45948

Applied Mathematics

Elixir Appl. Math. 104 (2017) 45948-3

Edge-vertex dominating sets and Edge-vertex domination polynomials of Stars

A.Vijayan and J. Sherin Beula

Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Kanyakumari District, Tamil Nadu, South India.

ARTICLE INFO

ABSTRACT

Article history: Received: 1February 2017; Received in revised form: 10 March 2017; Accepted: 21 March 2017;

Keywords Star graph, Edge-Vertex Domination number, Edge-Vertex Dominating sets, Edge-Vertex Domination polynomials. Let G = (V, E) be a simple graph. A set $S \subseteq E(G)$ is an Edge-Vertex dominating set of G (or simply an *ev*-Dominating set), if for all vertices $v \in V(G)$, there exists an edge $e \in S$ such that *e* dominates *v*. Let S_n be the Star graph and let $D_{ev}(S_n, i)$ denote the family of all Edge-Vertex dominating sets of S_n with cardinality *i*. Let $d_{ev}(S_n, i) = |D_{ev}(S_n, i)|$, be the number of Edge-Vertex dominating sets of S_n with cardinality *i*. In this paper, we study the concept of Edge-Vertex domination polynomials of Star graph S_n . The Edge-Vertex Domination polynomial of S_n is $D_{ev}(S_n, x) = \sum_{i=1}^{n-1} d_{ev}(S_n, i) x^i$. We obtain some properties of $D_{ev}(S_n, x)$ and its coefficients. Also, we calculate the recursive formula to derive the Edge-Vertex Domination polynomials of Star graph S_n .

© 2017 Elixir All rights reserved.

1. Introduction

Let G = (V, E) be a simple graph of order |V| = n. A set $S \subseteq V(G)$ is a dominating set of G, if every vertex in $V \setminus S$ is adjacent to at least one vertex in S. For any vertex $v \in V$, the open neighbourhood of v is the set $N(v) = \{u \in V/uv \in E\}$ and the closed neighbourhood of v is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S) = U_{v \in S}N(v)$ and the closed neighbourhood of S is $N[S] = N(S) \cup S$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S) = U_{v \in S}N(v)$ and the closed neighbourhood of S is $N[S] = N(S) \cup S$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S) = U_{v \in S}N(v)$ and the closed neighbourhood of S is $N[S] = N(S) \cup S$. Let $S_n, n \ge 2$ be the star with n vertices $V(S_n) = [n]$ and $E(S_n) = \{(1, 2), (1, 3), \dots, (1, n)\}$.

Definition 1.1

For a graph G = (V, E), an edge $e = uv \in E(G)$, ev-dominates a vertex $w \in V(G)$ if

(i) u = w or v = w (w is incident to e) or

(ii) uw or vw is an edge in G (w is adjacent to u or v).

Definition 1.2

A set $S \subseteq E(G)$ is an Edge-Vertex dominating set of G (or simply an *ev*-dominating set), if for all vertices $v \in V(G)$, there exist an edge $e \in S$ such that e dominates v. The Edge-Vertex domination number of a graph G is defined as the minimum size of an Edge-Vertex dominating set of edges in G and it is denoted as $\gamma_{ev}(G)$.

Definition 1.3

Let $D_{ev}(S_n, i)$ be the family of Edge-Vertex dominating sets of a Star graph S_n with cardinality i and let $d_{ev}(S_n, i) = |D_{ev}(S_n, i)|$ be the number of Edge-Vertex dominating sets of S_n . We call the polynomial $D_{ev}(S_n, x) = \sum_{i=1}^{n-1} d_{ev}(S_n, i) x^i$, the Edge-Vertex domination polynomial of the graph S_n

Tele: +917598492013 E-mail address: dravijayan@gmail.com

A. Vijayan and J. Sherin Beula / Elixir Appl. Math. 104 (2017) 45948-45953

As usual we use $\lfloor x \rfloor$ for the largest integer less than or equal to x and $\lceil x \rceil$ for the smallest integer greater than or equal to x. Also, we denote the set $\{e_1, e_2, \dots, e_n\}$ by $[e_n]$ and the set $\{1, 2, \dots, n\}$ by [n], throughout this paper.

2. Edge-Vertex Dominating Sets of Stars

Let S_n , $n \ge 2$ be a Star with n vertices $V(S_n) = [n]$ and $E(S_n) = \{e_1, e_2, ..., e_{n-1}\}$. Let $D_{ev}(S_n, i)$ be the family of Edge-Vertex dominating sets of S_n with cardinality i.

Lemma 2.1

The following results hold for all graph G with |V(G)| = n vertices and |E(G)| = n - 1 edges.

(i)
$$d_{ev}(G, n-1) = 1$$
,

(ii) $d_{ev}(G, n-2) = n-1$,

(iii) $d_{ev}(G,i) = 0$ if $i \ge n$,

(iv) $d_{ev}(G,0) = 0$.

Proof:

Let G = (V, E) be a simple graph of order *n* and size n - 1, then

(i)
$$D_{ev}(G, n-1) = \{G\} = [e_{n-1}], \text{ therefore } |D_{ev}(G, n-1) = 1|$$
. Therefore, $d_{ev}(G, n-1) = 1$.

(ii)
$$D_{ev}(G, n-2) = \{\{G - \{e_i\}\}: \forall e_i \in G\}, \text{ therefore } |D_{ev}(G, n-2)| = n-1$$
. Therefore, $d_{ev}(G, n-2) = n-1$.

(iii) If $i \ge n$, there does not exist $H \subseteq G$ such that |E(H)| > |E(G)|. Therefore, $d_{ev}(G,i) = 0$.

(iv) For i=0 there does not exist $H \subseteq G$ such that |E(H)|=0, Φ is not a Edge-Vertex dominating set of G. Therefore,

$$d_{ev}(G,0) = 0$$

Lemma 2.2

For all $n \in \mathbb{Z}^+$, $D_{av}(S_n, i) = \Phi$ if and only if $i \ge n$ or i < 0.

Theorem 2.3

Let S_n be a Star with vertices $n \ge 2$, then

(i)
$$d_{ev}(S_n,i) = {n-1 \choose i}$$
, if $i \le n-1$,

(ii)

$$d_{ev}(S_n, i) = \begin{cases} d_{ev}(S_{n-1}, i) + 1, & \text{if } i = 1 \\ d_{ev}(S_{n-1}, i) + d_{ev}(S_{n-1}, i - 1) \\ \text{if } 1 < i \le n - 1 \end{cases}$$

Proof

(i) Let S_n be a star with *n* vertices and n-1 edges and let $v \in V(S_n)$ be such that *v* is the centre of S_n and let the edges be $\{e_1, e_2, ..., e_{n-1}\}$. Consider an edge e_i . By the definition of Edge-Vertex domination, it covers all the vertices of S_n . Similarly, any other edge of S_n covers all the vertices of S_n . Therefore, the number of Edge-Vertex dominating sets of cardinality 1 is $\binom{n-1}{1}$ Consider any two edges of S_n . These edges cover all the remaining vertices of S_n . Therefore, number of Edge-Vertex S_n .

dominating sets of cardinality 2 is $\binom{n-1}{2}$. By continuing, we get the number of Edge-Vertex dominating sets of cardinality *i* is

$$\binom{n-1}{i}, i \le n-1. \text{ Therefore,} \qquad d_{ev}(S_n, i) = \binom{n-1}{i}, i \le n-1.$$

From Table 1, we have $d_{ev}(S_n, i) = d_{ev}(S_{n-1}, i) + 1$, i = 1. For $1 < i \le n-1$, we have $\binom{n-2}{i-1} + \binom{n-2}{i} = \binom{n-1}{i}$.

Therefore, $d_{ev}(S_n, i) = d_{ev}(S_{n-1}, i) + d_{ev}(S_{n-1}, i-1), 1 < i \le n-1$.

3. Edge-Vertex Domination Polynomials of Stars

In this section, we obtain the Edge-Vertex Domination polynomial $D_{ev}(S_n, x)$ of the Star graph S_n .

45950

Theorem 3.1

$$D_{ev}(S_{n}, x) = (1 + x)^{n-1} - 1$$
Proof:
Let

$$D_{ev}(S_{n}, x) = x^{n-1}_{i-1} d_{ev}(S_{n}, i) x^{i}$$

$$= \sum_{i=1}^{n-1} \binom{n-1}{i} x^{i}$$
¹ by theorem 2.3 (i).

$$= \binom{n-1}{1} x + \binom{n-1}{2} x^{2} + \dots + \binom{n-1}{n-1} x^{n-1}$$

$$= 1 + \binom{n-1}{1} x + \binom{n-1}{2} x^{2} + \dots + \binom{n-1}{n-1} x^{n-1} - 1$$
Theorem 3.2

$$D_{ev}(S_{n}, x) = (1 + x)^{n-1} - 1$$
Theorem 3.2

$$D_{ev}(S_{n}, x) = \sum_{i=1}^{n-1} d_{ev}(S_{n-i}, x) + x \text{ with } D_{ev}(S_{2}, x) = x \text{ for } n \ge 3$$
.
Proof:

$$D_{ev}(S_{n}, x) = \sum_{i=1}^{n-1} d_{ev}(S_{n-i}, i) + d_{ev}(S_{n-i}, i-1)] y^{i}$$

$$= (n-1)x + \sum_{i=2}^{n-1} d_{ev}(S_{n-i}, i) + d_{ev}(S_{n-i}, i-1)] y^{i}$$

$$= (n-1)x + \sum_{i=2}^{n-1} d_{ev}(S_{n-i}, i) + d_{ev}(S_{n-i}, i-1)] y^{i}$$

$$= (n-1)x + \sum_{i=2}^{n-1} d_{ev}(S_{n-i}, i) + d_{ev}(S_{n-i}, i-1) x^{i}$$
Consider, $\sum_{i=2}^{n-1} d_{ev}(S_{n-i}, i) + d_{ev}(S_{n-i}, 2) x^{2} + d_{ev}(S_{n-i}, n-1) x^{n-1} - d_{ev}(S_{n-i}, 1) x + d_{ev}(S_{n-i}, n-1) x^{n-1} - d_{ev}(S_{n-i}, n-1$

Example for Theorem 3.2

Let $D_{av}(S_n, x)$ be the Edge-Vertex domination polynomial of Star graph S_n . Then,

- (i) $D_{ev}(S_3, x) = 2x + x^2$
- (ii) $D_{ev}(S_4, x) = 3x + 3x^2 + x^3$
- (iii) $D_{ev}(S_5, x) = 4x + 6x^2 + 4x^3 + x$ (iv) $D_{ev}(S_6, x) = 5x + 10x^2 + 10x^3 + 5x^4 + x^5$.

Solution

From Theorem 3.3, $D_{ev}(S_n, x) = (1+x)D_{ev}(S_{n-1}, x) + x$ with $D_{ev}(S_2, x) = x$ for $n \ge 3$.

(i)For
$$n = 3$$
, $D_{ev}(S_3, x) = (1+x)D_{ev}(S_2, x) + x$
 $= (1+x)x + x$
 $= 2x + x^2$
(ii)For $n = 4$, $D_{ev}(S_4, x) = (1+x)D_{ev}(S_3, x) + x$
 $= (1+x)(2x + x^2) + x$
 $= 3x + 3x^2 + x^3$
(iii)For $n = 5$, $D_{ev}(S_5, x) = (1+x)D_{ev}(S_4, x) + x$
 $= (1+x)(3x + 3x^2 + x^3) + x$
 $= 4x + 6x^2 + 4x^3 + x^4$
(iv)For $n = 6$, $D_{ev}(S_6, x) = (1+x)D_{ev}(S_5, x) + x$
 $= (1+x)(4x + 6x^2 + 4x^3 + x^4) + x$
 $= 5x + 10x^2 + 10x^3 + 5x^4 + x^5$.

We obtain $d_{ev}(S_n, i)$ for $2 \le n \le 13$ as shown in Table 1.

i	1	2	3	4	5	6	7	8	9	10	11	12
п												
2	1											
3	2	1										
4	3	3	1									
5	4	6	4	1								
6	5	10	10	5	1							
7	6	15	20	15	6	1						
8	7	21	35	35	21	7	1					
9	8	28	56	70	56	28	8	1				
10	9	36	84	126	126	84	36	9	1			
11	10	45	120	210	252	210	120	45	10	1		
12	11	55	165	330	462	462	330	165	55	11	1	
13	12	66	220	495	792	924	792	495	220	66	12	1

Table 1. $d_{ev}(S_n, i)$, the number of Edge-Vertex dominating set of S_n with cardinality *i*.

In the following Theorem, we obtain some properties of $d_{ev}(S_n, i)$.

Theorem 3.3

The following properties hold for the coefficients of $D_{ev}(S_n, x) \forall n \in \mathbb{Z}^+, n \ge 4$.

(i) $d_{ev}(S_n, 1) = n - 1$, (ii) $d_{ev}(S_n, n - 1) = 1$, (iii) $d_{ev}(S_n, n - 2) = n - 1$, (iv) $d_{ev}(S_n, i) = 0$ if $i \ge n$, (v) $\gamma_{ev}(S_n) = 1$ (vi) $d_{ev}(S_n, i) = d_{ev}(S_n, n - 1 - i), 1 \le i \le n - 2$.

45951

45952 Proof:

A.Vijayan and J. Sherin Beula / Elixir Appl. Math. 104 (2017) 45948-45953

(i) We prove this by the method of induction on 'n'. If n = 4, L.H.S = $d_{ev}(S_4, 1) = 3$ (from table 1). R.H.S = 4 - 1 = 3. Therefore, the result is true for n = 4. Assume that the result is true for all n < j. Therefore, $d_{ev}(S_{j-1}, 1) = j - 2$ is true. Now, we have to prove that the result is true for n = j. $d_{ev}(S_j, 1) = d_{ev}(S_{j-1}, 1) + 1 = j - 2 + 1$. Therefore, $d_{ev}(S_j, 1) = j - 1$. Therefore, the result is true for n = j. Hence, by the principle of induction, the result is true for all n, $n \in Z^+$.

(ii) We prove this by the method of induction on 'n'. If n = 4, L.H.S = $d_{ev}(S_4,3) = 1$ (from table 1). R.H.S = 1. Therefore, the result is true for n = 4. Assume that the result is true for all n < j. Therefore, $d_{ev}(S_{j-1}, j-2) = 1$ is true. Now, we have to prove that the result is true for n = j. $d_{ev}(S_j, j-1) = d_{ev}(S_{j-1}, j-1) + d_{ev}(S_{j-1}, j-2) = 0 + 1 = 1$ Therefore, the result is true for n = j. Hence, by the principle of induction, the result is true for all n, $n \in \mathbb{Z}^+$.

(iii) We prove this by the method of induction on 'n'. If n = 4, L.H.S = $d_{ev}(S_4, 2) = 3$ (from table 1). R.H.S = 4 - 1 = 3.

Therefore, the result is true for n = 4. Assume that the result is true for all n < j. Therefore, $d_{ev}(S_{j-1}, j-2) = 1$ is true. Now, we have to prove that the result is true for n = j. $d_{ev}(S_j, j-2) = d_{ev}(S_{j-1}, j-2) + d_{ev}(S_{j-1}, j-3)$. Therefore, the result = 1 + i - 2.

$$= i + j - 1$$

is true for n = j. Hence, by the principle of induction, the result is true for all n, $n \in \mathbb{Z}^+$.

(iv) From Table 1, we have $d_{ev}(S_n, i) = 0$ if $i \ge n$.

(v) Any edge of S_n is enough to cover all the vertices and edges of S_n . Therefore, the minimum cardinality of the Edge-Vertex dominating set of S_n is 1. Therefore, $\gamma_{ev}(S_n) = 1$.

(vi) L.H.S =

$$d_{ev}(S_n, i) = {\binom{n-1}{i}}^{\cdot}$$

R.H.S =
 $d_{ev}(S_n, n-1-i) = {\binom{n-1}{n-1-i}}^{\cdot}$
 $= \frac{(n-1)!}{(n-1-i)!(n-1-n+1+i)!}$
 $= \frac{(n-1)!}{(n-1-i)!i!}$
 $= {\binom{n-1}{i}}$

Therefore, $d_{ev}(S_n, i) = d_{ev}(S_n, n-1-i), 1 \le i \le n-2$.

Theorem 3.4

The Edge-Vertex dominating roots of the Star graph S_n are $\cos \frac{2(k+1)\pi}{n-1} + i \sin \frac{2(k+1)\pi}{n-1}$, k = 0, 1, ..., n-2

Proof:

The Edge-Vertex domination polynomial of Star graph S_n is $D_{ev}(S_n, x) = (1+x)^{n-1} - 1$. To find the Edge-Vertex dominating roots, put $D_{ev}(S_n, x) = 0$. Therefore, we get

$$(1+x)^{n-1} - 1 = 0$$

$$(1+x)^{n-1} = 1$$

$$(1+x) = (1)^{\frac{1}{n-1}}$$

$$= (\cos 2\pi + i \sin 2\pi)^{\frac{1}{n-1}}$$

$$= [\cos(2k\pi + 2\pi) + i \sin(2k\pi + 2\pi)]^{\frac{1}{n-1}}, \text{ where } k \text{ is an integer.}$$

$$= \left[\cos 2(k+1)\pi + i\sin 2(k+1)\pi\right]^{\frac{1}{n-1}},$$

$$k = 0,1,...,n-2$$

$$(1+x) = \cos \frac{2(k+1)\pi}{n-1} + i\sin \frac{2(k+1)\pi}{n-1},$$

$$k = 0,1,...,n-2$$

$$x = \cos \frac{2(k+1)\pi}{n-1} + i\sin \frac{2(k+1)\pi}{n-1} - 1,$$

$$k = 0,1,...,n-2$$

Therefore, the Edge-Vertex dominating roots of the Star graph S_{n} are

$$\cos\frac{2(k+1)\pi}{n-1} + i\sin\frac{2(k+1)\pi}{n-1}, k = 0, 1, ..., n-2$$

Theorem 3.5

 $\frac{d^n}{dx^n}D_{ev}(S_n,x) = (n-1)!$

Proof:

The Edge-Vertex domination polynomial of Star graph S_n is $D_{ev}(S_n, x) = (1+x)^{n-1} - 1$.

Differentiating with respect to x we get, $\frac{d}{dx} \left[D_{ev}(S_n, x) \right] = (n-1)(1+x)^{n-2}.$

Again differentiating with respect to x we get,

$$\frac{d^2}{dx^2} \left[D_{ev}(S_n, x) \right] = (n-1)(n-2)(1+x)^{n-3}$$

Continuing this way we get n^{th} derivative,

$$\frac{d^{n}}{dx^{n}} [D_{ev}(S_{n}, x)] = (n-1)(n-2)...((n-1) - (n-2))(1+x)^{n-n}$$
$$= (n-1)(n-2)...(n-1-n+2)(1+x)^{0}$$
$$= (n-1)(n-2)...2.1$$
$$= (n-1)!$$

Theorem 3.6

Let S_n be the Star graph with *n* vertices then, $D_{ev}(S_n, -1) = -1$.

Proof:

The Edge-Vertex domination polynomial of Star graph S_n is $D_{ev}(S_n, x) = (1+x)^{n-1} - 1$.

$$D_{ev}(S_n, -1) = (1-1)^{n-1} - 1 = 0 - 1 = -1$$

4. Conclusion

In this paper we obtain the Edge-Vertex dominating sets and Edge-vertex domination polynomial of Stars. Similarly we can find Edge-Vertex dominating sets and Edge-vertex domination polynomial of some specified graphs.

5. References

[1] S. Alikhani and Y.-H. Peng, "Introduction to Domination Polynomial of a Graph," .arXiv:0905.2251v1[math.co], 2009.

[2] S. Alikhani and Y.-H. Peng, "Dominating Sets and Domination Polynomials of Paths," International Journal of Mathematics and Mathematical Sciences, Vol. 2009, 2009, Article ID: 542040.

[3] G. Chartand and P. Zhang, "Introduction to Graph Theory," McGraw-Hill, Boston, 2005.

[4] E. SampathKumar and S.S. Kamath, "Mixed Domination in Graphs," Sankhya: The Indian Journal of Statistics, special volume54, pp. 399 – 402, 1992.

[5] A. Vijayan and J. Sherin Beula, "ev-Dominating Sets and ev-Domination Polynomials of Paths", International Organization of Scientific Research Journal of Mathematics, e-ISSN:2278-5728, p-ISSN:2319-765X. Volume10, Issue 6 Ver. IV (Nov-Dec. 2014), PP 07-17.

[7] A. Vijayan and J. Sherin Beula, "Edge-Vertex Dominating Sets and Edge-Vertex Domination Polynomials of Cycles", Open Journal of Discrete Mathematics, 2015, 5, 74-87.

[6] T. W. Haynes, S.T. Hedetniemi, P. J. Slater, "Fundamentals of Domination in Graphs", Marcel Dekker, New York, 1998.

45953