Edge-vertex dominating sets and Edge-vertex domination polynomials of Stars

A.Vijayan and J. Sherin Beula

Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Kanyakumari District, Tamil Nadu, South India.

ARTICLE INFO

Article history:

Received: 1February 2017;
Received in revised form: 10 March 2017;
Accepted: 21 March 2017;

Keywords

Star graph,
Edge-Vertex Domination number,
Edge-Vertex Dominating sets, Edge-Vertex Domination polynomials.

Abstract

Let $G=(V, E)$ be a simple graph. A set $S \subseteq E(G)$ is an Edge-Vertex dominating set of G (or simply an ev -Dominating set), if for all vertices $v \in V(G)$, there exists an edge $e \in S$ such that e dominates v. Let S_{n} be the Star graph and let $D_{e v}\left(S_{n}, i\right)$ denote the family of all Edge-Vertex dominating sets of S_{n} with cardinality i. Let $d_{e v}\left(S_{n}, i\right)=\left|D_{e v}\left(S_{n}, i\right)\right|$, be the number of Edge-Vertex dominating sets of S_{n} with cardinality i. In this paper, we study the concept of Edge-Vertex domination polynomials of Star graph S_{n}. The Edge-Vertex Domination polynomial of S_{n} is $D_{e v}\left(S_{n}, x\right)=\sum_{i=1}^{n-1} d_{e v}\left(S_{n}, i\right) x^{i}$. We obtain some properties of $D_{e v}\left(S_{n}, x\right)$ and its coefficients. Also, we calculate the recursive formula to derive the Edge-Vertex Domination polynomials of Star graph S_{n}.

© 2017 Elixir All rights reserved.

1. Introduction

Let $G=(V, E)$ be a simple graph of order $|V|=n$. A set $S \subseteq V(G)$ is a dominating set of G, if every vertex in $V \backslash S$ is adjacent to at least one vertex in S. For any vertex $v \in V$, the open neighbourhood of v is the set $N(v)=\{u \in V / u v \in E\}$ and the closed neighbourhood of v is the set $N[v]=N(v) \bigcup\{v\}$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S)=U_{v \in S} N(v)$ and the closed neighbourhood of S is $N[S]=N(S) \bigcup S$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S)=U_{v \in S} N(v)$ and the closed neighbourhood of S is $N[S]=N(S) \bigcup S$. Let $S_{n}, n \geq 2$ be the star with n vertices $V\left(S_{n}\right)=[n]$ and $E\left(S_{n}\right)=\{(1,2),(1,3), \ldots,(1, n)\}$.

Definition 1.1

For a graph $G=(V, E)$, an edge $e=u v \in E(G), e v$-dominates a vertex $w \in V(G)$ if
(i) $u=w$ or $v=w(w$ is incident to e) or
(ii) $u w$ or $v w$ is an edge in G (w is adjacent to u or v).

Definition 1.2

A set $S \subseteq E(G)$ is an Edge-Vertex dominating set of G (or simply an $e v$-dominating set), if for all vertices $v \in V(G)$, there exist an edge $e \in S$ such that e dominates v. The Edge-Vertex domination number of a graph G is defined as the minimum size of an Edge-Vertex dominating set of edges in G and it is denoted as $\gamma_{e v}(G)$.

Definition 1.3

Let $D_{e v}\left(S_{n}, i\right)$ be the family of Edge-Vertex dominating sets of a Star graph S_{n} with cardinality i and let $d_{e v}\left(S_{n}, i\right)=\left|D_{e v}\left(S_{n}, i\right)\right|$ be the number of Edge-Vertex dominating sets of S_{n}. We call the polynomial $D_{e v}\left(S_{n}, x\right)=\sum_{i=1}^{n-1} d_{e v}\left(S_{n}, i\right) x^{i}$, the Edge-Vertex domination polynomial of the graph S_{n}

As usual we use $\lfloor x\rfloor$ for the largest integer less than or equal to x and $\lceil x\rceil$ for the smallest integer greater than or equal to x. Also, we denote the set $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ by $\left[e_{n}\right]$ and the set $\{1,2, \cdots, n\}$ by $[n]$, throughout this paper.

2. Edge-Vertex Dominating Sets of Stars

Let $S_{n}, n \geq 2$ be a Star with n vertices $V\left(S_{n}\right)=[n]$ and $E\left(S_{n}\right)=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$. Let $D_{e v}\left(S_{n}, i\right)$ be the family of EdgeVertex dominating sets of S_{n} with cardinality i.

Lemma 2.1

The following results hold for all graph G with $|V(G)|=n$ vertices and $|E(G)|=n-1$ edges.
(i) $d_{e v}(G, n-1)=1$,
(ii) $d_{e v}(G, n-2)=n-1$,
(iii) $d_{e v}(G, i)=0$ if $i \geq n$,
(iv) $d_{e v}(G, 0)=0$.

Proof:
Let $G=(V, E)$ be a simple graph of order n and size $n-1$, then
(i) $D_{e v}(G, n-1)=\{G\}=\left[e_{n-1}\right]$, therefore $\left|D_{e v}(G, n-1)=1\right|$. Therefore, $d_{e v}(G, n-1)=1$.
(ii) $D_{e v}(G, n-2)=\left\{\left\{G-\left\{e_{i}\right\}\right\}: \forall e_{i} \in G\right\}$, therefore $\left|D_{e v}(G, n-2)\right|=n-1$. Therefore, $d_{e v}(G, n-2)=n-1$.
(iii) If $i \geq n$, there does not exist $H \subseteq G$ such that $|E(H)|>|E(G)|$. Therefore, $d_{e v}(G, i)=0$.
(iv) For $i=0$ there does not exist $H \subseteq G$ such that $|E(H)|=0, \Phi$ is not a Edge-Vertex dominating set of G. Therefore, $d_{e v}(G, 0)=0$.

Lemma 2.2

For all $n \in \mathrm{Z}^{+}, D_{e v}\left(S_{n}, i\right)=\Phi$ if and only if $i \geq n$ or $i<0$.

Theorem 2.3

Let S_{n} be a Star with vertices $n \geq 2$, then
(i)
$d_{e v}\left(S_{n}, i\right)=\binom{n-1}{i}$, if $i \leq n-1$
(ii)

$$
d_{e v}\left(S_{n}, i\right)=\left\{\begin{array}{l}
d_{e v}\left(S_{n-1}, i\right)+1, \quad \text { if } i=1 \\
d_{e v}\left(S_{n-1}, i\right)+d_{e v}\left(S_{n-1}, i-1\right) \\
\text { if } 1<i \leq n-1
\end{array}\right.
$$

Proof

(i) Let S_{n} be a star with n vertices and $n-1$ edges and let $v \in V\left(S_{n}\right)$ be such that v is the centre of S_{n} and let the edges be $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$. Consider an edge e_{i}. By the definition of Edge-Vertex domination, it covers all the vertices of S_{n}. Similarly, any other edge of S_{n} covers all the vertices of S_{n}. Therefore, the number of Edge-Vertex dominating sets of cardinality 1 is $\binom{n-1}{1}$ Consider any two edges of S_{n}. These edges cover all the remaining vertices of S_{n}. Therefore, number of Edge-Vertex dominating sets of cardinality 2 is $\binom{n-1}{2}$. By continuing, we get the number of Edge-Vertex dominating sets of cardinality i is $\binom{n-1}{i}, i \leq n-1$. Therefore, $d_{e v}\left(S_{n}, i\right)=\binom{n-1}{i}, i \leq n-1$.
From Table 1, we have $d_{e v}\left(S_{n}, i\right)=d_{e v}\left(S_{n-1}, i\right)+1, i=1$. For $1<i \leq n-1$, we have $\binom{n-2}{i-1}+\binom{n-2}{i}=\binom{n-1}{i}$.
Therefore, $d_{e v}\left(S_{n}, i\right)=d_{e v}\left(S_{n-1}, i\right)+d_{e v}\left(S_{n-1}, i-1\right), 1<i \leq n-1$.

3. Edge-Vertex Domination Polynomials of Stars

In this section, we obtain the Edge-Vertex Domination polynomial $D_{e v}\left(S_{n}, x\right)$ of the Star graph S_{n}.

Theorem 3.1

$$
D_{e v}\left(S_{n}, x\right)=(1+x)^{n-1}-1
$$

Proof:

$$
\begin{aligned}
& D_{e v}\left(S_{n}, x\right)=\sum_{i=1}^{n-1} d_{e v}\left(S_{n}, i\right) x^{i} \\
= & \sum_{i=1}^{n-1}\binom{n-1}{i} x^{i}, \text { by theorem } 2.3 \text { (i). } \\
= & \binom{n-1}{1} x+\binom{n-1}{2} x^{2}+\ldots+\binom{n-1}{n-1} x^{n-1} \\
= & 1+\binom{n-1}{1} x+\binom{n-1}{2} x^{2}+\ldots+\binom{n-1}{n-1} x^{n-1}-1
\end{aligned}
$$

$D_{e v}\left(S_{n}, x\right)=(1+x)^{n-1}-1$.

Theorem 3.2

$D_{e v}\left(S_{n}, x\right)=(1+x) D_{e v}\left(S_{n-1}, x\right)+x$ with $D_{e v}\left(S_{2}, x\right)=x$ for $n \geq 3$.

Proof:

$$
\begin{aligned}
& D_{e v}\left(S_{n}, x\right)=\sum_{i=1}^{n-1} d_{e v}\left(S_{n}, i\right) x^{i} \\
& \quad=d_{e v}\left(S_{n}, 1\right) x+\sum_{i=2}^{n-1} d_{e v}\left(S_{n}, i\right) x^{i} \\
& \quad=\binom{n-1}{1} x+\sum_{i=2}^{n-1}\left[d_{e v}\left(S_{n-1}, i\right)+d_{e v}\left(S_{n-1}, i-1\right)\right] x^{i} \\
& \quad=(n-1) x+\sum_{i=2}^{n-1} d_{e v}\left(S_{n-1}, i\right) x^{i}+\sum_{i=2}^{n-1} d_{e v}\left(S_{n-1}, i-1\right) x^{i}
\end{aligned}
$$

Consider, $\sum_{i=2}^{n-1} d_{e v}\left(S_{n-1}, i\right) x^{i}=d_{e v}\left(S_{n-1}, 2\right) x^{2}+d_{e v}\left(S_{n-1}, 3\right) x^{3}+\ldots+d_{e v}\left(S_{n-1}, n-1\right) x^{n-1}$

$$
=d_{e v}\left(S_{n-1}, 1\right) x+d_{e v}\left(S_{n-1}, 2\right) x^{2}+\ldots+d_{e v}\left(S_{n-1}, n-1\right) x^{n-1}-
$$

$$
d_{e v}\left(S_{n-1}, 1\right) x
$$

$$
=\sum_{i=1}^{n-1} d_{e v}\left(S_{n-1}, i\right) x^{i}-d_{e v}\left(S_{n-1}, 1\right) x
$$

$$
=D_{e v}\left(S_{n-1}, x\right)-\binom{n-2}{1} x
$$

$$
=D_{e v}\left(S_{n-1}, x\right)-(n-2) x
$$

$$
\begin{aligned}
& \text { Consider, } \sum_{i=2}^{n-1} d_{e v}\left(S_{n-1}, i-1\right) x^{i}=x \sum_{i=2}^{n-1} d_{e v}\left(S_{n-1}, i-1\right) x^{i-1} \\
& \quad=x\left[d_{e v}\left(S_{n-1}, 1\right) x+d_{e v}\left(S_{n-1}, 2\right) x^{2}+\ldots+d_{e v}\left(S_{n-1}, n-2\right) x^{n-2}\right] \\
& =x \sum_{i=1}^{n-2} d_{e v}\left(S_{n-1}, i\right) x^{i} \\
& \quad=x D_{e v}\left(S_{n-1}, x\right) \\
& D_{e v}\left(S_{n}, x\right)=(n-1) x+D_{e v}\left(S_{n-1}, x\right)-(n-2) x+x D_{e v}\left(S_{n-1}, x\right) \\
& \quad=n x-x+D_{e v}\left(S_{n-1}, x\right)-n x+2 x+x D_{e v}\left(S_{n-1}, x\right) \\
& =(1+x) D_{e v}\left(S_{n-1}, x\right)+x
\end{aligned}
$$

Hence the theorem.

Example for Theorem 3.2

Let $D_{e v}\left(S_{n}, x\right)$ be the Edge-Vertex domination polynomial of Star graph S_{n}. Then,
(i) $D_{e v}\left(S_{3}, x\right)=2 x+x^{2}$
(ii) $D_{e v}\left(S_{4}, x\right)=3 x+3 x^{2}+x^{3}$
(iii) $D_{e v}\left(S_{5}, x\right)=4 x+6 x^{2}+4 x^{3}+x$
(iv) $D_{e v}\left(S_{6}, x\right)=5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5}$.

Solution

From Theorem 3.3, $D_{e v}\left(S_{n}, x\right)=(1+x) D_{e v}\left(S_{n-1}, x\right)+x$ with $D_{e v}\left(S_{2}, x\right)=x$ for $n \geq 3$.
(i) For $n=3, D_{e v}\left(S_{3}, x\right)=(1+x) D_{e v}\left(S_{2}, x\right)+x$

$$
\begin{aligned}
& =(1+x) x+x \\
& =2 x+x^{2}
\end{aligned}
$$

(ii)For $n=4, D_{e v}\left(S_{4}, x\right)=(1+x) D_{e v}\left(S_{3}, x\right)+x$

$$
\begin{aligned}
& =(1+x)\left(2 x+x^{2}\right)+x \\
& =3 x+3 x^{2}+x^{3}
\end{aligned}
$$

(iii)For $n=5, D_{e v}\left(S_{5}, x\right)=(1+x) D_{e v}\left(S_{4}, x\right)+x$

$$
\begin{aligned}
& =(1+x)\left(3 x+3 x^{2}+x^{3}\right)+x \\
& =4 x+6 x^{2}+4 x^{3}+x^{4}
\end{aligned}
$$

(iv)For $n=6, D_{e v}\left(S_{6}, x\right)=(1+x) D_{e v}\left(S_{5}, x\right)+x$

$$
\begin{aligned}
& =(1+x)\left(4 x+6 x^{2}+4 x^{3}+x^{4}\right)+x \\
& =5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5} .
\end{aligned}
$$

We obtain $d_{e v}\left(S_{n}, i\right)$ for $2 \leq n \leq 13$ as shown in Table 1.
Table 1. $d_{e v}\left(S_{n}, i\right)$, the number of Edge-Vertex dominating set of S_{n} with cardinality \boldsymbol{i}.

i	1	2	3	4	5	6	7	8	9	10	11	12
n												
2	1											
3	2	1										
4	3	3	1									
5	4	6	4	1								
6	5	10	10	5	1							
7	6	15	20	15	6	1						
8	7	21	35	35	21	7	1					
9	8	28	56	70	56	28	8	1				
10	9	36	84	126	126	84	36	9	1			
11	10	45	120	210	252	210	120	45	10	1		
12	11	55	165	330	462	462	330	165	55	11	1	
13	12	66	220	495	792	924	792	495	220	66	12	1

In the following Theorem, we obtain some properties of $d_{e v}\left(S_{n}, i\right)$.

Theorem 3.3

The following properties hold for the coefficients of $D_{e v}\left(S_{n}, x\right) \forall n \in \mathrm{Z}^{+}, n \geq 4$.
(i) $d_{e v}\left(S_{n}, 1\right)=n-1$,
(ii) $d_{e v}\left(S_{n}, n-1\right)=1$,
(iii) $d_{e v}\left(S_{n}, n-2\right)=n-1$,
(iv) $d_{e v}\left(S_{n}, i\right)=0$ if $i \geq n$,
(v) $\gamma_{e v}\left(S_{n}\right)=1$
(vi) $d_{e v}\left(S_{n}, i\right)=d_{e v}\left(S_{n}, n-1-i\right), 1 \leq i \leq n-2$.

Proof:

(i) We prove this by the method of induction on ' n '. If $n=4$, L.H.S $=d_{e v}\left(S_{4}, 1\right)=3$ (from table 1). R.H.S $=4-1=3$. Therefore, the result is true for $n=4$. Assume that the result is true for all $n<j$. Therefore, $d_{e v}\left(S_{j-1}, 1\right)=j-2$ is true. Now, we have to prove that the result is true for $\mathrm{n}=\mathrm{j} . \quad d_{e v}\left(S_{j}, 1\right)=d_{e v}\left(S_{j-1}, 1\right)+1=j-2+1$. Therefore, $d_{e v}\left(S_{j}, 1\right)=j-1$. Therefore, the result is true for $n=j$. Hence, by the principle of induction, the result is true for all $n, n \in \mathrm{Z}^{+}$.
(ii) We prove this by the method of induction on ' n '. If $n=4$, L.H.S $=d_{e v}\left(S_{4}, 3\right)=1$ (from table 1). R.H.S $=1$. Therefore, the result is true for $n=4$. Assume that the result is true for all $n<j$. Therefore, $d_{e v}\left(S_{j-1}, j-2\right)=1$ is true. Now, we have to prove that the result is true for $n=j . \quad d_{e v}\left(S_{j}, j-1\right)=d_{e v}\left(S_{j-1}, j-1\right)+d_{e v}\left(S_{j-1}, j-2\right)=0+1=1$ Therefore, the result is true for $n=j$. Hence, by the principle of induction, the result is true for all $\mathrm{n}, n \in \mathrm{Z}^{+}$.
(iii) We prove this by the method of induction on ' n '. If $\mathrm{n}=4$, L.H.S $=d_{e v}\left(S_{4}, 2\right)=3$ (from table 1). R.H.S $=4-1=3$.

Therefore, the result is true for $\mathrm{n}=4$. Assume that the result is true for all $n<j$. Therefore, $d_{e v}\left(S_{j-1}, j-2\right)=1$ is true. Now, we have to prove that the result is true for $n=j . d_{e v}\left(S_{j}, j-2\right)=d_{e v}\left(S_{j-1}, j-2\right)+d_{e v}\left(S_{j-1}, j-3\right)$. Therefore, the result

$$
\begin{aligned}
& =1+j-2 \\
& =j-1
\end{aligned}
$$

is true for $n=j$. Hence, by the principle of induction, the result is true for all $n, n \in \mathrm{Z}^{+}$.
(iv) From Table 1, we have $d_{e v}\left(S_{n}, i\right)=0$ if $i \geq n$.
(v) Any edge of S_{n} is enough to cover all the vertices and edges of S_{n}. Therefore, the minimum cardinality of the Edge-Vertex dominating set of S_{n} is 1 . Therefore, $\gamma_{e v}\left(S_{n}\right)=1$.
(vi) L.H.S =

$$
d_{e v}\left(S_{n}, i\right)=\binom{n-1}{i}
$$

R.H.S $=d_{e v}\left(S_{n}, n-1-i\right)=\binom{n-1}{n-1-i}$

$$
=\frac{(n-1)!}{(n-1-i)!(n-1-n+1+i)!}
$$

$$
=\frac{(n-1)!}{(n-1-i)!i!}
$$

$$
=\binom{n-1}{i}
$$

Therefore, $d_{e v}\left(S_{n}, i\right)=d_{e v}\left(S_{n}, n-1-i\right), 1 \leq i \leq n-2$.

Theorem 3.4

The Edge-Vertex dominating roots of the Star graph S_{n} are $\cos \frac{2(k+1) \pi}{n-1}+i \sin \frac{2(k+1) \pi}{n-1}, k=0,1, \ldots, n-2$

Proof:

The Edge-Vertex domination polynomial of Star graph S_{n} is $D_{e v}\left(S_{n}, x\right)=(1+x)^{n-1}-1$. To find the Edge-Vertex dominating roots, put $D_{e v}\left(S_{n}, x\right)=0$. Therefore, we get

$$
\begin{aligned}
& (1+x)^{n-1}-1=0 \\
& \begin{aligned}
(1+x)^{n-1} & =1 \\
(1+x) & =(1)^{\frac{1}{n-1}} \\
& =(\cos 2 \pi+i \sin 2 \pi)^{\frac{1}{n-1}} \\
& =[\cos (2 k \pi+2 \pi)+i \sin (2 k \pi+2 \pi)]^{\frac{1}{n-1}}, \text { where } k \text { is an integer. }
\end{aligned} \text {. }
\end{aligned}
$$

$$
\begin{gathered}
=[\cos 2(k+1) \pi+i \sin 2(k+1) \pi]^{\frac{1}{n-1}}, \\
k=0,1, \ldots, n-2 \\
(1+x)=\cos \frac{2(k+1) \pi}{n-1}+i \sin \frac{2(k+1) \pi}{n-1}, \\
k=0,1, \ldots, n-2 \\
x=\cos \frac{2(k+1) \pi}{n-1}+i \sin \frac{2(k+1) \pi}{n-1}-1, \\
k=0,1, \ldots, n-2
\end{gathered}
$$

Therefore, the Edge-Vertex dominating roots of the Star graph S_{n} are
$\cos \frac{2(k+1) \pi}{n-1}+i \sin \frac{2(k+1) \pi}{n-1}, k=0,1, \ldots, n-2$.

Theorem 3.5

$\frac{d^{n}}{d x^{n}} D_{e v}\left(S_{n}, x\right)=(n-1)!$
Proof:
The Edge-Vertex domination polynomial of Star graph S_{n} is $D_{e v}\left(S_{n}, x\right)=(1+x)^{n-1}-1$.
Differentiating with respect to x we get, $\frac{d}{d x}\left[D_{e v}\left(S_{n}, x\right)\right]=(n-1)(1+x)^{n-2}$.
Again differentiating with respect to x we get, $\frac{d^{2}}{d x^{2}}\left[D_{e v}\left(S_{n}, x\right)\right]=(n-1)(n-2)(1+x)^{n-3}$.
Continuing this way we get $n^{\text {th }}$ derivative,

$$
\begin{aligned}
\frac{d^{n}}{d x^{n}}\left[D_{e v}\left(S_{n}, x\right)\right] & =(n-1)(n-2) \ldots((n-1)-(n-2))(1+x)^{n-n} \\
& =(n-1)(n-2) \ldots(n-1-n+2)(1+x)^{0} \\
& =(n-1)(n-2) \ldots 2.1 \\
& =(n-1)!
\end{aligned}
$$

Theorem 3.6

Let S_{n} be the Star graph with n vertices then, $D_{e v}\left(S_{n},-1\right)=-1$.
Proof:
The Edge-Vertex domination polynomial of Star graph S_{n} is $D_{e v}\left(S_{n}, x\right)=(1+x)^{n-1}-1$.
$D_{e v}\left(S_{n},-1\right)=(1-1)^{n-1}-1=0-1=-1$.

4. Conclusion

In this paper we obtain the Edge-Vertex dominating sets and Edge-vertex domination polynomial of Stars. Similarly we can find Edge-Vertex dominating sets and Edge-vertex domination polynomial of some specified graphs.

5. References

[1] S. Alikhani and Y.-H. Peng, "Introduction to Domination Polynomial of a Graph," .arXiv:0905.2251v1[math.co], 2009.
[2] S. Alikhani and Y.-H. Peng, "Dominating Sets and Domination Polynomials of Paths," International Journal of Mathematics and Mathematical Sciences, Vol. 2009, 2009, Article ID: 542040.
[3] G. Chartand and P. Zhang, "Introduction to Graph Theory," McGraw-Hill, Boston, 2005.
[4] E. SampathKumar and S.S. Kamath, "Mixed Domination in Graphs," Sankhya: The Indian Journal of Statistics, special volume54, pp. 399-402, 1992.
[5] A. Vijayan and J. Sherin Beula, "ev-Dominating Sets and ev-Domination Polynomials of Paths", International Organization of Scientific Research Journal of Mathematics, e-ISSN:2278-5728, p-ISSN:2319-765X. Volume10, Issue 6 Ver. IV (Nov-Dec. 2014), PP 07-17.
[7] A. Vijayan and J. Sherin Beula, "Edge-Vertex Dominating Sets and Edge-Vertex Domination Polynomials of Cycles", Open Journal of Discrete Mathematics, 2015, 5, 74-87.
[6] T. W. Haynes, S.T. Hedetniemi, P. J. Slater, "Fundamentals of Domination in Graphs", Marcel Dekker, New York, 1998.

