45808

L.Bhuvaneswari et al./ Elixir Comp. Phys. 104 (2017) 45408-45813

Available online at www.elixirpublishers.com (Elixir International Journal)

Computational Physics

Elixir Comp. Phys. 104 (2017) 45408-45813

Analyses of Molecular Structure, Vibrational Spectra, Nbo, Mulliken Charge and Nlo Studies of Penta Chloro Nitro Benzene

L.Bhuvaneswari^{1,*}, U.Sankar², S.MeenakshiSundar³ and G John James⁴ ¹Department of Physics, N.K.R.Government Arts College for women, Namakkal-637001 T.N. India. ²Department of Physics, Sri K.G.S. Arts College, Srivaikuntam-628601 T.N. India. ³ Department of Physics, Sri Paramakalyani College, Alwarkurichi-627412 T.N. India. ⁴ Department of Physics, Government Arts College, Trichy -022. T.N. India.

ARTICLE INFO

Article history: Received: 27 January 2017; Received in revised form: 27 February 2017; Accepted: 8 March 2017;

Keywords

1. Introduction

FTIR, FT-Raman, HF and DFT, Mulliken charges, NBO, NLO.

ABSTRACT

Benzene is mainly used as an intermediate to make other chemicals; its mostly widelyproduced derivatives include styrene, which is used to make polymers and plastics. Benzene is also used to make some types of rubbers, lubricants, dyes, detergents, drugs and pesticides. Natural sources of benzene include volcanoes and forest fires. At one time, chlorobenzene is the main precursor for the manufacture of phenol. The major use of chlorobenzene is an intermediate in the production of commodities such as herbicides, dyestuffs, and rubber. Chlorobenzene is also used as high-boiling solvent in many industrial applications as well as in the laboratory . As a continuation of the recent studies on structural and theoretical investigations of some substituted benzene derivatives, the main aspects of this investigation are: Structural analysis, molecular geometries and vibrational spectra of penta chloro nitrobenzene (PCNB) are calculated by applying density functional theory (DFT) and ab initio (HF) computations and thermodynamical parameters, NBO, NLO and Mulliken Charge analyses have been used to give more information regarding charge transfer within the molecules. Thermo dynamical properties like entropy, heat capacity, zero-point vibrational energy and Mulliken's charge analysis have been calculated for PCNB. The most possible interaction is explained using nature bond orbital (NBO) analysis and the potential compound of non-linear optics (NLO) demands the investigation of its structural and bonding features contributing the hyperpolarizability.

Benzene is a clear, colorless, non-corrosive and highly flammable liquid with a sweet odour. It evaporates into the air very quickly and dissolves slightly in water [1]. Benzene is mainly used as an intermediate to make other chemicals; its mostly widely-produced derivatives include styrene, which is used to make polymers and plastics [2]. Benzene is also used to make some types of rubbers, lubricants, dyes, detergents, drugs and pesticides. Natural sources of benzene include volcanoes and forest fires. Benzene is also a natural part of crude oil, gasoline and cigarette smoke [3-5]. At one time, chlorobenzene is the main precursor for the manufacture of phenol. The major use of chlorobenzene is an intermediate in the production of commodities such as herbicides, dyestuffs, and rubber. Chlorobenzene is also used as high-boiling solvent in many industrial applications as well as in the laboratory [6]. Interestingly, dinitrobenzene belongs to the group of organic halogen compounds and used in the fumigant and insecticide, solvent, chemical intermediate to manufacture dyes, agrochemical, pharmaceuticals and other organic synthesis.

As a continuation of the recent studies on structural and theoretical investigations of some substituted benzene derivatives, the main aspects of this investigation are: Structural analysis, molecular geometries and vibrational spectra of penta chloro nitrobenzene (PCNB) are calculated by applying density functional theory (DFT) and ab initio (HF) © 2017 Elixir All rights reserved.

computations and thermodynamical parameters, NBO, NLO and Mulliken Charge analyses have been used to give more information regarding charge transfer within the molecules.

2. Experimental Methods

The pure sample of PCNB obtained from Lancaster chemical company, UK and used as such for the spectral measurements. The room temperature Fourier transform infrared spectra of the title compound was recorded in the region 4000 - 400 cm⁻¹, at a resolution of \pm 1 cm⁻¹ using a BRUKER IFS-66 V FTIR spectrometer equipped a cooled MCT detector using KBr pellets. Boxcar apodization is used for the 250 averaged interferograms collected for both the sample and background. The FT-Raman spectra is recorded on а computer interfaced BRUKER IFS 66V model interferometer equipped with FRA-106 FT-Raman accessory in the 3500-100 cm⁻¹ stokes region. For that, Nd:YAG laser operating at 200 mw power with 1064 nm excitation is used as source.

2.1. Computational Procedure

Density functional calculations are carried out for PCNB with the 2009 version (G09-DFT) of the GAUSSIAN suite programe [7] at the Becke-3-Lee-Yang-Parr (B3LYP) functional [8,9] implemented with the standard 6-31+G(d,p)large basis set. All the parameters are allowed to relax and all the calculations converged to an optimized geometry which

Bond	Values		Bond Angle	Values		Dihedral Angle	Values	
Length	B3LYP	HF		B3LYP	HF		B3LYP	HF
	6-31+	6-31+ G		6-31+ G (d,p)	6-31+ G		6-31+ G	6-31+ G (d,p)
	G (d,p)	(d , p)			(d , p)		(d , p)	
C1-C2	1.3937	1.3782	C2-C1-C6	122.2563	121.6405	C6-C1-C2-C3	0.0001	0.0001
sC1-C6	1.3937	1.3782	C2-C1-N12	118.8718	119.1797	C6-C1-C2-Cl7	179.9995	-180.0008
C1-N12	1.483	1.4605	C6-C1-N12	118.8719	119.1797	N12-C1-C2-C3	-180	180.0001
C2-C3	1.4041	1.3825	C1-C2-C3	118.9332	119.184	N12-C1-C2-Cl7	-0.0006	-0.0008
C2-Cl7	1.7324	1.7783	C1-C2-Cl7	119.651	119.4084	C2-C1-C6-C5	0.0001	0.0001
C3-C4	1.4075	1.3861	C3-C2-Cl7	121.4158	121.4076	C2-C1-C6-Cl11	179.9994	-180.0008
C3-C18	1.7315	1.7784	C2-C3-C4	119.6922	119.7471	N12-C1-C6-C5	180.0001	180.0001
C4-C5	1.4075	1.3861	C2-C3-C18	119.8334	119.8021	N12-C1-C6-Cl11	-0.0005	-0.0008
C4-C19	1.7322	1.779	C4-C3-C18	120.4744	120.4508	C2-C1-N12-O13	-89.989	-89.9829
C5-C6	1.4041	1.3825	C3-C4-C5	120.493	120.4972	C2-C1-N12-O14	90.011	90.0171
C5-Cl10	1.7315	1.7784	C3-C4-Cl9	119.7535	119.7514	C6-C1-N12-O13	90.0109	90.0171
C6-Cl 11	1.7324	1.7783	C5-C4-Cl9	119.7535	119.7514	C6-C1-N12-O14	-89.9891	-89.9829
N12-O13	1.2246	1.2205	C4-C5-C6	119.6922	119.7471	C1-C2-C3-C4	-0.0001	-0.0001
N12-O14	1.2246	1.2205	C4-C5-Cl10	120.4744	120.4508	C1-C2-C3-Cl8	179.9998	-180.0003
			C6-C5-Cl10	119.8334	119.8021	Cl7-C2-C3-C4	-179.9995	180.0008
			C1-C6-C5	118.9332	119.184	Cl7-C2-C3-Cl8	0.0004	0.0006
			C1-C6-Cl11	119.651	119.4084	C2-C3-C4-C5	0.0001	0.0001
			C5-C6-Cl11	121.4158	121.4076	C2-C3-C4-Cl9	180.0001	180.0001
			C1-N12-O13	116.6132	117.2055	Cl8-C3-C4-C5	180.0001	180.0002
			C1-N12-O14	116.6132	117.2055	Cl8-C3-C4-Cl9	0.0001	0.0002
			O13-N12-O14	126.7736	125.5891	C3-C4-C5-C6	0.0001	0.0001
						C3-C4-C5-Cl10	-179.9999	180.0002
						Cl9-C4-C5-C6	-179.9999	-179.9999
						Cl9-C4-C5-Cl10	0.0001	0.0002
						C4-C5-C6-C1	-0.0001	-0.0001
						C4-C5-C6-Cl11	-179.9995	180.0008
						Cl10-C5-C6-C1	179.9998	-180.0003
						Cl10-C5-C6-Cl11	0.0005	0.0006

Table 1. Optimized geometrical parameters of Penta Chloro Nitro Benzene obtained by B3LYP and HF methods.

corresponds to a true energy minimum, as revealed by the lack of imaginary values in the wave number calculations. The Cartesian representation of the theoretical force constants have been computed at the fully optimized geometry by assuming the molecule belongs to C_1 point group symmetry. The transformation of force field from Cartesian to internal, local symmetry coordinates, the scaling, the subsequent normal coordinate analysis (NCA), calculation of total energy distribution (TED) are done on a PC with the version V7.0-G77 of the MOLVIB program written by Sundius [10-12].

3. Result and Discussion

3.1. Molecular geometry

The molecular structure of PCNB is shown in Fig.1. The global minimum energy obtained by DFT structure optimization for PCNB is calculated as -763.8140 Hartrees. Detailed description of vibrational modes can be given by means of normal coordinate analysis.

Fig 1. Optimized molecular structure of Penta Chloro Nitro Benzene.

3.2. Vibrational Spectra

The title compound consists of 14 atoms and its 36 normal modes of vibrations. The detailed vibrational assignments of fundamental modes of PCNB along with the calculated IR and Raman frequencies and normal mode descriptions (Characterized by TED) are presented in Table 2.

Fig 2. FT-IR Spectrum of Penta Chloro Nitro Benzene.

Fig 3. FT-Raman Spectrum of Penta Chloro Nitro Benzene.

The FTIR and FT-Raman spectra of PCNB are shown in Figs. 2-3. From the theoretical values, it is found that most of the optimized bond lengths are slightly lesser than the experimental values.

C-C vibrations

The bands between 1400 and 1650 cm⁻¹ in the aromatic and hetero aromatic compounds are assigned to C-C stretching vibrations [13,14]. Therefore, the C-C stretching vibrations of PCNB are observed at 1365, 1347, 1336 cm⁻¹ and 1647, 1628 and 1377 cm⁻¹ in IR and Raman spectra, respectively. The inplane and out-of-plane bending vibrations of C-C group are also listed in Table 2.

C-N vibrations

The C–N stretching frequencies in the side chain are found to be a rather difficult task, since there are problems in identifying these frequencies from other vibrations. The C–N stretching usually lies in the region 1400–1200 cm⁻¹. Since, mixing of bands is possible in this region. However, with the help of force field calculations the C–N vibrations are identified [15]. In this investigation, the C–N stretching vibrations of PCNB are found at 1323 cm⁻¹ in FT-IR spectrum. The C–N bending vibrations and deformations of PCNB are summarized in Table 2.

 Table 2. Vibrational Assignments of fundamental frequencies in cm-1 and wave numbers obtained for Penta Chloro

 Nitro Benzene using B3LYP/6-31+G (d,p) and HF/6-31+G (d,p) level.

S. No	Observed Frequencies		Calculated Values				TED% Among Types Internal	
	FT-IR	FT-Raman	B3LYP/6- 31	+ G (d.p)	HF/6-31 + G(d.p)		Co-Ordinates	
			Frequencies		Frequencies			
			Unscaled	Scaled	Unscaled	Scaled		
1	1661		1643	1665	1753	1669	NO ₂ assy (86%)	
2	_	1647	1577	1652	1751	1656	γ C-C (99%)	
3	_	1628	1558	1632	1584	1638	γ C-C (99%)	
4	1527	_	1415	1532	1554	1538	NO ₂ symm(88%)	
5	_	1377	1375	1382	1518	1389	γ C-C(98%)	
6	1365	_	1368	1369	1484	1373	γ C-C(97%)	
7	1347	_	1281	1350	1347	1356	γ C-C(99%)	
8	1336	_	1225	1341	1279	1346	γ C-C(98%)	
9	1323	_	1115	1328	1236	1334	γ C-N(96%)	
10	1297	_	933	1305	1021	1309	b C-C(85%)	
11	_	1239	886	1246	998	1252	b C-C(84%)	
12	1236	_	809	1242	941	1250	b C-C(83%)	
13	1224	1226	793	1231	868	1241	b NO ₂ (70%)	
14	_	1208	718	1212	859	1220	b NO ₂ (71%)	
15	1204	_	676	1207	842	1217	b C-N(83%)	
16	1123	_	656	1128	760	1131	γ C-Cl(75%)	
17	1109	_	645	1113	698	1118	γ C-Cl(74%)	
18	932	_	584	935	686	942	γ C-Cl(72%)	
19	789	_	560	793	601	800	γ C-Cl(71%)	
20	694	_	466	699	562	706	γ C-Cl(73%)	
21	677	_	386	687	406	692	ω C-C(68%)	
22	663	_	360	674	405	679	ω C-C(67%)	
23	659	_	334	671	376	676	ω C-C(66%)	
24	_	580	323	588	348	592	b C-Cl(65%)	
25	_	505	297	512	329	518	b C-Cl(64%)	
26	_	430	262	436	310	444	b C-Cl(63%)	
27	_	396	234	401	250	411	b C-Cl(62%)	
28	_	368	219	372	233	380	b C-Cl(61%)	
29	_	340	218	350	231	358	ω C-N(58%)	
30		325	203	336	216	344	ω C-Cl(57%)	
31		303	155	315	172	323	ω C-Cl(55%)	
32		271	141	281	162	286	ω C-Cl(53%)	
33		231	87	242	97	247	ω C-Cl(52%)	
34		220	68	232	76	237	ω C-Cl(50%)	
35		169	60	179	68	187	ω NO ₂ (45%)	
36		155	39	166	16	174	$\omega NO_2(42\%)$	

Abbreviations: γ – stretching; b – bending; ω – out-of-plane bending; t – torsion; R – ring; trigd – trigonal deformation; symd – symmetric deformation; asymd – antisymmetric deformation.

NO₂ group vibrations

The characteristic group frequencies of the nitro group are relatively independent of the rest of the molecule which makes this group convenient to identify. Aromatic nitro compounds have strong absorptions due to the asymmetric and symmetric stretching vibrations of the NO₂ group at 1570-1485 cm⁻¹ and 1370-1320 cm⁻¹, respectively [16]. Hence, the asymmetric stretching mode of nitro group for PCNB is identified at 1661

cm⁻¹ in FT-IR spectrum and in good agreement with TED output. The symmetric stretching mode of nitro group is assigned at 1527 cm⁻¹ in IR spectrum. The deformation vibrations of NO₂ group (rocking, wagging and twisting) contribute to several normal modes in the low frequency region [17].

C–Cl vibrations

The vibrations belonging to the bond between the ring and halogen atoms are discussed here as mixing of vibrations is possible due to the lowering of the molecular symmetry and the presence of heavy atoms on the periphery of the molecule. Generally, the C-Cl absorption is obtained in the broad region between 850-550 cm⁻¹[18]. Therefore, the bands found at 1123, 1109, 932, 789 and 694 cm^{-1} in IR is assigned to C-Cl stretching vibrations of PCNB. Most of the aromatic chloro compounds have the region 385 - 265 cm⁻¹ due to C-Cl inplane bending vibration. Accordingly, the bands identified 580, 505, 430, 396 and 368 cm^{-1} in Raman is assigned to the C-Cl in-plane mode of PCNB respectively. The C-Cl out-ofplane deformation for the title compound is established at 325, 303, 271, 231 and 220 cm^{-1} in the Raman spectrum.

4. Prediction of First Hyperpolarizability

The first hyperpolarizability (β_0) of this novel molecular system and the related properties (β_0 , α_0) of PCNB are calculated using the B3LYP/6-31+G(d,p) basis set, based on the finite field approach. In the presence of an applied electric field, the energy of a system is a function of the electric field. The first hyperpolarizability is a third-rank tensor that can be $3 \times 3 \times 3$ matrix. The 27 components of described by a the 3D matrix can be reduced to 10 components due to the Kleinman symmetry [19.20]. It can be given in the lower tetrahedral. The components of β are defined as the coefficients in the Taylor series expansion of the energy in the external electric field. When the external electric field is weak and homogenous, this expansion becomes

 $E = E_0 - \mu_{\alpha} F_{\alpha} - 1/2 \alpha_{\alpha\beta} F_{\alpha} F_{\beta} - 1/6 \beta_{\alpha} \beta_{\gamma} F_{\alpha} F_{\beta} F_{\gamma} + \dots$

where E_0 is the energy of the unperturbed molecules, F_{α} is the field at the origin and μ_{α} , $\alpha_{\alpha\beta}$ and $\beta_{\alpha}\beta_{\gamma}$ are the components of dipole moment, polarizability and the first hyperpolarizabilities, respectively. The total static dipole moment μ , the mean polarizability α_0 and the mean first hyperpolarizability β_0 , using the x, y, z components they are defined as:

$$\begin{split} \mu &= (\mu_x^2 + \mu_y^2 + \mu_z^2)^{1/2} \\ \alpha_0 &= (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})/3 \\ \alpha &= 2^{-1/2} \left[(\alpha_{xx} - \alpha_{yy})^2 + (\alpha_{yy} - \alpha_{zz})^2 + (\alpha_{zz} - \alpha_{xx})^2 + 6\alpha_{xx}^2 \right]^{1/2} \\ \beta_0 &= (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2} \\ \beta_{vec} &= 3/5 [(\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2}] \\ \text{where} \\ \beta_x &= \beta_{xxx} + \beta_{xyy} + \beta_{xzz} \\ \beta_y &= 0 \\ \beta_x &= \beta_{xxx} + \beta_{xyy} + \beta_{xzz} \\ \beta_y &= 0 \\ \beta_y &=$$

 $\begin{array}{ll} \beta_y &= \beta_{yyy} + \beta_{yxx} + \beta_{yzz} \\ \beta_z &= \beta_{zzz} + \beta_{zxx} + \beta_{zyy} \end{array}$

The β_0 components of GAUSSIAN 09W output are reported in atomic units and therefore the calculated values are converted into e.s.u. units (1 a.u. = 8.3693×10^{-33} e.s.u.). The calculated value of hyperpolarizability and polarizability of PCNB are tabulated in Table 6.6. The title molecule (PCNB) are an attractive object for future studies of non-linear optical properties.

5. Mulliken Population Analysis

The charge distributions calculated by the Mulliken method for the equilibrium geometry of PCNB with DFT/631+G(d,p) are listed in Tables 3. The charge distribution on the molecule has an important influence on the vibrational spectra. The corresponding Mulliken's plot is shown in Fig.4.

Fig 4. Plot of Mulliken's atomic charges of Penta Chloro Nitro Benzene.

Table 3. The Mulliken charge analyses of Penta Chloro Nitrobenzene calculated by B3LYP and HF methods.

S. No	Atoms	Mulliken Charges		
		B3LYP	HF	
		6-31+G (d,p)	6-31+G (d,p)	
1	C1	-0.468061	-1.79742	
2	C ₂	0.005988	0.193662	
3	C ₃	0.251675	0.307613	
4	C_4	-0.670798	-1.100168	
5	C ₅	-0.19906	-0.306298	
6	C ₆	-0.438458	-0.375622	
7	Cl ₇	0.327777	0.571584	
8	Cl ₈	0.363052	0.680189	
9	Cl ₉	0.320625	0.615598	
10	Cl 10	0.362125	0.679111	
11	Cl ₁₁	0.284914	0.521766	
12	N ₁₂	-0.087345	-0.016738	
13	O ₁₃	0.031222	0.118162	
14	O ₁₄	-0.083654	-0.091439	

From the results it is clear that the substitution of Cl, NO₂ atoms in the heterocyclic ring leads to a redistribution of electron density. The σ -electron withdrawing character of the NO2 and Cl atom in this title compound is demonstrated by the decrease of electron density on Cl and NO₂ atom. The atomic charges in the NO₂ group are almost identical. The atomic charges obtained from 6-31+G(d,p) basis set shows that common atoms of NO2 and Cl of PCNB is more acidic due to more positive charge whereas C_1 , C_4 , C_5 , C_6 , N_{12} and O_{14} are more negative.

6. NBO ANALYSIS

The NBO analysis is carried out by examining all possible interactions between 'filled' (donor) Lewis-type NBOs and 'empty' (acceptor) non-Lewis NBOs, and estimating their energetic important by 2nd order perturbation theory. Since these interactions lead to loss of occupancy from the localized NBOS of the idealized Lewis structure into the empty non-Lewis orbitals, they are referred to as delocalization corrections to the zeroth-order natural Lewis structure. For each donor NBO (i) and acceptor NBO (j) with delocalization $i \rightarrow j$ is estimated as

$$E^{(2)} = \Delta E_{ij} = q_i \frac{F(i,j)^2}{\epsilon_i - \epsilon_i}$$

where q_i is the donor orbital occupancy ε_i and ε_i are diagonal elements orbital energies and F(i, j) is the off diagonal NBO Fock matrix element. The larger $E^{(2)}$ value, the more intensive is the interaction between electron donors and acceptors, i.e., the more donation tendency from electron donors to electron acceptors and the greater the extent of conjugation of the whole system.

DFT/6-31+G(d,p) level computation is used to investigate the various second-order interactions between the filled orbitals of one subsystem and vacant orbitals of another subsystem, which is a measure of the delocalization or hyperconjugation [21]. NBOs are localized electron pair orbitals for bonding pairs and lone pairs. The hybridization of the atoms and the weight of each atom in each localized electron pair bond are calculated in the idealized Lewis structure. A normal Lewis structure would not leave any antibonding orbitals, so the presence of antibonding orbitals shows deviations from normal Lewis structures. Anti bonding localized orbitals are called non-Lewis NBOs. If the occupancy is not 8.0, then there are deviations from an ideal Lewis structure. In order to study the small deviations from idealized Lewis structure, the Donor-Acceptor interaction approach is adopted. In PCNB, $\pi(C_1-C_6) \rightarrow \pi^*(C_2-C_3)$ interaction is seen to give a strong stabilization 19.46 kJ/mol. This strong stabilization denotes the larger delocalization. The interesting interactions in PCNB molecule are $LP(2)Cl_7$ and $LP(3)Cl_{10}$ with that of antibonding C_2 - C_3 and C_4 - C_5 . These two interactions result the stabilization energy of 13.89 and 14.01 kJ/mol respectively. This highest interaction around the ring can induce the large bioactivity in the molecule. The p character of chlorine lone pair orbital LP(2)Cl₇ and LP(3)Cl₁₀ are 99.99% and 99.98%, respectively. This shows that the lone pair orbital participates in electron donation in the molecule. The calculated values of $E^{(2)}$ are shown in Table.4 for PCNB.

7. Thermodynamical Properties

In addition to the vibrational assignments, several thermodynamic parameters are also calculated on the basis of vibrational analysis at B3LYP/6-31+G(d,p) and HF/6-

31+G(d,p). The calculated thermodynamic properties of PCNB are presented in the Table 5. The self consistent field (SCF) energy, zero-point vibrational energies (ZPVE), rotational constants, dipole moment and entropy $S_{Vib}(T)$ are calculated to the extent of accuracy and the variations in the ZPVEs seem to be insignificant. The total energies and change in total entropy of PCNB at room temperature are only marginal.

Table 5. The Thermodynamic parameters of Penta Chloro Nitro Benzene calculated by B3LYP and HF methods

Parameters	Method/Basis Set				
	B3LYP	HF			
	6-31+G(d, p)	6-31+G(d, p)			
Total Energy Etotal	42.168	45.045			
Heat Capacity (Cv)	45.035	42.263			
Entropy (S)	119.077	117.108			
Translational	0.889	0.889			
Rotational	0.889	0.889			
Vibrational	40.39	43.268			
Zero Point vibrational	33.8412	37.22386			
Energy					
Rotational Constant(GHZ)					
А	0.44399	0.43847			
В	0.3942	0.39388			
С	0.21564	0.21412			
Dipole Moment					
μχ	2.7446	-3.2194			
μy	0	0			
μz	0	0			
µtotal	2.7446	3.2194			
Molecular mass	292.83717 amu	292.83717 amu			
Rotational Temperature (Kelvin)					
T1	0.02131	0.02104			
T2	0.01892	0.0189			
T3	0.01035	0.01028			

 Table 4. Second order perturbation theory analysis of Fock matrix in NBO basic corresponding to the intermolecular bonds of Penta Chloro Nitro Benzene.

S. No	Donor	Acceptor	E(2)	Ej-	F (i , j)
				Ei	
1	$\sigma(C_1-C_2)$	$\sigma^{*}(C_{1}-C_{6})$	3.9	1.28	0.063
2	$\sigma(C_1-C_6)$	$\sigma^{*}(C_{1}-C_{2})$	3.84	1.29	0.063
	π	$\pi * (C_2 - C_3)$	19.46	0.27	0.067
3	$\sigma(C_1 - N_{12})$	$\sigma^{*}(N_{12}-O_{14})$	1.87	1.05	0.041
4	$\sigma(C_2-C_3)$	$\sigma^{*}(C_{1}-C_{2})$	4.25	1.29	0.066
	π	$\pi * (C_4 - C_5)$	18.63	0.28	0.066
5	$\sigma(C_3-C_4)$	$\sigma^{*}(C_{2}-C_{17})$	3.51	0.89	0.05
6	$\sigma(C_3-C_{18})$	$\sigma^{*}(C_{1}-C_{2})$	2.58	1.23	0.051
7	$\sigma(C_4-C_5)$	$\sigma^{*}(C_{6}-Cl_{11})$	3.55	0.9	0.05
	π	$\pi * (C_1 - C_6)$	18.65	0.28	0.066
8	$\sigma(C_4-Cl_9)$	$\sigma^{*}(C_{2}-C_{3})$	2.57	1.23	0.05
9	$\sigma(C_5-C_6)$	$\sigma^{*}(C_{4}-C_{5})$	3.42	1.28	0.059
10	$\sigma(C_5-Cl_{10})$	$\sigma^{*}(N_{12}-O_{13})$	2.38	3.58	0.092
11	$\sigma(C_6-Cl_{11})$	$\sigma^{*}(C_{1}-C_{2})$	2.88	1.23	0.053
12	$\sigma(N_{12}-O_{13})$	$\pi * (N_{12}-O_{14})$	2.19	1.34	0.053
13	$\sigma(N_{12}-O_{14})$	$\pi * (N_{12}-O_{14})$	87.46	1.11	0.296
	π	$\sigma^{*}(N_{12}-O_{14})$	62.07	0.53	0.167
14	$\pi * (C_1 - C_6)$	$\sigma^{*}(N_{12}-O_{14})$	1.98	0.24	0.036
15	σ(N ₁₂ -O ₁₄)	$\pi * (N_{12}-O_{13})$	15.51	2.66	0.342
16	$\pi * (N_{12}-O_{14})$	$\sigma^{*}(C_{1}-C_{6})$	6.22	0.04	0.03
17	$\pi * (N_{12} - O_{14})$	$\pi * (N_{12} - O_{13})$	112.11	2.41	0.742

 $E^{(2)}$ means energy of hyper conjugative interaction (stabilization energy). Energy difference between donor and acceptor *i* and *j* NBO orbitals. F(i,j) is the Fock matrix element between *i* and *j* NBO orbitals. Table 6. Hyperpolarizability(β), electric dipole moment

 (μ) and the polarizability (α_0) at the B3LYP/6-31+G(d,p) and HF/6-31+G(d,p) basis set of Penta Chloro

Nitro Benzene.					
Parameters	B3LYP/6-31+	HF/6-31+			
	G(d,p)	G(d,p)			
β xxx	21.9161	10.6315			
β xxy	0.9162	-26.3431			
eta xyy	8.2783	-6.0970			
eta yyy	32.5758	48.0707			
β zxx	-9.3648	-4.7663			
eta xyz	4.3023	22.6950			
eta zyy	2.8154	18.9111			
β xzz	12.8221	18.6983			
eta yzz	3.0676	-1.9812			
eta zzz	-14.9328	-25.7256			
eta total	$0.5055 \text{x} 10^{-30} \text{ esu}$	0.2729x10 ⁻³⁰ esu			
αxx	-122.8412	-131.4178			
αxy	0	0			
lpha yy	-107.7952	-113.7422			
αxz	0	0			
lpha yz	0	0.0015			
lpha zz	-115.4247	-118.8468			
$lpha$ $_{0}$	0.3214×10^{-30} esu	0.3523×10^{-30} esu			
$\mu_{\rm X}$	2.7446	-3.2194			
μу	0	0			
μz	0	0			
μ total	2.7446 Debye	3.2194 Debye			

Conclusion

The vibrational properties of PCNB have been investigated by FT-IR and FT-Raman spectroscopies and are based on DFT calculations. The vibrational frequencies analysis by B3LYP method agrees satisfactorily with experimental results. On the basis of agreement between the calculated and experimental results, assignments of all the fundamental vibrational modes of PCNB are examined and proposed. Therefore, the assignments made at higher level of the theory with higher basis set with reasonable deviations from the experimental values, seems to be correct. NBO study reveals that lone pair orbital participates in electron donation to stabilize the compound.

NLO property has also been observed by predicting the first hyperpolarizability for the title compound due to the substitution in the benzene.

References

[1] G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.Y. Wang, J.R. Durig, Spectrochim. Acta Part A, **49** (1993) 2007.

[2] P.L. Polavarapu, J. Phys. Chem., 94 (1990) 8106.

[3] G. Keresztury, Raman Spectroscopy: Theory in: J.M. Chalmers, P.R. Griffiths (Ed.), Handbook of Vibrational Spectroscopy, Wiley, **1** (2002).

[4] J. Choo, S. Kim, H. Joo, Y. Know, J. Mol. Struct., **587** (2002) 1-8.

[5] S. George, Infrared and Raman Characteristic Group frequencies, Tables and Charts, third ed., Wiley, Chichester, 2001.

[6] H. Susi, J.S. Ard, Spectrochim. Acta A 27 (1971) 1549-1562.

[7]M.J. Frisch, G.W. Trucks, H.B. Schlegal, GAUSSIAN 09, Revision A.02, Gaussian, Inc.,

Wallingford, CT, 2009

[8] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.

[9] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B37 (1988) 785

[10]T. Sundius, J. Mol. Struct., 218 (1990) 321.

[11]T. Sundius, Vib. Spectrosc., 29 (2002) 89.

[12]MOLVIB (V.7.0): Calculation of Harmonic Force Fields and Vibrational Modes of Molecules, QCPE Program No. 807 (2002).

[13]V. Krishnakumar and R. John Xavier, J. Chem. Phys., 312 (2005) 227.

[14]G. Ilango, M. Arivazhagan, Joseph Prince and V. Balachandran, Indian J. Pure Appl. Phys. , 46 (2008) 698.

[15]S. Jeyavijiyan, M. Arivazhagan, Ind. J. Pure Appl. Phys., 48 (2010) 869.

[16] N. Sundaraganesan, S. Ayyappan, H. Umamaheswari, B. Dominic Joshua, Spectrochim. Acta 66A (2007) 17.

[17] A. Kovacs, G. Keresztury, V. Izvekov, Chem. Phys. 253 (2000) 193

[18] R.Gayathri, M.Arivazhagan Spectrochimica Acta Part A 81 (2011) 242

[19] D.A. Kleinman, Phys. Rev., 126 (1962) 1977.

[20]J. Karpagam, N. Sundaraganesan, S. Sebastian, S. Manoharan, M. Kurt, J. Raman Spectorsc., 41(2010) 53.

[21] A.B. Raschi, E. Romano, Spectrochim. Acta A 77 (2010) 497.