$\mathrm{ON} \Omega_{\mathrm{gb}}{ }^{+}$-closed sets in simple extension topological spaces

T. Madhumathi and F. Nirmala Irudayam
Department of Mathematics, Nirmala College for Women, Coimbatore, India.

ARTICLE INFO

Article history:
Received: 1 March 2017;
Received in revised form:
Received in revised form: 15 April 2017;
Accepted: 25 April 2017;

Abstract

This paper serves as a platform to discuss and bring out the concept of kernel, separation axiom and continuity of $\Omega_{\mathrm{gb}}{ }^{+}$and $\mho_{\mathrm{gb}}{ }^{+}$-closed sets, under the light of simple extension topological spaces.

© 2017 Elixir All rights reserved.

Keywords

Kernel,
Separation axiom.

1. Introduction

A new class of generalized open sets called b-open sets in topological spaces was defined by Andrijevic [2]. The class of all b open sets generates the same topology as the class of all pre-open sets. In 1986, Maki [11] introduced the concept of generalized Λ sets and defined the associated closure operators by using the work of Levine [8] and Dunhem [5]. Caldas and Dontchev [3] introduced Λ_{s}-sets, V_{s}-sets, $\mathrm{g} \Lambda_{\mathrm{s}}$-sets and $\mathrm{g} \mathrm{V}_{\mathrm{s}}$-sets. Ganster and et al. [6] introduced the notion of pre Λ-sets and pre V -sets and obtained new topologies via these sets. M.E. Abd El-Monsef et al. [1] defined $\mathrm{b} \Lambda$-sets and bV -sets on a topological space and proved that it forms a topology. In 1963 Levine [9] introduced the concept of a simple extension of a topology τ as $\tau(B)=\left\{(\mathrm{B} \cap \mathrm{O}) \cup \mathrm{O}^{\prime} / \mathrm{O}, \mathrm{O}^{\prime} \in \tau\right.$ and $\left.\mathrm{B} \notin \tau\right\}$. Sr. I. Arockiarani and F. Nirmala Irudayam [12] introduced the concept of b^{+}-open sets in extended topological spaces. Caldas and Jafari[4] introduced the notions of $\Lambda_{\delta}-T_{0}, \Lambda_{\delta}-T_{1}$ and $\Lambda_{\delta}-T_{2}$ topological spaces. S. Reena and F. Nirmala Irudayam [14] devised a new form of continuity and T. Noiri, Sr. I. Arockiarani and F. Nirmala Irudayam [13] coined the idea of $\Omega_{\mathrm{gb}}^{+^{*}}, \mho_{\mathrm{gb}}{ }^{+*}$ sets in simple extended topological spaces. T. Madhumathi and F. Nirmala Irudayam [10] proposed the idea of $\Omega_{\mathrm{gb}}{ }^{+}(\mathrm{S})$ and $\mho_{\mathrm{gb}}{ }^{+}(\mathrm{S})$ sets in simple extension ideal topological spaces.

2. Preliminaries

All through the paper the space X is a SETS in which no separation axioms are assumed unless and otherwise stated.

Definition 2.1

A subset A of a topological space (X, τ) is said to be,
(i) b-open set[2], if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A})) \cup \operatorname{int}(\mathrm{cl}(\mathrm{A}))$ and b-closed set $\operatorname{cl}(\operatorname{int}(\mathrm{A})) \cup \operatorname{int}(\operatorname{cl}(\mathrm{A})) \subseteq \mathrm{A}$.
(ii) a generalized closed (briefly g-closed) [7] if $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
(iii) a generalized b-closed (briefly bg-closed) [6] if $b c l(A) \subseteq U$ whenever $A \subseteq U$ and U is open. (iv) $\pi g b-c l o s e d[15]$ if $\operatorname{bcl}(\mathrm{A}) \subset A$ whenever $A \subset U$ and U is π-open in (X, τ). By $\pi \mathrm{GBC}(\mathrm{X}, \tau)$ we mean the family of all $\pi \mathrm{gb}$-closed subsets of the space (X, τ)
Definition 2.2[12]: A subset A of a topological space (X, τ) is said to be,
(i) b^{+}-open set if $\mathrm{A} \subseteq \mathrm{cl}^{+}(\operatorname{int}(\mathrm{A})) \cup \operatorname{int}\left(\mathrm{cl}^{+}(\mathrm{A})\right)$ and b -closed set $\mathrm{cl}^{+}(\operatorname{int}(\mathrm{A})) \cup \operatorname{int}\left(\mathrm{cl}^{+}(\mathrm{A})\right) \subseteq \mathrm{A}$.
(ii)a generalized ${ }^{+}$closed (briefly g^{+}-closed) if $\mathrm{cl}^{+}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open.
(iii) a generalized b^{+}-closed (briefly bg^{+}-closed) if $\mathrm{bcl}^{+}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open. (iv) $\pi \mathrm{gb}^{+}$-closed [14] if $\mathrm{bcl}^{+}(\mathrm{A}) \subset \mathrm{A}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is π^{+}-open in $\left(\mathrm{X}, \tau^{+}\right)$. $\mathrm{By} \pi \mathrm{GB}^{+} \mathrm{C}\left(\mathrm{X}, \tau^{+}\right)$we mean the family of all $\pi \mathrm{gb}^{+}$closed subsets of the space (X, τ^{+}).
Definition 2.3[10]: Let S be a subset of a topological space (X, τ^{+}) we define the sets $\Omega_{\mathrm{gb}}{ }^{+}(\mathrm{S}) \mathrm{and}_{\mathrm{gb}}{ }^{+}(\mathrm{S})$ asfollows, $\Omega_{\mathrm{gb}}{ }^{+}(\mathrm{S})=\cap\left\{\mathrm{G} \mid \mathrm{G} \in \pi \mathrm{GB}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}\right)\right.$and $\left.\mathrm{S} \subseteq \mathrm{G}\right\}, \quad \mho_{\mathrm{gb}}{ }^{+}(\mathrm{S})=\mathrm{U}\left\{\mathrm{F} \mid \mathrm{F} \in \pi \mathrm{GB}^{+} \mathrm{C}\left(\mathrm{X}, \tau^{+}\right)\right.$and $\left.\mathrm{S} \supseteq \mathrm{F}\right\}$.
Definition 2.4[14]: A function $\mathrm{f}:\left(\mathrm{X}, \tau^{+}\right) \rightarrow\left(\mathrm{Y}, \sigma^{+}\right)$is called
(i) π^{+}-irresolute if $\mathrm{f}^{-1}(\mathrm{~V})$ is π^{+}-closed in $\left(\mathrm{X}, \tau^{+}\right)$for every π^{+}-closed set V of $\left(\mathrm{Y}, \sigma^{+}\right)$.
(ii) b^{+}-irresolute if for each b^{+}-open set V in $\left(\mathrm{Y}, \sigma^{+}\right), \mathrm{f}^{-1}(\mathrm{~V})$ is b^{+}-open in $\left(\mathrm{X}, \tau^{+}\right)$.
(iii) b^{+}-continuous if for each open set V in $\left(Y, \sigma^{+}\right), f^{-1}(V)$ is b^{+}-open in $\left(X, \tau^{+}\right)$.
3. $\Omega_{\mathrm{gb}}{ }^{+}$-KERNEL

Definition 3.1: Let $\left(X, \tau^{+}\right)$be a topological space, $\mathrm{A} \subset \mathrm{X}$. Then $\Omega_{\mathrm{gb}}{ }^{+}$-kernal of A is defined by $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{Ker}(\mathrm{A})=\cap\left\{\mathrm{G} / \mathrm{G} \in \Omega_{\mathrm{gb}}{ }^{+} \mathrm{O}(\mathrm{X}\right.$, τ^{+}) and $\left.\mathrm{A} \subset \mathrm{G}\right\}$
Definition 3.2: A point $\mathrm{x} \in \mathrm{X}$ is called $\Omega_{\mathrm{gb}}{ }^{+}$-cluster point of A if for every $\Omega_{\mathrm{gb}}{ }^{+}$-open set U containing $\mathrm{x}, \mathrm{A} \cap \mathrm{U} \neq \phi$.
Let $\left(X, \tau^{+}\right)$be a topological space and A, B be subsets of X, Let $x, y \in X$ then we have the following lemmas.
Lemma 3.3: $\mathrm{A} \subset \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A})$

E-mail address: madhumanoj1822@gmail.com

Proof: Let $\mathrm{x} \notin \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A})$ then there exists $\mathrm{V} \in \Omega_{\mathrm{gb}}{ }^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}\right)$such that $\mathrm{A} \subset \mathrm{V}$ and $\mathrm{x} \notin \mathrm{V}$. Hence $\mathrm{x} \notin \mathrm{A}$.
Lemma 3.4: If $\mathrm{A} \subset \mathrm{B}$, then $\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A}) \subset \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{B})$.
Proof: Let $\mathrm{x} \notin \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{B})$. Then there exists $\mathrm{G} \in \Omega_{\mathrm{gb}}{ }^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}\right)$such that $\mathrm{B} \subset \mathrm{G}$ and $\mathrm{x} \notin \mathrm{G}$. Since $\mathrm{A} \subset \mathrm{B}, \mathrm{A} \subset \mathrm{G}$ and hence $\mathrm{x} \notin \Omega_{\mathrm{gb}}{ }^{+}-$ $\operatorname{Ker}(\mathrm{A})$.
Lemma 3.5: $\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A})=\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}\left(\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A})\right)$.
Proof: Let $\mathrm{x} \in \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}\left(\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A})\right)$ then for every $\Omega_{\mathrm{gb}}{ }^{+}-$open set, $\mathrm{G} \supset \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A}), \mathrm{x} \in \mathrm{G}$. Since $\mathrm{A} \subset \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A})$, for every $\Omega_{\mathrm{gb}}{ }^{+}$-open set $\mathrm{G} \supset \mathrm{A}, \mathrm{x} \in \mathrm{G}$. Hence $\mathrm{x} \in \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A})$. Therefore $\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}\left(\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A})\right) \subset \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A})$. Also $\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A}) \subset \Omega_{\mathrm{gb}}{ }^{+}{ }^{-}$ $\operatorname{Ker}\left(\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A})\right.$. Hence $\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A})=\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}\left(\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\mathrm{A})\right)$.
Lemma 3.6: $\mathrm{y} \in \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\{\mathrm{x}\})$ if $\mathrm{x} \in \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})$
Proof: Let $\mathrm{y} \notin \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{Ker}(\{\mathrm{x}\}) \Leftrightarrow$ there exists a $\Omega_{\mathrm{gb}}{ }^{+}$-open set $\mathrm{V} \supset\{\mathrm{x}\}$ such that $\mathrm{y} \notin \mathrm{V} \Leftrightarrow$ there exists a $\Omega_{\mathrm{gb}}{ }^{+}$-open set $\mathrm{V} \supset\{\mathrm{x}\}$ such that $\{\mathrm{y}\} \cap \mathrm{V}=\phi \Leftrightarrow \mathrm{x}$ is not a $\Omega_{\mathrm{gb}}{ }^{+}$-cluster point of $\{\mathrm{y}\} \Leftrightarrow \quad \mathrm{x} \notin \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})$
$4 . \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{\mathrm{k}}$ SPACES
Definition 4.1: $\left(\mathrm{X}, \tau^{+}\right)$is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{0}$ if for each pair of distinct points x , y of X , there exists a $\Omega_{\mathrm{gb}}{ }^{+}$-open set containing one of points but not the other.
Theorem 4.2: (X, $\left.\tau^{+}\right)$is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{0}$ iff for each pair of distinct points x, y of $\mathrm{X}, \quad \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{x}\}) \neq \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})$.
Proof: Necessity: Let $\left(\mathrm{X}, \tau^{+}\right)$be a $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{0}$ space. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\mathrm{x} \neq \mathrm{y}$. Then there exists a $\Omega_{\mathrm{gb}}{ }^{+}$-open set V containing one of the points but not the other, say $\mathrm{x} \in \mathrm{V}$ and $\mathrm{y} \notin \mathrm{V}$. Then V^{c} is $\Omega_{\mathrm{gb}}{ }^{+}$-closed set containing y but not x . But $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})$ is the smallest $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{closed}$ set containing y . Therefore $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\}) \subset \mathrm{V}^{\mathrm{c}}$. Hence $\quad \mathrm{x} \notin \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}\{\mathrm{y}\}$.Thus $\quad \Omega_{\mathrm{gb}}{ }^{+}$. $\operatorname{cl}(\{x\}) \neq \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{cl}(\{y\})$. Sufficiency: Suppose $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq \mathrm{y}$ and $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{x}\}) \neq \boldsymbol{\Omega}_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})$.Let $\mathrm{z} \in \mathrm{X}$ such that $\mathrm{z} \in \Omega_{\mathrm{gb}}{ }^{+}-$ $\operatorname{cl}(\{\mathrm{x}\})$ but $\mathrm{z} \notin \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})$. If $\mathrm{x} \in \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})$, then $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{x}\}) \subset \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})$ and hence $\mathrm{z} \in \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})$. This is a contradiction. Therefore $\mathrm{x} \notin \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})$. That implies $\mathrm{x} \in\left(\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})\right)^{\mathrm{c}}$. Therefore $\left(\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})\right)^{\mathrm{c}}$ is a $\Omega_{\mathrm{gb}}{ }^{+}$-open set containing x but not y . Hence (X, τ^{+}) is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{0}$
Definition 4.3: $\left(\mathrm{X}, \tau^{+}\right)$is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1}$ if for any pair of distinct points x, y of X , there is a $\Omega_{\mathrm{gb}}{ }^{+}$-open set U in X such that $\mathrm{x} \in \mathrm{U}$ and y $\notin \mathrm{U}$ and there is a $\Omega_{\mathrm{gb}}{ }^{+}$-open set V in X such that $\mathrm{y} \in \mathrm{V}$ and $\mathrm{x} \notin \mathrm{V}$.
Remark 4.4: Every $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1}$ space is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{0}$ space. But the converse need not be true. For example, let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau$ $=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\mathrm{B}=\{\mathrm{b}\}, \tau^{+}=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$. Then $\left(\mathrm{X}, \tau^{+}\right)$is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{0}$ space but not $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1}$ space.
Theorem 4.5: In a space $\left(\mathrm{X}, \tau^{+}\right)$, the following are equivalent
(1) $\left(\mathrm{X}, \tau^{+}\right)$is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1}$
(2) For every $\mathrm{x} \in \mathrm{X},\{\mathrm{x}\}=\Omega_{\mathrm{gb}}{ }^{+}-\operatorname{cl}(\{\mathrm{x}\})$.
(3) The intersection of all $\Omega_{\mathrm{gb}}{ }^{+}$-open sets containing the point x in X is $\{\mathrm{x}\}$.

Proof: (1) \Rightarrow (2): Suppose $\mathrm{y} \neq \mathrm{x}$ in X . Then there exists a $\Omega_{\mathrm{gb}}{ }^{+}$-open set V such that $\mathrm{x} \in \mathrm{V}$ and $\mathrm{y} \notin \mathrm{V}$. If $\mathrm{x} \in \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\})$,then x is a cluster point of $\{\mathrm{y}\}$. That implies for every $\Omega_{\mathrm{gb}}{ }^{+}$-open set U containing $\mathrm{x},\{\mathrm{y}\} \cap \mathrm{U} \neq \phi$. Here V is a $\Omega_{\mathrm{gb}}{ }^{+}$-open set containing x . Therefore $\{y\} \cap V \neq \phi$ implies $y \in V$. This is a contradiction. Thus $x \notin \Omega_{\mathrm{gb}}{ }^{+}-\operatorname{cl}(\{y\})$. Hence for a point x . $\mathrm{y} \notin \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{x}\})$. Thus $\{\mathrm{x}\}=\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{x}\})$. (2) $\Rightarrow(3): \mathrm{x} \in \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{y}\}) \Leftrightarrow \mathrm{x}$ is a $\Omega_{\mathrm{gb}}{ }^{+}$-cluster point of $\{\mathrm{x}\} \Leftrightarrow$ for every $\Omega_{\mathrm{gb}}{ }^{+}$-open set U containing $x,\{x\} \cap U \neq \Phi$ if and only if $x \in \cap\left\{G / G \in \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{O}\left(\mathrm{X}, \tau^{+}\right)\right.$and $\left.\{\mathrm{x}\} \subset \mathrm{G}\right\}$. Therefore $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\{\mathrm{x}\})=\cap\left\{\mathrm{G} / \mathrm{G} \in \Omega_{\mathrm{gb}}{ }^{+}{ }^{-}\right.$ $\mathrm{O}\left(\mathrm{X}, \tau^{+}\right)$and $\left.\{\mathrm{x}\} \subset \mathrm{G}\right\} .(2),\{\mathrm{x}\}=\cap\left\{\mathrm{G} / \mathrm{G} \in \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{O}\left(\mathrm{X}, \tau^{+}\right)\right.$and $\left.\{\mathrm{x}\} \subset \mathrm{G}\right\}$.
(3) $\Rightarrow(1)$:

Let $\mathrm{x} \neq \mathrm{y}$ in X . By (3), and $\{\{\mathrm{x}\} \subset \mathrm{G}\}$. Hence there exists one $\Omega_{\mathrm{gb}}{ }^{+}$-open set V containing x but not y . Similarly, there exists one $\Omega_{\mathrm{gb}}{ }^{+}$-open set U containing y but not x. Hence (X, τ) is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1}$.
Theorem 4.6:A space (X, τ^{+}) is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1}$ if the singletons are $\Omega_{\mathrm{gb}}{ }^{+}$-closed sets
Proof: Suppose (X, τ^{+}) is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1}$. Let $\mathrm{x} \in \mathrm{X}$ and $\mathrm{y} \in\{\mathrm{x}\}^{\mathrm{c}}$. Then $\mathrm{x} \neq \mathrm{y}$ and so there exists a $\Omega_{\mathrm{gb}}{ }^{+}$-open set U_{y} such that $\mathrm{y} \in \mathrm{U}_{\mathrm{y}}$ but $\mathrm{x} \notin \mathrm{U}_{\mathrm{y}}$. Therefore $\mathrm{y} \in \mathrm{U}_{\mathrm{y}} \subset\{\mathrm{x}\}^{\mathrm{c}}$. That is, $\quad\{\mathrm{x}\}^{\mathrm{c}}=\mathrm{U}\left\{\mathrm{U}_{\mathrm{y}} / \mathrm{y} \in\{\mathrm{x}\}^{\mathrm{c}}\right\}$ is $\Omega_{\mathrm{gb}}{ }^{+}$-open. Hence $\{\mathrm{x}\}$ is $\Omega_{\mathrm{gb}}{ }^{+}$-closed. Conversely, let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}$. Then $\mathrm{y} \in\{\mathrm{x}\}^{\mathrm{c}}$ and $\{\mathrm{x}\}^{\mathrm{c}}$ is a $\Omega_{\mathrm{gb}}{ }^{+}$-open set containing y but not x . Similarly $\{\mathrm{y}\}^{\mathrm{c}}$ is a $\Omega_{\mathrm{gb}}{ }^{+}$- open set containing x but not y . Hence (X, τ^{+}) is a $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1}$.
Definition 4.7: $\left(\mathrm{X}, \tau^{+}\right)$is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{2}$ if for each pair of distinct points x and y in X there exists a $\Omega_{\mathrm{gb}}{ }^{+}$-open set U and a $\Omega_{\mathrm{gb}}{ }^{+}$-open set V in X such that $x \in U, y \in V$ and $U \cap V=\phi$.
Remark 4.8: Every $\Omega_{\mathrm{gb}}{ }^{+}$- T_{2} space is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1}$.
Theorem 4.9: For a topological space (X, τ^{+}),the following are equivalent:
(1) $\left(\mathrm{X}, \tau^{+}\right)$is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{2}$.
(2) If $\mathrm{x} \in \mathrm{X}$,then for each $\mathrm{y} \neq \mathrm{x}$, there is a $\Omega_{\mathrm{gb}}{ }^{+}$-open set U containing x such that
$\mathrm{y} \notin \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\mathrm{U})$.
(3) For each $\mathrm{x} \in \mathrm{X},\{\mathrm{x}\}=\cap\left\{\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\mathrm{U}) \mid \mathrm{U}\right.$ is a $\Omega_{\mathrm{gb}}{ }^{+}$-open set containing x$\}$.

Proof: (1) \rightarrow (2): Let $\mathrm{x} \in \mathrm{X}$. Then for each $\mathrm{y} \neq \mathrm{x}$, there exists $\Omega_{\mathrm{gb}}{ }^{+}$-open sets A and B such that $\mathrm{x} \in \mathrm{A}, \mathrm{y} \in \mathrm{B}$ and $\mathrm{A} \cap \mathrm{B}=\phi$. Then x $\in \mathrm{A} \subset \mathrm{X}-\mathrm{B}$. Take X-B=F. Then F is $\Omega_{\mathrm{gb}}{ }^{+}$closed. $\mathrm{A} \subset \mathrm{F}$ and $\mathrm{y} \notin \mathrm{F}$. That implies $\mathrm{y} \notin \cap\left\{\mathrm{F} / \mathrm{F}\right.$ is $\Omega_{\mathrm{gb}}{ }^{+}$-closed and $\left.\mathrm{A} \subset \mathrm{F}\right\}=\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\mathrm{A})$. $(2) \rightarrow(1)$: Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{x} \neq \mathrm{y}$. By (2),there exists a $\Omega_{\mathrm{gb}}{ }^{+}$-open set U containing x such that $\mathrm{y} \notin \Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\mathrm{U})$. Therefore $\mathrm{y} \in \mathrm{X}$-($\left.\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\mathrm{U})\right)$, X-($\left.\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\mathrm{U})\right)$ is $\Omega_{\mathrm{gb}}{ }^{+}$-open and $\notin \mathrm{X}-\left(\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\mathrm{U})\right)$. Also $\mathrm{U} \cap \mathrm{X}-\left(\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{cl}(\mathrm{U})\right)=\phi$. Hence (X, $\left.\tau^{+}\right)$is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{2}$. (3) $\leftrightarrow(1)$: Obvious.

5. $\Omega_{\mathrm{gb}}{ }^{+}$-CONTINUOUS AND $\Omega_{\mathrm{gb}}{ }^{+}$-IRRESOLUTE FUNCTIONS

Definition 5.1: A function $\mathrm{f}:\left(\mathrm{X}, \tau^{+}\right) \rightarrow\left(\mathrm{Y}, \sigma^{+}\right)$is called $\Omega_{\mathrm{gb}}{ }^{+}$-continuous if every $\mathrm{f}^{-1}(\mathrm{~V})$ is $\Omega_{\mathrm{gb}}{ }^{+}$-closed in $\left(\mathrm{X}, \tau^{+}\right)$for every closed set V of $\left(\mathrm{Y}, \sigma^{+}\right)$.
Definition 5.2: A function $\mathrm{f}:\left(\mathrm{X}, \tau^{+}\right) \rightarrow\left(\mathrm{Y}, \sigma^{+}\right)$is called $\Omega_{\mathrm{gb}}{ }^{+}$-irresolute if $\mathrm{f}^{-1}(\mathrm{~V})$ is $\Omega_{\mathrm{gb}}{ }^{+}$-closed in $\left(\mathrm{X}, \tau^{+}\right)$for every $\Omega_{\mathrm{gb}}{ }^{+}$-closed set V in $\left(Y, \sigma^{+}\right)$.

Definition 5.3: A function $f: X \rightarrow Y$ is said to be pre b^{+}-closed if $f(U)$ is b^{+}closed in Y for each b^{+}closed set in X.
Remark 5.4: Composition of two $\Omega_{\mathrm{gb}}{ }^{+}$-continuous functions need not be $\Omega_{\mathrm{gb}}{ }^{+}$-continuous.
Example 5.5: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}\}$ and $\mathrm{B}=\{\mathrm{c}\}, \tau^{+}=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}\} . \quad \sigma=\{\mathrm{X}, \Phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\mathrm{B}=\{\mathrm{b}\}$, $\sigma^{+}=\{X, \Phi,\{a\},\{b\},\{a, b\}\} . \eta=\{X, \phi,\{c\},\{a, c\}\}$ and $B=\{b\}, \eta^{+}=\{X, \Phi,\{b\},\{c\},\{a, c\},\{b, c\}$.Define $f:(X, \tau) \rightarrow(X, \sigma)$ by $f(a)=a$, $f(b)=c, f(c)=b$. Define $g:(X, \sigma) \rightarrow(X, \eta)$ by $g(a)=a, g(b)=b, g(c)=c$. Then f and g are $\Omega_{\mathrm{gb}}{ }^{+}$-continuous but gof is not $\Omega_{\mathrm{gb}}{ }^{+}$-continuous.
Proposition 5.6: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be π^{+}-irresolute and pre b^{+}-closed. Then $\mathrm{f}(\mathrm{A})$ is $\Omega_{\mathrm{gb}}{ }^{+}$-closed in Y for every $\Omega_{\mathrm{gb}}{ }^{+}$-closed set A of X.
Proof:Let A be $\Omega_{\mathrm{gb}}{ }^{+}$- closed in X . Let $\mathrm{f}(\mathrm{A}) \subset \mathrm{V}$ is π - open inY. Then $\mathrm{A} \subset \mathrm{f}^{-1}(\mathrm{~V})$ and A is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{closed}$ in X implies $\mathrm{b}^{+} \mathrm{cl}(\mathrm{A}) \subset \mathrm{f}^{-1}(\mathrm{~V})$.
Hence $f(b c l(A)) \subset V$. Since f is pre b^{+}closed, $b^{+} c l(f(A)) \subset b^{+} c l\left(f\left(b^{+} c l(A)\right)\right)=f\left(b^{+} c l(A)\right) \subset V$. Hence $f(A)$ is $\Omega_{g b}{ }^{+}$- closed in Y.
Definition 5.7: A topological space X is a $\Omega_{\mathrm{gb}}{ }^{+}$- space if every $\Omega_{\mathrm{gb}}{ }^{+}$- closed set is closed.
Proposition 5.8: Every $\Omega_{\mathrm{gb}}{ }^{+}$- space is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1 / 2}$ space.
Theorem 5.9: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function.
(1) If f is $\Omega_{\mathrm{gb}}{ }^{+}$- irresolute and X is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1 / 2}$ space, then f is b^{+}-irrusolute.
(2) If f is $\Omega_{\mathrm{gb}}{ }^{+}$- continuous and X is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1 / 2}$ space, then f is b^{+}-continuous.

Proof: (1) Let V be b^{+}-closed in Y. Since f is $\Omega_{\mathrm{gb}}{ }^{+}$-irresolute, $\mathrm{f}^{-1}(\mathrm{~V})$ is $\Omega_{\mathrm{gb}}{ }^{+}$-closed in X . Since X is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1 / 2}$ space, $\mathrm{f}^{-1}(\mathrm{~V})$ is $\mathrm{b}^{+}-$ closed in X. Hence f is b^{+}-irresolute. (2) Let V be closed in Y. Since f is $\Omega_{g b}{ }^{+}$-continuous, $f^{\mathrm{P}}(\mathrm{V})$ is $\Omega_{\mathrm{gb}}{ }^{+}$-closed in X . By assumption, it is b^{+}-closed. Hence f is b^{+}-continuous.
Definition 5.10: A function $f:\left(X, \tau^{+}\right) \rightarrow\left(Y, \sigma^{+}\right)$is π^{+}-open map if $f(F)$ is π^{+}-open in Y for every π^{+}-open in X.
Theorem 5.11: If the bijective $\mathrm{f}:\left(\mathrm{X}, \tau^{+}\right) \rightarrow\left(\mathrm{Y}, \sigma^{+}\right)$is b^{+}-irresolute and π^{+}-open map, then f is $\Omega_{\mathrm{gb}}{ }^{+}$-irresolute.
Proof: Let V be $\Omega_{g b}{ }^{+}$-closed in Y. Let $f^{-1}(V) \subset U$ where U is π^{+}-open in X. Hence $V \subset f(U)$ and $f(U)$ is π^{+}-open implies $b^{+} c l(V) \subset$ $f(U)$. Since f is b^{+}-irresolute, $\left(f^{-1}\left(b^{+} c l(V)\right)\right)$ is b^{+}-closed. Hence $b^{+} c l\left(f^{-1}(V)\right) \subset b^{+} \operatorname{cl}\left(f^{-1}\left(b^{+} c l(V)\right)\right)=f^{-1}\left(b^{+} c l(V)\right) \subset U$. Therefore, f is $\Omega_{\mathrm{gb}}{ }^{+}$-irresolute.
Theorem 5.12: If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is π^{+}-open, b^{+}-irresolute, pre b^{+}-closed surjective function. If X is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1 / 2}$ space, then Y is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1 / 2}$ space.
Proof: Let F be a $\Omega_{\mathrm{gb}}{ }^{+}$-closed set in Y. Let $f^{-1}(F) \subset U$ where U is π^{+}-open in X. Then $\quad F \subset f(U)$ and F is a $\Omega_{\mathrm{gb}}{ }^{+}$- closed set in Y implies $b^{+} c l(F) \subset f(U)$. Since f is b^{+}-irresolute, $\quad b^{+} c l\left(f^{1}(F)\right) \subset b^{+} c l\left(f^{1}\left(b^{+} c l(F)\right)\right)=f^{-1}\left(b^{+} c l(F)\right) \subset U$. Therefore $f^{-1}(F)$ is $\Omega_{g b}{ }^{+}-$ closed in X. Since X is $\Omega_{g b}{ }^{+}-T_{1 / 2}$ space, $f^{-1}(F)$ is b^{+}-closed in X. Since f is pre b^{+}-closed, $f\left(f^{-1}(F)\right)=F$ is b^{+}-closed in Y. Hence Y is $\Omega_{\mathrm{gb}}{ }^{+}-\mathrm{T}_{1 / 2}$ space.

References

[1] Abd El-Monsef M., El-Atik A.A., and El-Sharkasy A.A., "Some topologies induced by b-open sets",Kyungpook Math. J.,
[2]Andrijevic D., "On b-open sets", Mat. Vesnik 48 (1996), no. 1-2, 59-64.
[3] Caldas M., and Dontchev J.G., " Λ_{s}-sets and V_{s}-sets", Mem. Fac. Sci.Kochi. Univ. Math., 21(2000), 21-30.
[4] Caldas, M., Ganster, M., Jafari, S. and Noiri, T. 2004. On p Λ-sets and functions. Mem.Fac.Sci.Kochi Univ.(Math.), 25 : 1-8.
[5] Dunham W., "A new closure operator for non- $_{1}$ topologies", Kyungpook Math. J. 22 (1982), 55-60.
[6] Ganster M., Jafari S., and Noiro T., "On pre- Λ-sets and pre-V-sets", Acta. Math. Hungar., 95(4)(2002), 337-343.
[7] Levine N., "Generalized closed sets in topology", Rend. Circ. Mat. Palermo (2)19(1970), 89-96.
[8] Levine N., "Semi open sets and semi-continuity in topological spaces", Amer.math.Monthly, 70 (1963), 36-41.
[9] Levine N., "Simple extension of topology", Amer.math.Monthly, 71 (1964), 22-105.
[10] Madhumathi T.,
Nirmala Irudayam F., "On $\Omega_{\mathrm{gb}}{ }^{+}$and ${v_{\mathrm{gb}}}^{+}$sets in simple extension ideal topological spaces"Mathematical Sciences International ResearchJournal:vol5 Issue 2(2016),187-190.
[11] Maki H.,"Generalized \wedge-sets and the associated closure operator", Special Issue in Commemoration of Prof. Kazusada Ikeda's Retirement 1. Oct (1986), 139-146.
[12] Nirmala Irudayam F., and Arokiarani Sr.I., "A note on the weaker form of bI set and its generalization in SEITS", International Journal of Computer application, Issue 2, vol.4(Aug 2012),42-54
[13] Noiri T., Arockiarani Sr.I., and Nirmala Irudayam F., "On Some Topologies Induced By BI ${ }^{+}$Open Sets in Simple Extension Ideal Topological Spaces", International Journal of Mathematical Archive-4(1), 2013, 30-135.
[14] Reena S., and Nirmala Irudayam F., "A new Weaker form of $\pi \mathrm{gb}$-continuity", International Journal of Innovative Research in Science, Engineering and Technology, Vol.5, Issue.5, (2016), 8676-8682.
[15] Sreeja D., and Janaki C.,"On π gb- Closed Sets in Topological Spaces", International Journal of Mathematical Archive-2(8), 2011, 1314-1320.

