

 Perform classification without requiring computation

 Provides a clear indication of which fields are most

important for prediction or classification

 Robust, performs well with large data in short time

P V K Sandeep / Elixir Inform. Tech. 103 (2017) 45705-45711 45709

Figure 4. Decision Tree showing only high flow state paths.

Decision Tree for Improve Data Library

The decision tree for the „Improve‟ data library is divided

into two parts. One part of the decision tree shows the cardiac

index assessment which is the primary criteria in all the

disorders except in the oxygen content related problems which

is shown in the second part of the tree. The decision tree

follows the path from Baseline assessment to an intervention at

the leaf node.

The outcome of this intervention can be observed using the

patient cases. In between these nodes, the path goes through

pain assessment, cough assessment then to refined assessment.

The intermediate nodes used to build the decision tree were

based on the clinical description of the Improve data library.

Thus, two decision trees have been built for the Improve data

library. The first part contains the tree for the disorders

Hypovolaemia, High flow state and cardiac failure. On the

other hand, the second tree is for the O2 content related

problems.

The path in the decision tree, followed by the clinician, for

each patient by validating the intervention or leaf node is

known as the use case of that particular patient. Both stored

procedure method and association rule mining method are used

to construct the use cases for 59 patients but the stored

procedure method proved more accurate and successful. Out of

these, for the patients 1, 4, 16 and 32 only a part of the decision

tree was obtained i.e. it ended at the baseline assessment.

 BASELINE

ASSESSME

NT

SaO2

ASSESSME

NT

2

2

FiO

PaO

2

2

FiO

PaO

HYPOXIA

DISTRESS

OXYGEN

DESATUR

ATION

OXYGEN

RELATED

PROBLEM

1

PaCO2

pH

ACUTE

VENTILATORY

FAILURE AND

DESATURATION

OXYGEN

RELATED

PROBLEM

2

HYPOXIA

MAX.

VENTILATORY

SUPPORT

DESATUR

ATION

OXY

PROBLEM

3

INOTROPI

C DRUGS

NO

HYPOXIA

MORE

MEDICATI

ON

Figure 5. Decision Tree showing Oxygen problems.

Development of Frequent Case (FC) Tree

The first step involved is to build the frequent rule index

which contains the frequently occurring rules in the data

library. Since the dataset is very large, to search for a rule or a

case in this dataset would be a tedious process. To reduce the

amount of time for searching, indexing is employed. To make

the system work faster and also to improve the efficiency, the

frequently occurring rules and cases are identified and an index

is built.

The rule index contains the Rule ID and the rule count. Each

rule contains an If ID and a Then ID. With these frequent rules,

a frequent rule tree is formed wherein one rule is connected to

another till a case i.e. an intervention is reached thus forming a

frequent case tree.

Algorithm to develop an FC Tree:

1. Get the patient ID

2. Build the Use Case of this patient

3. Extract all the If_ID from this use case

4. Consider one If_ID and give it an r_id

5. Extract all Then_ID possible with this If_ID from

Process_Rules

6. Consider one Then_ID

P V K Sandeep / Elixir Inform. Tech. 103 (2017) 45705-45711 45710

7. If Then_ID is present in the use case then go to step 6 and

proceed

8. Else put this in ignore list and go to step 6 and proceed

9. Repeat step 7 till all the Then_ID are exhausted

10. Go to step 4 and proceed

11. Repeat Step 9 till all the If_ID are exhausted

12. Get all the Rule_ID and the r_id for the respective If_ID

13. Get one Rule_ID

14. If the Rule_ID is already present, add rule count and give

reference ID as its previous current_rid

15. Else add the Rule_ID with reference ID as „NULL‟

16. Start with current_ rid and map to the respective child_rid

17. Repeat step 14 till a case or an intervention is found

18. Go to step 12 and repeat process till all the Rule_ID are

exhausted

19. Go to Step 1 and repeat process till all the patients are

completed. Figure 12 shows all these steps as flowchart.

Now, consider the figure 6 below

Figure 6. Use Case of a Patient ‘KUO0023A’.

Figure 6 shows the use case of a patient with ID

„KUO0023A‟. The If_ID are taken from cat_ID column. Now

each ID is given an r_id which is useful in determining node ID

of the FC tree.

For example: If_ID = 62  r_id = 0023A1

 If_ID = 104  r_id = 0023A2

 If_ID = 109  r_id = 0023A3 and so on

 If_ID = 15001125  r_id = 0023A8

Figure 7. Excerpt of FC Tree in tabular format in database.

Figure 8. Excerpt of Rule_ID from Process_Rules table.

Results

The „Improve‟ data library was imported into Microsoft

SQL Server 2005 which has been used as the backend database

and all the algorithms have been developed in Visual Studio

using C# as the programming language. Several PL/ SQL

functions and procedures have been written to access the

database and also to perform operations on the data structures

which have been created. All this has been done on

„improve_all‟ database which is an extension to the „improve‟

database.

Results for Rule Index

The first step involved in the construction of the FC tree is

to build a rule index. Since the decision tree has been rebuilt,

new use cases were found. As a result, new rules have been

added to process rules table as shown in Figure 9.

Figure 9. Rule Index.

Results for Frequent Rule Index

The rule index shows the list of all the rules present in the

system. In order to build a frequent case tree, we need to

extract the rules which are occurring frequently. An algorithm

which would extract the frequently occurring rules in the

database has been written in C#. The extracted rules have been

created as an index which contains the Rule ID of the

frequently occurring rules and also how frequently the rule is

occurring.

Figure 10. Frequent Rule Index.

Results for Frequent Case Tree

The next step is to build the frequent case tree. All the

frequent rules which have been obtained are mapped onto the

FC tree. Each rule is traced down the path of the tree till an

intervention or a case is found. This is done for all the patients

thus forming many paths in the tree. An algorithm has been

written in C# to map all frequent rules onto the FC tree till the

respective case or intervention is reached. Figure 11 shows the

frequent case tree that has been achieved after implementing

the algorithm mentioned earlier.

Figure 11: Frequent Case Tree

P V K Sandeep / Elixir Inform. Tech. 103 (2017) 45705-45711 45711

Flowchart for developing FC Tree

Figure 12. Flow Chart showing the Algorithm for FC Tree.

Conclusion
An algorithm has been developed which is sophisticated

enough to extract frequent items and then build a frequent rule

index for these. With this frequent rule index, FC tree was

developed by mapping the frequent rules in the index onto the

frequent tree. Constructing a frequent rule index and FC tree

helps in making the system faster and thus more efficient. This

also helps the nurses to follow the method of best evidence

case practice.

Future Scope

The FC tree which has been developed and also the

algorithm supporting patient case indexing will aid in

determining similarity of new cases with stored exemplar cases

i.e. similarity searching. An algorithm can be developed which

will calculate the hit ratio of a case i.e. it shows the number of

times a case has been referred to in the database.

Also, effort can be made in the future to build a prioritized

index of the rules in the FR-index depending on the medical

importance. This is important because if there are any (rules/

cases) in the top level or any levels which are same, then rule

based criticality or disease related group (DRG) can be used to

reorder or reorganize the existing rules and cases. Consider two

rules which have same priority. These rules can be reordered

based on how critical the rule is. In case both the rules are

critical then the DRG could be checked. The DRG cannot be

same because each case is an individual representation.

Acknowledgment

I profusely thank Dr. Paul J. Fortier, Professor, ECE

Department, UMass Dartmouth for involving me in this

collaborative, medical-engineering related, database project. I

would also like to extend a word of thanks to Dr. Liudong Xing

and Dr. Nancy Dluhy for committing their time and giving

valuable inputs.

References

[1] Shweta J. Brahme, “Methods to Develop a Use case for

patient episode”, Master‟s Thesis, University of

Massachusetts Dartmouth, January 2007.

[2] Guanjie Yang, “Development of rule based point-of- care

decision support system”, Master‟s Thesis, University of

Massachusetts Dartmouth, January 2006.

[3] P. Fortier, S. Jagannathan, H. Michel, N. Dluhy, E. Oneill,

“Development of a Hand-held Real-time Decision Support

Aid for Critical Care Nursing”, Proceedings of 36
th

 Hawaii

International conference on system sciences, IEEE 2002.

[4] P.Fortier, B.Sarangarajan, H.Michel, N.Dluhy, E.Oneill,

“A Compterized Decision Support Aid for Clinical care

Novice nursing”, Proceeding 38
th

 Hawaii International

Conference on System Sciences, IEEE 2005.

[5] K. Nieminen, R. M. Langford, “A Clinical Description of

the IMPROVE Data Library”, IEEE Engineering in

Medicine and Biology, November/ December 1997.

[6] Beena Sarangarajan, “Developing a Framework for

Clinical Decision Support Systems”, Master‟s Thesis

Dissertation University of Massachusetts Dartmouth, May

2004.

[7] P.Fortier, H.Michel, N.Dluhy, E.Oneill, “The N-CODES

Project - The First Year”, CIN, Vol. 22, No. 6, 001-006,

November/ December 2004.

[8] “http://www.ecfc.u-net.com/cost/rule.htm”

[9] Mario Lenz, Brigitte Bartsch-Sporl, “Case-Based

Reasoning Technology”, Springer Publications, 1998.

[10] Ian Watson, “Applying Case-Based Reasoning”, Morgan

Kaufmann Publishers, 1997.

[11] Pang-Ning Tan, Michael Steinbach, Vipin Kumar,

“Introduction to Data Mining”, Addison Wesley

Publishers, 2006.

START

Get PID and

Extract its

If_ID

Consider

Next IF_ID

Get all

Then_ID for

this If_ID

Consider one

Then_ID

Is

Then_ID

Present in

use case

Finishe

d all

Then_I

D

Finishe

d all

If_ID

Add Rule_ID with

reference id = ‘NULL’

Get

Rule_ID

and rid

Put in Ignore

List

Is

Rule_ID

present in

tree

Add Rule count with

reference id =

prev_current_id

Start with rid

and connect to

child_rid

Are all

Rules

exhaust

ed?

END

