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Introduction 

In the medical domain, we see that clinics and hospitals 

collect a large amount of patient data. To access this data and 

to make decisions based on this, the novice nurses would 

definitely require some guidance from the senior nurses. This 

is fairly due to the inexperience of the novice nurses and also 

high patient loads. Hence it would be ideal to have a decision 

support system which makes faster and accurate decisions. 

Also the novice nurses can have digital access to all the real-

time patient data.  

The promise of clinical decision support (CDS) systems is 

to provide tools for physicians, nurses, staff, patients or other 

stake holders with general knowledge and patient specific 

information, intelligently collected, filtered, collated, and 

presented in a timely fashion to enhance health, safety and 

patient outcomes. Such CDS systems would include a variety 

of computer supported tools for data collection, data fusion, 

condition alerts and reminders, clinical guidelines, care order 

sets, patient data reports, diagnostic support and clinical 

workflow assistants to name a few. Some targeted CDS 

systems have been effective in improving outcomes and 

reducing errors at some healthcare institutions by making 

needed medical knowledge readily available to knowledgeable 

healthcare providers. At the same time CDS systems have 

proven quite problematic and have not therefore become 

readily available at most sites. 

The discussions in this paper are focused on N-CODES 

(Nursing Computer Decision Support), a project done at the 

University of Massachusetts Dartmouth by nurses and 

engineers together to develop a hand-held device to aid the 

Clinical decision support. The results of this paper are 

achieved by using the „Improve‟ data library, a database built 

for the N-CODES.  

This paper also discusses in detail about the patient case 

indexing and frequent case tree algorithm to find frequently 

occurring patient cases. 

Overview of N-CODES 

As the patient acuity increases and cost-effective 

treatment becomes mandatory, the novice nurses often end up 

in a perplexed situation wherein they must take complex 

decisions almost on regular basis [6]. N-CODES (Nursing 

Computer Decision Support System), project at the University 

of Massachusetts Dartmouth addresses this problem by 

developing a prototype to provide some clinical knowledge 

through an interactive device using wireless access.  N-

CODES is an intelligent handheld device which takes in 

patient information and provides a diagnostic for decision 

support after evaluating the patient‟s condition using the given 

information. The architecture of the N-CODES system can be 

seen in Figure 1. 

 

Figure 1. NCODES Architecture [4]. 
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ABSTRACT 

In modern world, decision support systems are gaining increased popularity in various 

domains, including medical informatics and engineering. Digital access to the patient 

case data in would help the novice nurses in making faster and accurate decisions. The 

discussions in this paper are based on N-CODES (Nursing Computer Decision Support), 

an interactive handheld device which takes in patient data and delivers clinical 

knowledge i.e. it provides a diagnostic for decision support by the filtered and collated 

data. The focus of this paper is mainly on one aspect, the indexing of patient specific 

cases, and individual rule fragments. „Improve‟ data library has been used, which 

contains instances of each possible patient class in the clinical decision support system 

(CDS). These classes are organized into frequent case (FC) trees by developing an 

algorithm which will find the frequently occurring rules. This algorithm will support the 

patient case indexing by organizing cases into rule vectors consisting of rule instances for 

a specific case ending with an intervention and also will aid in determining similarity of 

new cases with stored exemplar cases.                                                                                   
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Three main functions of the handheld device are [1]: 

• Enabling the patient information to be downloaded from the 

server 

• Enabling continuous use of patient information stored on the 

PDA 

• Collecting extra information such as vital signs and other 

assessments 

After all the information is collected, it is then used to 

assist the nurse in proper evaluation and making appropriate 

interventions with the help of the previous and existing cases. 

NCODES uses the guidance of an expert rule-based engine to 

provide intelligent decision support. It also uses the clinical 

information as a knowledge base to guide through the patient 

treatment process. The system provides the user with some 

advice and also the reason behind this advice.  

The inference engine ensures that the nurse can transit 

between states to browse through the information given to the 

system. Using the given inputs, process rules and the case 

history, the inference process computes the next possible valid 

state and gives an output which is reliable for the patient 

assessment.  

The system‟s decision making capability is realized by the 

traversal of the decision tree from baseline assessment to pain 

assessment to cough assessment and more specifically to the 

refined assessment. This is of course dependent upon the rules 

existing in the database. The framework follows rule based 

reasoning considering logical rules as basic modules and the 

production rules as relationships amongst rule clusters [1]. 

NCODES pronounces these as rules and process rules. 

Rule-based Systems 

A rule-based system (RBS) consists of a rule-base 

(permanent data), an inference engine (process), and a 

workspace or working memory (temporary data). The RBS 

uses facts to represent knowledge. Facts are those which 

consist of rules in logic (for reasoning) and production rules 

(working memory + rule base). The production rules express 

the knowledge of a human expert, thus making RBS to solve 

similar problems on its own. A rule base typically consists of 

rules which contribute to the domain knowledge [6].  

The RBS compares facts about a new problem that are stored in 

a knowledge base against a stored set of rules. When there is a 

match, the rule will fire. This rule can be enabled in such a 

manner that it can fire another rule thus creating a chaining 

effect. The process continues until there are no more rules to 

fire and the output is presented to the user. The advantage with 

RBS is the simplicity of input variables. In general a rule is 

supposed to be of the format 

If <condition clause> Then <action clause> 

The condition clause checks the state of the temporary 

data. If the condition is satisfied then the consequent set of 

actions are triggered by the action clause. 

Case-Based Reasoning 

Case-Based Reasoning (CBR) is a problem solving 

technology which looks for a similar problem in a case-base 

and retrieves the solution of this past case. The retrieved 

solution is then used as a starting point to find the solution of 

the actual problem. CBR can be described as a cyclic process 

comprising of:  

 Case Retrieval: Retrieving most similar case 

 Case Reuse: To attempt to solve the problem 

 Revising proposed solution 

 Retaining the new solution as part of a new case 

 

 

Figure 2. Rule-Based System [6]. 

To understand CBR, we need to know something about 

problem and solution. Both, problems and solutions are 

represented in some data structure as attribute-value vectors. 

Certain variables, instantiated for an actual situation may occur 

in problem as well as solution but it usually important for the 

problem to find appropriate variable for the description of the 

solution [9].  

A case is a contextualized piece of knowledge representing 

an experience [10]. The basic idea of a case is to record an 

episode where a problem is solved. This includes partially 

solved problems too. A case is represented as an ordered pair 

(problem, solution) [9] which can be further refined to say that 

a case is a collection of rules. A set of cases collected together 

for retrieval purposes is termed as a Case Base. A case base 

represents some class of past experience. 

Indexing 

In the modern world, enormous amount of data is being 

collected in most of the domains including medical, 

engineering, military and business. All the data collected is 

stored in a database. As the size of a database increases, data 

retrieval becomes tougher because it takes agonizingly large 

period of time. In order to avoid this, most database systems 

use indexes to speed up the retrieval of data. An Index is a 

computational data structure which could be kept in the 

memory for a faster searching. This makes the computer to 

avoid searching each and every record stored in the database. 

Indexes are employed even in CBR to speed up the retrieval 

process. When employing an index in a CBR, it should [10]: 

• Be predictive 

• Address the purposes of the case 

• Be abstract enough to allow for widening the future use of 

case-base 

• Be concrete enough to be recognized in the future 

The information in a case is stored as indexed and un-

indexed information. The method used to select an index can 

be either manual or automatic. Choosing indexes manually 

involves deciding a case‟s purpose with respect to the aims of 

the system and deciding under what circumstances the case will 

be useful. For practical applications, indexes can be chosen 

automatically, manually or by both techniques but most of the 

CBR tools presently on the market are seen supporting 

automatic identification of case indexes [10]. One aspect of this 

paper is to propose an algorithm to build indexes. Indexes are 

built for the frequent rules and frequent cases which have been 

extracted from the existing patient database known as the 

Improve Data Library.  



P V K Sandeep / Elixir Inform. Tech. 103 (2017) 45705-45711 45707 

The „Improve‟ Data Library will be discussed later in 

detail. Also, how the frequent rules and frequent cases are 

extracted and how they are further used to construct the 

frequent case tree will be discussed in next sections. 

Frequent Case Tree (FC Tree) 

This section discusses the basic concepts of a Frequent 

Case Tree (FC Tree). An FC tree is basically a compressed 

representation of the input data. It is a tree structure which 

consists of nodes. Each node has the item name, the frequency 

count and the node link. An FC tree is similar to an n-ary tree 

where a node is linked to any number of nodes. The 

construction of an FC tree involves reading a case from the 

case index and mapping onto a path in the FC tree. Since 

different cases can have several rules in common, the paths 

may overlap. More number of overlaps implies more 

compression in the FC-tree structure. This makes it to use less 

memory and fit easily into the database thus allowing us to 

extract frequent items directly from the structure in database.  

In the current paper, case frequency is used to point into the 

forest of trees the most frequently accessed items and over time 

provide information on possible mutations to the FC tree to 

examine and changing the composition of cases in FC tree. 

This paper shows an algorithm sophisticated enough to extract 

the frequent items and map them onto a path in the FC tree. 

The procedure involved in the algorithm will be discussed in 

detail in a later section.  

Consider an ontology base which consists of all the cases 

that have occurred to date. Each case in ontology is an 

individual representation of a disease related group (DRG). 

There is every possibility that a set of rules in one case can 

match with a set of rules in some other case. This can be 

proved using the hit ratio algorithm which will be discussed in 

later section. These similar cases can be prioritized so that 

nurses can refer to these cases to draw conclusions. This 

method is known as Best Evidence Case Practice. Thus 

prioritized outcomes can be sent to the inference engine. When 

building the initial FC tree using the ontology, „1‟ leaf (case) 

would be present for each case of ontology. Thus N leafs would 

be present. 

‘Improve’ Data Library 

The dataset used for publishing the results of this paper has 

been taken from the “Improve Data Library”. IMPROVE 

(Improving Control of Patient Status in Critical Care) project 

began in October 1994 with a goal to improve the on-line 

assessment and management of the patient state in critical care 

and also to improve the operating theatre environments by 

applying innovative nonlinear, linear, multivariate and 

knowledge based algorithms [5]. The data library was obtained 

in the second phase of the project and the actual collection and 

annotation of the data was carried out at the Department of 

Intensive Care of Kuopio University Hospital (KUH) at 

Finland. The project ended in January 1997 with the 

accomplishments of two tasks i.e. collection of patient data and 

utilization of this data library for the development of bio-signal 

interpretation methods. The dataset contains the recordings of 

59 patients which were obtained from episodes of roughly 24 

hours of observation. For 7 of these patients, their EEG has 

also been recorded in addition to the current recordings. Out of 

these 59, some of them were admitted more than once but each 

admission was considered as a separate recording. Out of these 

59 patients, 7 were admitted twice and 1 was admitted thrice 

[1].  

To ensure quality in the measured data and also to check 

for any missing annotations, video monitoring has been done. 

All the data is collected by the Improve data collection system 

and the recorded signals were stored in some temporary files on 

the hard disk. The CIMS (Clinical information management 

system) records all the data from the annotations, patient 

monitors, nursing actions and the lab results and stores in the 

CIMS database [1]. 

Disorders Included in the Data Library 

As part of the „Improve‟ project, a survey group known as 

the clinical task group was set up. One of the objectives of this 

group was to define the clinical disorders. The other objectives 

include supervision of the data collection, conducting quality 

control of the annotation process and to do the interim and final 

analysis of the library. After conducting a survey in three ICUs, 

they were able to define four categories of disorders. 

Hypovolaemia, Cardiac Failure, High Flow State and O2 

content related problems are the four major disorders which 

have been included in the data library. Each main group was 

again divided into subgroups. According to the disorders in 

ICU, a patient can be classified into one or more of these four 

disorders [1]. In this section we discuss the criteria required to 

classify the patient into a particular disorder. 

Hypovolaemia 

1. Inadequate venous return, low CVP and signs of insufficient 

flow [5] 

 Primary criteria [5]:  

 Low filling pressure in relation to the patient‟s 

cardiovascular performance 

 Low cardiac index < 2.0 

 Low peripheral temperature, Tp < 32.5 °C excluding local 

vascular disorders 

 Secondary criteria [5]: 

 Metabolic signs of tissue hypoxia ( 1 - 2 h) & metabolic 

acidosis 

 pH < 7.35 & BE <  4  

 Lactataemia > 2 mmol/L 

 O2 consumption, SvO2  65 %, extraction ratio > 0.40   

2. Adequate venous return and no signs of insufficient flow [5] 

 Criteria [5]: 

 Adequate PCWP  6 and MAP  65 mmHg 

 Continuous volume replacement > 1000 ml/h or need of 

episodical volume replacement with higher infusion rate. 

 

Figure 3.  Improve Data Library Collection System [1]. 

Cardiac failure 

1. Inadequate flow and metabolic signs of tissue hypoxia [5] 

 Primary criteria [5]: 
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 Low CI and high /normal filling pressure (CI < 2.0 ;  

PCWP >10)  

 Metabolic signs of tissue hypoxia as above 

 Secondary criteria [5]: 

 Low urine output (optional)  0.5  1.0 ml/kg/h, over 2h 

 Low Tp 

2. Inadequate flow, no signs of tissue hypoxia [5] 

 Criteria [5]: 

 Low CI and high/normal filling pressures  PCWP > 10 

(primary criteria) 

 Low urine output (optional) 

 Low Tp 

3. Acceptable flow and continuous need of exceptional support 

[5] 

 Primary criteria [5]: 

 Low/normal CI, CI > 2.0, need for high filling pressures 

and PCWP >10 

 Low/normal CI and normal/high filling pressure + need 

of  vasodilatations 

 Need of inotropic drugs 

Cardiac failure is defined separately for left and right 

ventricular failures based on clinical judgment.  

High flow state 

1. Abnormally high flow and need of vasoactive treatment to 

maintain perfusion pressure (dopamine, norepinephrine) for 

low SVRi, SVRi < 120 [5] 

 Primary criteria [5]:  

 High CI > 4.0 and dopamine or norepinephrine  

 Tp normal or high Tp  > 32.5 c 

2. Abnormally high flow, acceptable perfusion pressure and 

signs of tissue hypoxia [5] 

 Criteria [5]: 

 High CI & Metabolic signs of tissue hypoxia 

 Need to increase DO2 by inotropic drugs 

 Low O2 extraction 

 O2 consumption, SvO2  65 %, extraction ratio  > 0.40 

 Tp normal or high 

3. Abnormal high flow & acceptable perfusion pressure [5] 

 Primary criteria [5]: 

 High CI, 4.0 

 Tp normal or high  32.5 

 Low O2 extraction 

Oxygen content related problems 

1. Desaturation [5] 

 Primary criteria [5]: 

 Low SaO2  < 90 and oxygen mask 

 High respiratory frequency and/or manifestation of 

efforts and distress 

 Metabolic signs of tissue hypoxia 

2. Acute ventilatory failure and Desaturation [5] 

 Criteria [5]: 

 Low pH  7.35 and high PaCO2  6.0 kPa  

 Low SaO2 < 90 

3. Desaturation, signs of tissue hypoxia and need for 

maximum ventilatory support [5] 

 Primary criteria [5]: 

 Low SaO2  

 Low High PaO

FiO

2

2

 < 150 mmHg 

 Metabolic signs of tissue hypoxia  

 Secondary criteria [5]: 

Need of inotropic drugs (to increase O2 delivery) 

4. Normal content with maximum ventilatory support [5] 

 Criteria [5]: 

 Normal SaO2 > 90 

 PaO

FiO

2

2

 < 200 mmHg 

 No signs of tissue hypoxia or need of inotropic drugs 

5. Normal content with routine ventilatory support [5] 

 Criteria [5]: 

 Normal/low SaO2 , SaO2 < 90 

 Normal/high PaCO2, PaCO2 > 4.5 kPa 

 No signs of tissue hypoxia or need of inotropic drugs 

Table 1 lists some of the abbreviations used while describing 

the disorders.  

Table 1. List of Abbreviations used to describe disorders. 

[5] 

Abbreviation Description 

MAP Mean arterial pressure 

CVP Central venous pressure 

Tp Peripheral temperature 

HR Heart rate 

ResF Respiratory frequency 

CI Cardiac index 

PCWP Pulmonary capillary wedge pressure 

SVRi Systemic vascular resistance index 

PaO2 Arterial oxygen tension 

FiO2 Fraction of inspired oxygen 

aB-pH Arterial pH 

DO2, VO2 Oxygen delivery, oxygen consumption 

ExO2 Oxygen extraction 

aB-BE Base excess 

Lact Blood lactate concentration 

Process Rules and Decision Trees 

To develop an algorithm, it is important that we have some 

use cases for each patient episode. But in order to build a use 

case for a patient episode it is required that we have a decision 

tree and also develop some process rules. Decision tree is a 

powerful and popular tool used for classification and 

prediction. In general it is considered as a data structure or 

rather a tree structure used in particular for classification tasks, 

where each node is either a leaf node or a decision node. A 

decision tree can be used to classify an example by starting at 

the root of the tree and moving through until it reaches a leaf 

node. The leaves represent classes whereas each non-leaf node 

represents an attribute whose value is used as a label for an 

edge starting from a node.  

A path in the decision tree represents an implication saying 

that an object with specific feature values belongs to a certain 

class. A decision tree is considered advantageous in that it 

represents rules which can readily be expressed and understood 

by a common man i.e. a decision tree can be transformed into 

process rules. The rules formed from such a tree are of the type 

If-Then. A rule can be created for each path from the root to the 

leaf node. The attributes in the path form a conjunction for the 

If part. The leaf node which is the outcome of the If clause 

forms the Then part. Thus rules can be helpful in classifying 

given data or predicting outcome of an unknown sample [1]. 

The other advantages of a decision tree include: 

 Simple to understand and interpret 

 Able to generate understandable rules 

 Able to handle both continuous, categorical variables 

 Perform classification without requiring computation 

 Provides a clear indication of which fields are most 

important for prediction or classification 

 Robust, performs well with large data in short time 
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Figure 4. Decision Tree showing only high flow state paths. 

Decision Tree for Improve Data Library 

The decision tree for the „Improve‟ data library is divided 

into two parts. One part of the decision tree shows the cardiac 

index assessment which is the primary criteria in all the 

disorders except in the oxygen content related problems which 

is shown in the second part of the tree. The decision tree 

follows the path from Baseline assessment to an intervention at 

the leaf node.  

The outcome of this intervention can be observed using the 

patient cases. In between these nodes, the path goes through 

pain assessment, cough assessment then to refined assessment. 

The intermediate nodes used to build the decision tree were 

based on the clinical description of the Improve data library. 

Thus, two decision trees have been built for the Improve data 

library. The first part contains the tree for the disorders 

Hypovolaemia, High flow state and cardiac failure. On the 

other hand, the second tree is for the O2 content related 

problems.  

The path in the decision tree, followed by the clinician, for 

each patient by validating the intervention or leaf node is 

known as the use case of that particular patient. Both stored 

procedure method and association rule mining method are used 

to construct the use cases for 59 patients but the stored 

procedure method proved more accurate and successful. Out of 

these, for the patients 1, 4, 16 and 32 only a part of the decision 

tree was obtained i.e. it ended at the baseline assessment.  
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Figure 5. Decision Tree showing Oxygen problems. 

Development of Frequent Case (FC) Tree 

The first step involved is to build the frequent rule index 

which contains the frequently occurring rules in the data 

library. Since the dataset is very large, to search for a rule or a 

case in this dataset would be a tedious process. To reduce the 

amount of time for searching, indexing is employed. To make 

the system work faster and also to improve the efficiency, the 

frequently occurring rules and cases are identified and an index 

is built. 

The rule index contains the Rule ID and the rule count. Each 

rule contains an If ID and a Then ID. With these frequent rules, 

a frequent rule tree is formed wherein one rule is connected to 

another till a case i.e. an intervention is reached thus forming a 

frequent case tree. 

Algorithm to develop an FC Tree: 

1. Get the patient ID 

2. Build the Use Case of this patient 

3. Extract all the If_ID from this use case  

4. Consider one If_ID and give it an r_id 

5. Extract all Then_ID possible with this If_ID from 

Process_Rules 

6. Consider one Then_ID 
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7. If Then_ID is present in the use case then go to step 6 and 

proceed 

8. Else put this in ignore list and go to step 6 and proceed 

9. Repeat step 7 till all the Then_ID are exhausted 

10. Go to step 4 and proceed 

11. Repeat Step 9 till all the If_ID are exhausted 

12. Get all the Rule_ID and the r_id for the respective If_ID 

13. Get one Rule_ID 

14. If the Rule_ID is already present, add rule count and give 

reference ID as its previous current_rid 

15. Else add the Rule_ID with reference ID as „NULL‟ 

16. Start with current_ rid and map to the respective child_rid 

17. Repeat step 14 till a case or an intervention is found 

18. Go to step 12 and repeat process till all the Rule_ID are 

exhausted 

19. Go to Step 1 and repeat process till all the patients are 

completed. Figure 12 shows all these steps as flowchart. 

Now, consider the figure 6 below 

 

Figure 6.  Use Case of a Patient ‘KUO0023A’. 

Figure 6 shows the use case of a patient with ID 

„KUO0023A‟. The If_ID are taken from cat_ID column. Now 

each ID is given an r_id which is useful in determining node ID 

of the FC tree. 

For example:  If_ID = 62     r_id = 0023A1 

                       If_ID = 104   r_id = 0023A2 

  If_ID = 109   r_id = 0023A3 and so on 

  If_ID = 15001125  r_id = 0023A8 
 

Figure 7. Excerpt of FC Tree in tabular format in database. 
 

Figure 8. Excerpt of Rule_ID from Process_Rules table. 

Results 

The „Improve‟ data library was imported into Microsoft 

SQL Server 2005 which has been used as the backend database 

and all the algorithms have been developed in Visual Studio 

using C# as the programming language. Several PL/ SQL 

functions and procedures have been written to access the 

database and also to perform operations on the data structures 

which have been created. All this has been done on 

„improve_all‟ database which is an extension to the „improve‟ 

database. 

Results for Rule Index 

The first step involved in the construction of the FC tree is 

to build a rule index. Since the decision tree has been rebuilt, 

new use cases were found. As a result, new rules have been 

added to process rules table as shown in Figure 9. 

 

Figure 9. Rule Index. 

Results for Frequent Rule Index 

The rule index shows the list of all the rules present in the 

system. In order to build a frequent case tree, we need to 

extract the rules which are occurring frequently. An algorithm 

which would extract the frequently occurring rules in the 

database has been written in C#. The extracted rules have been 

created as an index which contains the Rule ID of the 

frequently occurring rules and also how frequently the rule is 

occurring. 

 

Figure 10. Frequent Rule Index. 

Results for Frequent Case Tree 

The next step is to build the frequent case tree. All the 

frequent rules which have been obtained are mapped onto the 

FC tree. Each rule is traced down the path of the tree till an 

intervention or a case is found. This is done for all the patients 

thus forming many paths in the tree. An algorithm has been 

written in C# to map all frequent rules onto the FC tree till the 

respective case or intervention is reached. Figure 11 shows the 

frequent case tree that has been achieved after implementing 

the algorithm mentioned earlier. 

 

Figure 11: Frequent Case Tree
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Flowchart for developing FC Tree 

 

Figure 12. Flow Chart showing the Algorithm for FC Tree. 

 

Conclusion 
An algorithm has been developed which is sophisticated 

enough to extract frequent items and then build a frequent rule 

index for these. With this frequent rule index, FC tree was 

developed by mapping the frequent rules in the index onto the 

frequent tree. Constructing a frequent rule index and FC tree 

helps in making the system faster and thus more efficient. This 

also helps the nurses to follow the method of best evidence 

case practice. 

Future Scope 

The FC tree which has been developed and also the 

algorithm supporting patient case indexing will aid in 

determining similarity of new cases with stored exemplar cases 

i.e. similarity searching. An algorithm can be developed which 

will calculate the hit ratio of a case i.e. it shows the number of 

times a case has been referred to in the database.  

Also, effort can be made in the future to build a prioritized 

index of the rules in the FR-index depending on the medical 

importance. This is important because if there are any (rules/ 

cases) in the top level or any levels which are same, then rule 

based criticality or disease related group (DRG) can be used to 

reorder or reorganize the existing rules and cases. Consider two 

rules which have same priority. These rules can be reordered 

based on how critical the rule is. In case both the rules are 

critical then the DRG could be checked. The DRG cannot be 

same because each case is an individual representation. 
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